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gsalazar@ifisica.uaslp.mx.

December 1, 2011

Abstract

Around 1958, Hill conjectured that the crossing number cr(Kn) of the complete graph Kn

is Z (n) := 1
4

⌊
n
2

⌋ ⌊
n−1
2

⌋ ⌊
n−2
2

⌋ ⌊
n−3
2

⌋
and provided drawings of Kn with exactly Z(n) crossings.

Towards the end of the century, substantially different drawings of Kn with Z(n) crossings were
found. These drawings are 2-page book drawings, that is, drawings where all the vertices are on a
line � (the spine) and each edge is fully contained in one of the two half-planes (pages) defined by
�. The 2-page crossing number of Kn, denoted by ν2(Kn), is the minimum number of crossings
determined by a 2-page book drawing of Kn. It was generally conjectured that cr(Kn) = Z(n)
and since cr(Kn) ≤ ν2(Kn) ≤ Z(n), the conjecture ν2(Kn) = Z(n) appeared as a milestone in
the way to find the correct values of cr(Kn). In this paper we develop a novel and innovative
technique to investigate crossings in drawings of Kn, and use it to prove that ν2(Kn) = Z(n).
To this end, we extend the inherent geometric definition of k-edges for finite sets of points in the
plane to topological drawings of Kn. We also introduce the concept of ≤≤k-edges as a useful
generalization of ≤k-edges. Finally, we extend a powerful theorem that expresses the number
of crossings in a rectilinear drawing of Kn in terms of its number of k-edges to the topological
setting.
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1 Introduction

In a drawing of a graph G in the plane, each vertex is represented by a point and each edge e = uv
is represented by a simple curve, in such a way that the endpoints of this simple curve are the
points representing u and v. The crossing number cr(D) of a drawing D is the number of pairwise
intersections of edges (in a point other than a common endpoint) in D, and the crossing number
cr(G) of G is the minimum cr(D), taken over all drawings D of G.

A drawing is good if (i) no three edges meet at a point other than a vertex; (ii) two edges
share at most one point (including vertices); and (iii) if two edges share a point and they are not
both incident to the same vertex, then they cross at that point; that is, such a common point is
a crossing, rather than tangential. It is well-known (and easy to prove) that every graph has a
crossing-minimal drawing which is good. Thus, when our aim (as in this paper) is to estimate the
crossing number of a graph, we may assume that all drawings under consideration are good.

Around 1958, Hill conjectured that

cr(Kn) = Z(n) :=
1

4

⌊n
2

⌋⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
. (1)

This conjecture appeared in print a few years later in papers by Guy [10] and Harary and Hill [11].
Hill described drawings of Kn with Z(n) crossings, which were later corroborated by Blažek and
Koman [2]. These drawings show that cr(Kn) ≤ Z(n). The best known general lower bound is
limn→∞ cr(Kn)/Z(n) ≥ 0.8594, due to de Klerk et al. [9]. For more on the history of this problem
we refer the reader to the excellent survey [3].

One of the major motivations for investigating crossing numbers is their application to VLSI
design. With this motivation in mind, Chung, Leighton and Rosenberg [5] analyzed embeddings of
graphs in books: the vertices lie on a line (the spine) and the edges lie on the pages of the book. If
the book has k pages, and crossings among edges are allowed, the result is a k-page book drawing.

In this work we concentrate on 2-page book drawings. Thus, we may regard the pages as the
closed half-planes defined by the spine. The 2-page crossing number ν2(G) of a graph G is the
minimum of cr(D) taken over all 2-page book drawings D of G. Alternative terminologies for the
2-page crossing number are circular crossing number [12] and fixed linear crossing number [6].

In 1996, Shahrokhi et al. [15] found 2-page book drawings of Kn with Z(n) crossings, thus
showing that ν2(Kn) ≤ Z(n). This yielded the natural conjecture (popularized by Vrt’o [16])
cr(Kn) = ν2(Kn) = Z(n).

