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Equations 

• Regression Equation
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Equations 

• The linear part of the logistic regression 
equation is used to find the probability 
of being in a category based on the 
combination of predictors

• Programs like SPSS and SAS separate 
discrete predictors with more than two 
levels into multiple dichotomous 
variables.



Fall Difficulty Season
1 3 1 
1 1 1 
0 1 3 
1 2 3 
1 3 2 
0 2 2 
0 1 2 
1 3 1 
1 2 3 
1 2 1 
0 2 2 
0 2 3 
1 3 2 
1 2 2 
0 3 1 

Equations 

• Fall (0 = no, 1 = yes); 
Difficulty is continuous; 
season (1 = autumn, 2 
= winter, 3 = spring)



Equations 

• Season is a discrete variable with three 
levels that would be turned into 2 
separate variables season 1 and season 2.

• Season 1 is coded 1 for autumn and 0 
otherwise; season 2 is coded 1 if winter 
and 0 otherwise; spring is coded when 
both are 0.



Fall DifficultySeasonSeason1Season2
1 3 1 1 0 
1 1 1 1 0 
0 1 3 0 0 
1 2 3 0 0 
1 3 2 0 1 
0 2 2 0 1 
0 1 2 0 1 
1 3 1 1 0 
1 2 3 0 0 
1 2 1 1 0 
0 2 2 0 1 
0 2 3 0 0 
1 3 2 0 1 
1 2 2 0 1 
0 3 1 1 0 



Interpreting coefficients

• Good news – regression coefficients and 
their standard errors are found through 
advanced calculus methods of maximum 
likelihood (e.g. derivatives, etc.), so 
we’re not getting into it.



Interpreting coefficientss

• Each coefficient is evaluated using a 
Wald test (really just a Z-test)
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Interpreting coefficients

Term Coefficient Standard Error Wald Test (Z)
(Constant) -1.776 1.89 -0.88 
Difficulty 1.01 0.9 1.27 
Season (1) 0.927 1.59 0.34 
Season (2) -0.418 1.39 -0.09 



Interpreting coefficients

• The tests of the coefficients are 
approximate z-scores so they are tested 
as z-scores.  None of the coefficients are 
significant in the sample data.

• The coefficients are placed into the 
model like in regular multiple regression 
in order to predict individual subjects’ 
probabilities.



Goodness of fit 

• Log-likelihood
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Goodness of fit 

• Models are compared by taking 2 times 
the difference between the models log-
likelihoods.

2 2[(log-likelihood for bigger model) - (log-likelihood for smaller model)]χ =

Note: models must be nested in order to be compared.  Nested 
means that all components of the smaller model must be in the 
larger model.



Goodness of fit 

• Often a model with intercept and 
predictors is compared to an intercept 
only model to test whether the 
predictors add over and above the 
intercept only.  This is usually noted as 
χ2=2[LL(B)-LL(0)]



Loglikelihood for intercept only model (Yhat = e.405/1 + e.405) 
Fall Yhat 1-Yhat Y*lnYhat (1-Y)*(1-Yhat) Σ[YlnYhat + (1 – Y)ln(1 – Yhat)
1 .60 .40 -.51 0 -.51 
1 .60 .40 -.51 0 -.51 
0 .60 .40 0 -.92 -.92 
1 .60 .40 -.51 0 -.51 
1 .60 .40 -.51 0 -.51 
0 .60 .40 0 -.92 -.92 
0 .60 .40 0 -.92 -.92 
1 .60 .40 -.51 0 -.51 
1 .60 .40 -.51 0 -.51 
1 .60 .40 -.51 0 -.51 
0 .60 .40 0 -.92 -.92 
0 .60 .40 0 -.92 -.92 
1 .60 .40 -.51 0 -.51 
1 .60 .40 -.51 0 -.51 
0 .60 .40 0 -.92 -.92 

Sum= -10.11 



Loglikelihood for intercept only model (Yhat = e-1.776 + seas1(.927) + seas2(-.418) / 
1 + e-1.776 + seas1(.927) + seas2(-.418)) 