Up until a few months ago, essentially the same results (lower bounds) were known for cr(Kn)
as for ν2(Kn); the only additional result was the exact calculation of ν2(K13) and ν2(K14) [4] (con-
firming Hill’s Conjecture, i.e., Identity (1)). In [4], Buchheim and Zhang reformulated the problem
of finding ν2(Kn) as a maximum cut problem on associated graphs, and then solved exactly this
maximum cut problem. Very recently, De Klerk and Pasechnik [8] used this max cut reformulation
to find the exact value of ν2(Kn) for all n ≤ 21 and n = 24, and also, by using semidefinite pro-
gramming techniques, to obtain the asymptotic bound limn→∞ cr(Kn)/Z(n) ≥ 0.9245. Both the
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results in [4] and the results in [8] are computer-aided.

In this paper we prove that ν2(Kn) = Z(n). The main technique for the proof is the extension
of the concept of k-edge of a finite set of points to topological drawings of the complete graph. We
do this in a way such that the identity proved by Ábrego and Fernández-Merchant [1] and Lovász
et al. [14], that expresses the crossing number of a rectilinear drawing of Kn in terms of the k-edges
of its set of vertices, is also valid in the topological setting.

We recall that a drawing D is rectilinear if the edges of D are straight line segments, and the
rectilinear crossing number cr(G) of a graph G is the minimum of cr(D) taken over all rectilinear
drawings D of G. An edge pq of D is a k-edge if the line spanned by pq divides the remaining set of
vertices into two subsets of cardinality k and n− 2− k. Thus a k-edge is also an (n− 2− k)-edge.
Denote by Ek(D) the number of k-edges of D. The following identity has been key to the recent
developments on the rectilinear crossing number of Kn.

cr (D) = 3

(
n

4

)
−

�n/2�−1∑
k=0

k (n− 2− k)Ek (D) . (2)

In Section 2 we generalize the concept of k-edge to arbitrary (that is, not necessarily rectilinear)
drawings of Kn. This allows us to extend Identity (2) to topological (good) drawings of Kn. The
key observation to extend the definition of k-edge to the new setting is to observe that, although
half-planes are not well defined, we can use the orientation of the triangles defined by three points:
the edge pq will be a k-edge of the topological drawing if the set of triangles adjacent to pq is divided,
according to its orientation, into two subsets with cardinality k and n− k− 2. In Section 3 we use
this tool to show that ν2(Kn) = Z(n). In order to do that, we need to introduce the new concept
of ≤≤k-edges, because for topological drawings the lower bound for ≤k-edges, E≤k(D) ≥ 3

(k+2
2

)
does not hold. In Section 4 we analyze optimal 2-page drawings of Kn, and in Section 5 we present
some open questions and directions for future research.

2 Crossings and k-edges

In this section we generalize the concept of k-edges, which has so far only been used in the geometric
setting of finite sets of points in the plane, to topological drawings of Kn. Let D be a good drawing
of Kn, let

−→pq be a directed edge of D and r a vertex of D other than p or q. We say that r is
on the left (respectively, right) side of −→pq if the topological triangle pqr traced in that order (its
vertices and edges correspond to those in D) is oriented counterclockwise (respectively, clockwise).
Note that this is well defined as the three edges pq, qr, and rp in D do not self intersect and do
not intersect each other, as D is a good drawing. We say that the edge pq is a k-edge of D if it has
exactly k points of D on the same side (left or right), and thus n− 2− k points on the other side.
Hence, as before, a k-edge is also an (n− 2− k)-edge. Note that the direction of the edge pq is no
longer relevant and every edge of D is a k-edge for some unique k such that 0 ≤ k ≤ �n/2� − 1.
Let Ek(D) be the number of k-edges of D.

3



Theorem 1. For any good drawing D of Kn in the plane the following identity holds,

cr (D) = 3

(
n

4

)
−

�n/2�−1∑
k=0

k (n− 2− k)Ek (D) .

Proof. In a good drawing of Kn, we say that an edge pq separates the vertices r and s if the
orientations of the triangles pqr and pqs are opposite. In this case, we say that the set {pq, r, s} is
a separation. It is straightforward to check that any good drawing of K4 is isomorphic to one of
the three drawings shown in Figure 1.

A B C

Figure 1: The three different types A, B, and C of nonisomorphic good drawings of K4, with 3, 2,
and 2 separations. The edge of each separation is shown bold.

We denote by TA, TB, and TC the number of induced subdrawings of D of type A, B, and C,
respectively. Then

TA + TB + TC =

(
n

4

)
, (3)

and since the subdrawings of types B or C are in one-to-one correspondence with the crossings
of D, it follows that

cr (D) = TB + TC . (4)

We count the number of separations in D in two different ways: First, each subdrawing of type A
has 3 separations (the edge in each separation is bold in Figure 1), and each subdrawing of types
B or C has 2 separations. This gives a total of 3TA + 2TB + 2TC separations in D. Second, each
k-edge belongs to exactly k(n−2−k) separations. Summing over all k-edges for 0 ≤ k ≤ �n/2�−1

gives a total of
∑�n/2�−1

k=0 k(n− 2− k)Ek(D) separations in D. Therefore

3TA + 2TB + 2TC =

�n/2�−1∑
k=0

k (n− 2− k)Ek(D). (5)

Finally, subtracting Identity (5) from three times Identity (3) we get

TB + TC = 3

(
n

4

)
−

�n/2�−1∑
k=0

k (n− 2− k)Ek(D),

and thus by Identity (4) we obtain the claimed result.
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For 0 ≤ k ≤ �n/2� − 1 and D a good drawing of Kn, we define the set of ≤k-edges of D as all
j-edges in D for j = 0, . . . , k. The number of ≤k-edges of D is denoted by

E≤k (D) :=
k∑

j=0

Ej (D) .

Similarly, we denote the number of ≤≤k-edges of D by

E≤≤k (D) :=

k∑
j=0

E≤j (D) =

k∑
j=0

j∑
i=0

Ei (D) =

k∑
i=0

(k + 1− i)Ei (D) .

To avoid special cases, we define E≤≤−1(D) = E≤≤−2(D) = 0.

The following result restates Theorem 1 in terms of the number of ≤≤k-edges.

Proposition 2. Let D be a good drawing of Kn. Then

cr (D) = 2

�n/2�−2∑
k=0

E≤≤k (D)− 1

2

(
n

2

)⌊
n− 2

2

⌋
− 1

2
(1 + (−1)n)E≤≤�n/2�−2 (D) .

Proof. First note that for 2 ≤ k ≤ �n/2� − 1 we have that E≤≤k(D)− E≤≤k−1(D) = E≤k(D) and
E≤k(D)− E≤k−1(D) = Ek(D). Thus

Ek (D) = E≤≤k (D)− 2E≤≤k−1 (D) + E≤≤k−2 (D) .

We rewrite the last term in Theorem 1.

�n/2�−1∑
k=0

k (n− 2− k)Ek (D) =

�n/2�−1∑
k=2

k (n− 2− k) (E≤≤k (D)− 2E≤≤k−1 (D) + E≤≤k−2 (D))

=

�n/2�−3∑
k=0

(k (n− 2− k)− 2 (k + 1) (n− 3− k) + (k + 2) (n− 4− k))E≤≤k (D)

+
(⌊n

2

⌋
− 1

)(
n− 1−

⌊n
2

⌋)
E≤≤�n/2�−1 (D)

+
(
−2

(⌊n
2

⌋
− 1

)(
n− 1−

⌊n
2

⌋)
+

(⌊n
2

⌋
− 2

)(
n−

⌊n
2

⌋))
E≤≤�n/2�−2 (D)

= −2

�n/2�−3∑
k=0

E≤≤k (D) +
(⌊n

2

⌋
− 1

)(
n− 1−

⌊n
2

⌋)
E≤≤�n/2�−1 (D)

+
(
−2

(⌊n
2

⌋
− 1

)(
n− 1−

⌊n
2

⌋)
+

(⌊n
2

⌋
− 2

)(
n−

⌊n
2

⌋))
E≤≤�n/2�−2 (D) .

Because E≤≤�n/2�−1 (D) = E≤≤�n/2�−2 (D) + E≤�n/2�−1 (D) = E≤≤�n/2�−2 (D) +
(n
2

)
, it follows by
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Figure 2: Two-colored diagram for a 2-page book drawing D of K8 and the corresponding 2-page
matrix. Solid dots and lines represent blue edges. Open dots and dashed lines represent red edges.

Theorem 1 that

cr (D) = 3

(
n

4

)
−

�n/2�−1∑
k=0

k (n− 2− k)Ek (D) = 3

(
n

4

)
+ 2

�n/2�−3∑
k=0

E≤≤k (D)

+
(
n+ 1− 2

⌊n
2

⌋)
E≤≤�n/2�−2 (D)−

(⌊n
2

⌋
− 1

)(
n− 1−

⌊n
2

⌋)(
n

2

)

= 2

�n/2�−3∑
k=0

E≤≤k (D)− 1

2

(
n

2

)⌊
n− 2

2

⌋
+

{
E≤≤�n/2�−2 (D) if n is even

2E≤≤�n/2�−2 (D) if n is odd,

which is equivalent to the claimed result.

3 The 2-page crossing number of Kn

Consider a 2-page book drawingD ofKn with horizontal spine and label the vertices 1, 2, . . . , n from
left to right. Color the edges above or on the spine blue and below the spine red, respectively. We
construct an upper triangular matrix which corresponds to the coloring of these edges, see Figure 2.
We call this the 2-page matrix of D. Label the columns of the 2-page matrix with 2, . . . , n from left
to right and the rows with 1, 2, . . . , n − 1 from top to bottom. For i < j an entry ij (row-column)
in the 2-page matrix is a point with the same color as the edge ij in the drawing D.

We start by proving some basic properties of the 2-page matrix.

Lemma 3. Let D be a 2-page book drawing of Kn. For 1 ≤ i < j ≤ n, let k be the sum of the
number of points to the right plus the number of points above the entry ij in the 2-page matrix of D,
which have the same color as ij. Then the edge ij is a k-edge. (It is possible to have k > �n/2�−1.)
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Proof. Let 1 ≤ i < j ≤ n and assume that the edge ij is blue (red). We count the number of points
l in D to the left (right) of ij. For l �= i, j the triangle ijl is oriented counter-clockwise (clockwise)
if and only if either l < i and the edge lj is blue (red), or l > j and the edge il is blue (red). In the
first case these edges correspond to blue (red) points above the entry ij, and in the second case to
blue (red) points to the right of the entry ij, respectively.

In view of Lemma 3 we say that the point in the cell ij of the 2-page matrix of D represents a
k-edge if ij is a k-edge (or an (n− 2− k)-edge) in D.

Lemma 4. For k < n/2 − 1 and for 1 ≤ j ≤ k + 1, in the 2-page matrix of a drawing D of Kn

there are at least 2 (k + 2− j) points in row j representing ≤k-edges. Similarly, for n− k ≤ j ≤ n
there are at least 2 (k + 1− n+ j) points in column j representing ≤k-edges.

Proof. For 1 ≤ j ≤ k + 1, in row j the rightmost k + 2− j points of each color represent ≤k-edges
as they have at most k+1− j points of their color to the right and at most j− 1 on top. So if each
color appears at least k+2− j times in row j, we have guaranteed 2 (k + 2− j) ≤k-edges in row j.
If one of the colors appears fewer than k+2− j times, so that there are k+2− j− e blue points in
row j for some 1 ≤ e ≤ k+2− j, then there are n− j− (k + 2− j − e) = n−2−k+ e red points in
this row. In this case we claim that also the leftmost e red points in this row represent ≤k-edges. In
fact, for 1 ≤ i ≤ e, the i-th red point (from the left) in row j, has exactly n−2−k+e− i red points
to the right and perhaps more red points on top. Since for n ≥ 2 we have n−2−k+e− i ≥ n/2−k,
this i-th red point also represents a ≤k-edge. The equivalent result holds for the rightmost k + 1
columns.

Lemma 5. For 0 ≤ j < n/2− 1, in the 2-page matrix of a drawing D of Kn there are two points
in column n which correspond to j-edges in D. For n even there exists one such point in column n
corresponding to an (n/2− 1)-edge in D.

Proof. We follow the lines of the proof of Lemma 4. Consider the points in column n in order
from top to bottom. By Lemma 3 the i-th vertex of a color corresponds to an (i− 1)-edge. Thus,
if there are at least j + 1 vertices for each color we are done. Otherwise assume without loss of
generality that there are j + 1− e blue points in column n for some 1 ≤ e ≤ j + 1. Then there are
n− 1− (j + 1− e) = n− j + e− 2 red points in this column. For 1 ≤ i ≤ �n/2� the i-th red point
corresponds to an (i− 1)-edge, and for �n/2�+1 ≤ i ≤ n− j+ e− 2 the i-th red point corresponds
to an (i− 1) = (n− i− 1)-edge. Thus we get two red points corresponding to j-edges for i = j + 1
and i = n− j − 1. Finally, observe that these two points are different for j < n/2− 1. For n even
we get only one such point for j = n/2− 1.

The next theorem gives a lower bound on the number of ≤≤k-edges, which will play a central
role in deriving our main result.

Theorem 6. Let n ≥ 3. For every 2-page book drawing D of Kn and 0 ≤ k < n/2− 1, we have

E≤≤k (D) ≥ 3
(k+3

3

)
.
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Proof. We proceed by induction on n. The induction base n = 3 holds trivially. For n ≥ 4, consider
a 2-page book drawing D of Kn with horizontal spine and label the vertices from left to right with
1, 2, . . . , n. Remove the point n and all incident edges to obtain a 2-page book drawing D′ of Kn−1.
To bound E≤≤k (D), recall that

E≤≤k (D) =
k∑

j=0

(k + 1− j)Ej (D) . (6)

All edges incident to n are in D but are not in D′. In fact, by Lemma 5, there are two j-
edges adjacent to the vertex n for each 0 ≤ j ≤ k ≤ �n/2� − 2. These edges contribute with
2
∑k

j=0(k + 1− j) = 2
(k+2

2

)
to Identity (6). We next compare Identity (6) to

E≤≤k−1

(
D′) =

k−1∑
j=0

(k − j)Ej

(
D′) . (7)

Any edge contributing to Identity (7) also contributes to Identity (6), but possibly with a different
value. A j-edge in D′ is a j-edge or a (j + 1)-edge in D. More precisely, if for a < b the point ab
in the 2-page matrix of D′ represents a blue j-edge in D′ (the equivalent argument holds if ab is
red), with 0 ≤ j ≤ �(n− 1)/2� − 1, then the sum of blue points above it or to its right is either
j or n − 3 − j. If the edge an is blue, then the point ab has j + 1 or n − 3 − j + 1 blue points
above it or to its right in the 2-page matrix of D. This means that the edge ab is a (j + 1)- or
an n − 2 − (n − 3 − j + 1) = j-edge in D, respectively. If the edge an is red, then the point ab
in the 2-page matrix of D has the same number of blue points above it or to its right as in the
2-page matrix of D′. So it is a j- or an n − 2 − (n − 3 − j) = (j + 1)-edge in D, respectively. A
j-edge in D′ contributes to Identity (7) with k− j. A j-edge and a (j +1)-edge in D contribute to
Identity (6) with k + 1− j and k − j, respectively. This is a gain of +1 or 0, respectively, towards
E≤≤k(D) when compared to E≤≤k−1(D

′). Finally, a k-edge in both D and D′ does not contribute
to Identity (7) and contributes to Identity (6) with +1. Therefore

E≤≤k(D) = E≤≤k−1(D
′) + 2

(
k + 2

2

)
+

k∑
j=0

#(j-edges in D′ that are j-edges in D).

By induction hypothesis, E≤≤k−1(D
′) ≥ 3

(k+2
3

)
and thus

E≤≤k(D) ≥ 3

(
k + 2

3

)
+ 2

(
k + 2

2

)
+

k∑
j=0

#(j-edges in D′ that are j-edges in D)

= 3

(
k + 3

3

)
−

(
k + 2

2

)
+

k∑
j=0

#(j-edges in D′ that are j-edges in D).

We finally prove that

k∑
j=0

#(j-edges in D′ that are j-edges in D) ≥
(
k + 2

2

)
. (8)

In fact, we prove that for each 1 ≤ j ≤ k + 1 there are at least k + 2 − j points in row j of the
2-page matrix of D that represent i-edges in both D′ and D for some 0 ≤ i ≤ k. Suppose that the
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edge jn is blue (the equivalent argument holds when jn is red). Then any red point in row j with
i ≤ k red points above it or to its right represents an i-edge in both D and D′ for some 0 ≤ i ≤ k;
and any blue point in row j with i ≥ n − 2 − k blue points above it or to its right represents an
i′-edge in both D and D′ for some 0 ≤ i′ ≤ k. Thus, the first k + 2 − j red points from the right
in row j (if they exist) represent ≤k-edges, because they have at most k + 2− j − 1 red points to
the right and at most j− 1 red points above, and therefore they all contribute to the left-hand-side
of Inequality (8). If there are fewer than k + 2− j red points in row j, say k + 2 − j − e for some
1 ≤ e ≤ k + 2 − j, then the first e blue points in row j from the left represent ≤k-edges, because
they have at least n− j − e ≥ n− j − k− 2 + j = n− k− 2 blue points to their right. Hence there
are at least k+2− j−e red points and at least e blue points (for a total of at least k+2− j points)
that represent ≤k-edges in row j that contribute to the left-hand-side of Inequality (8). Summing
over all 1 ≤ j ≤ k + 1, we get that

k∑
j=0

#(j-edges in D′ that are j-edges in D) ≥
k+1∑
j=1

(k + 2− j) =

(
k + 2

2

)
.

We are now ready to prove our main result, namely that the 2-page crossing number of Kn is
Z(n).

Theorem 7. For every positive integer n, ν2 (Kn) = Z (n).

Proof. The cases n = 1 and n = 2 are trivial. Let n ≥ 3. As we mentioned before, 2-page book
drawings with Z (n) crossings were constructed by Shahrokhi, et al. [15] showing ν2 (Kn) ≤ Z (n).
Let D be a 2-page book drawing of Kn. To prove the lower bound, we use Theorem 6 and
Proposition 2.

cr (D) ≥ 2

�n/2�−2∑
k=0

3

(
k + 3

3

)
− 1

2

(
n

2

)⌊
n− 2

2

⌋
− 3

2
(1 + (−1)n)

(⌊n
2

⌋
+ 1

3

)

= 6

(⌊n
2

⌋
+ 2

4

)
− 1

2

(
n

2

)⌊
n− 2

2

⌋
− 3

2
(1 + (−1)n)

(⌊n
2

⌋
+ 1

3

)

=

{
1
64 (n− 1)2 (n− 3)2 if n is odd
1
64n (n− 2)2 (n− 4) if n is even

= Z (n) .

4 Optimal configurations

It was proved in [1] and [14] that the inequality E≤k (P ) ≥ 3
(k+2

2

)
holds for every set P of n points

in general position in the plane and for every k such that 0 ≤ k ≤ �n/2� − 2. This inequality used
with the rectilinear version of Theorem 1 gives Z (n) as a lower bound for the rectilinear crossing
number of Kn [1]. In contrast to the rectilinear case, the inequality E≤k (D) ≥ 3

(k+2
2

)
does not

hold in general for topological drawings D of Kn, not even for general 2-page book drawings as can
be seen in Figure 3. This shows the relevance of introducing the number E≤≤k (D) and Theorem 6.
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Figure 3: This 2-page book drawing of K8 has four 0-edges, (1, 7), (1, 8), (2, 7), and (2, 8), and four
1-edges, (1, 5), (1, 6), (3, 8), and (4, 8).

However, the inequality E≤k (D) ≥ 3
(k+2

2

)
does hold for crossing optimal drawings of Kn, where in

fact the following stronger result is true.

Proposition 8. Let D be a 2-page book drawing of Kn and In = {k ∈ Z : 0 ≤ k ≤ �n/2� − 2}.
The following are equivalent: (i) cr(D) = Z(n), (ii) Ek(D) = 3 (k + 1) for all k ∈ In, (iii)
E≤k(D) = 3

(
k+2
2

)
for all k ∈ In, and (iv) E≤≤k(D) = 3

(
k+3
3

)
for all k ∈ In.

Proof. In order to satisfy (i) equality must be achieved in the proof of Theorem 7, which is precisely
(iv). Reciprocally, (iv) implies equality in the proof of Theorem 7, which proves the equivalency of
(i) and (iv). The implications (ii) ⇒ (iii) ⇒ (iv) follow directly from the definitions of E≤k(D) and
E≤≤k(D), using the identity

∑r
m=0

(
m
s

)
=

(
r+1
s+1

)
. It remains to show that (iv) implies (ii), which we

do by applying induction on k. For the induction base note that E≤≤0(D) = E≤0(D) = E0(D) = 3.
For 1 ≤ k ≤ �n/2�− 2, the identities Ej(D) = 3(j+1) for all 0 ≤ j ≤ k− 1 and E≤≤k(D) = 3

(k+3
3

)
imply that

3

(
k + 3

3

)
= E≤≤k(D) =

k∑
j=0

(k + 1− j)Ej (D) = Ek(D) + 3

k−1∑
j=0

(k + 1− j)(j + 1),

and thus

Ek(D) = 3

(
k + 3

3

)
− 3

k−1∑
j=0

(k + 1− j)(j + 1) = 3

(
k + 3

3

)
− 1

2
k (k + 1) (k + 5) = 3 (k + 1) .

An elementary counting argument (see for instance [7]) shows that if n is even and cr(Kn−1) =
Z(n − 1), then cr(Kn) = Z(n). Moreover, under these assumptions any topological drawing of
Kn with Z(n) crossings satisfies that every induced subdrawing with n − 1 points has Z(n − 1)
crossings. Our technique allows a different proof of this fact for 2-page book drawings of Kn, but
more importantly it gives for the first time a similar property when n is odd.
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Proposition 9. Let D be a 2-page book drawing of Kn with Z(n) crossings and D′ an induced
subdrawing of D with n − 1 vertices. Then D′ satisfies that Ek(D

′) = 3(k + 1) for all k such that
0 ≤ k ≤ �n/2� − 3. In other words, if D is crossing optimal, then D′ is crossing optimal when n
is even, and D′ is almost crossing optimal when n is odd, in the sense that Proposition 8(ii) holds
for every k ∈ In−1 except perhaps for k = (n − 5)/2.

Proof. In order to achieve cr(D) = Z(n), Proposition 8(iv) must hold and thus equality must be
achieved throughout the proof of Theorem 6 for all k ∈ In. In particular, E≤≤k(D

′) = 3
(k+3

3

)
for

every

0 ≤ k ≤ �n/2� − 3 =

{ �(n− 1)/2� − 2 if n is even,
�(n − 1)/2� − 3 if n is odd.

This means that D′ satisfies Proposition 8(iv) and thus cr(D′) = Z(n−1) if n is even. However, if n
is odd, then D′ satisfies Proposition 8(iv) for all k ∈ In−1 except perhaps for k = �(n− 1)/2�− 2 =
(n − 5)/2. This is equivalent to satisfying Proposition 8(ii) for all k in the same range and thus
being almost crossing optimal in the sense of the statement.

A more detailed analysis on the crossing optimal 2-page book drawings will be included in the
journal version of this work.

5 Concluding remarks

In this paper we proved the conjecture ν2(Kn) = Z(n). One key technique used is the extension
of the geometric concept of k-edge to topological drawings of the complete graph. In this way we
“discretized” the problem and applied the identity proved by Ábrego and Fernández-Merchant [1]
and Lovász et al. [14], that expresses the crossing number of a rectilinear drawing of Kn in terms
of k-edges.

Our approach to determine k-edges in the topological setting is to define the orientation of three
vertices by the orientation of the corresponding triangle in a good drawing of the complete graph.
It is naturally to ask whether this defines an abstract order type. To this end the setting would
have to satisfy the axiomatic system of [13](page 4). But it is easy to construct an example which
does not fulfill these axioms, that is, our setting does not constitute an abstract order type in the
sense of [13]. It is an interesting question for further research how this new concept compares to
the classic order type, both in terms of theory (realizability, etc.) and applications.

We believe that the developed techniques of generalized orientation, k-edge for topological draw-
ings, and ≤≤k-edges are of interest in their own. We will investigate their usefulness for related
problems in future work. For example, they might also play a central role to approach the crossing
number problem for general drawings of the complete and complete bipartite graphs.
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