Fall Yhat 1-Yhat Y*lnYhat (1-Y)*(1-Yhat) Σ[YlnYhat + (1 – Y)ln(1 – Yhat)
1 .899 0.101 -0.106 0 -0.106 
1 .540 0.460 -0.616 0 -0.616 
0 .317 0.683 0 -0.381 -0.381 
1 .561 0.439 -0.578 0 -0.578 
1 .698 0.302 -0.360 0 -0.360 
0 .457 0.543 0 -0.611 -0.611 
0 .234 0.766 0 -0.267 -0.267 
1 .899 0.101 -0.106 0 -0.106 
1 .561 0.439 -0.578 0 -0.578 
1 .764 0.236 -0.269 0 -0.269 
0 .457 0.543 0 -0.611 -0.611 
0 .561 0.439 0 -0.823 -0.823 
1 .698 0.302 -0.360 0 -0.360 
1 .457 0.543 -0.783 0 -0.783 
0 .899 0.101 0 -2.293 -2.293 

Sum= -8.74 



Goodness of Fit

• 2[-8.74 - (-10.11)] = 2.74
• the constant only model has one degree of 

freedom (for the constant) and the full model 
has 4 degrees of freedom (1 for the constant, 
and one for each predictor), the DF for the 
test is 4 – 1 = 3.  The test of the chi-square is 
not significant at 3 DFs so the null is retained.

• Models with different numbers of predictors 
(nested) can also be compared in the same 
fashion.



Standardized Residuals

• Given a model you can calculate the 
standardized residual of each persons 
predicted probability (using the rather scary 
matrix formula on page 527)

• You can have SPSS save the standardized 
residuals and once this is done you can 
analyze them to see if any are above 3.3 and 
if they are the subject is an outlier according 
to the given model.



Types of Logistic Regression

• Direct or Simultaneous
• Sequential or User defined
• Stepwise or Statistical
• Probit vs. Logistic

• Logistic assumes a categorical (qualitative) 
underlying distribution

• Probit assumes a normal distribution and uses Z-
scores to estimate the proportion under the curve.

• Near .5 the analyses are similar they only differ at 
the extremes.



Inferential Tests

• Assessing goodness of fit for the model
• There are many goodness of fit indices, so 

you need to keep in mind what is being 
compared to know whether a significant 
difference is good or not.  Some tests 
significance means fit and others 
significance means lack of fit.



Inferential Tests

• Also consider sample sized when evaluating 
goodness of fit.  Chi-square statistics are 
heavily influenced by sample size so that 
with a very large sample even minute 
differences will be significant.
• If the sample size is large and the chi-square is 

significant this may not be important
• Though if there is significance and the sample is 

relatively small than the effect is notable.



Inferential Tests

• Constant only vs. full model – here you 
want there to be a significant improvement 
to the prediction when all of the predictors 
are added to the model.

• Perfect model vs. proposed model – some 
programs test the proposed model against a 
perfect model (one that predicts perfectly) 
in this case you want the chi-square to be 
non-significant.



Inferential Tests

• Deciles of risk
• Step 1: Subjects are ordered on there predicted probability
• Step 2: Subjects are divided into 10 groups based on the 

probabilities (all subjects with .1or lower in lowest decile, 
.9 or higher in the highest decile, etc.)

• Step 3: Divide subjects into groups according to their 
actual outcome (e.g. fall or no fall) creating a 2 X 10 
matrix of observed frequencies for the example data.

• Step 4: Expected frequencies are calculated and the 
observed frequencies are compared to the expected 
frequencies in a chi-square test.  Fit is indicated by a non-
significant chi-square.

• In SPSS this is given by the Hosmer-Lemeshow test.



Test of individual predictors

• The Wald test is usually used to assess 
the significance of prediction of each 
predictor

• The Wald test is known to be overly 
conservative (increased type II error) 
and when a predictor is multinomial it 
does not give a test of the whole 
predictor but only the dummy coded 
versions of the predictor.



Number and type of outcomes

• Logistic regression with more than two 
outcome categories

• If the response are ordered polytomous than k – 1 
equations are made (k being the number of 
categories) which predicts the probability that a 
case is above a given category.  

• Defines thresholds – point in the data that separates 
category one form two, two from three, etc.

• Calculates the probability that a person passes a given 
threshold

• This is done for all categories except the last because the 
probability of being in a category above the highest is 
zero.



Number and type of outcomes

• If the responses are non-ordered 
multinomial than again k – 1 equations are 
created but the equations are predicting 
whether a person belongs to a category or 
not.  An equation is made for all categories 
except the last.

• SPSS ordinal (plum) is used for ordered 
polytomous and SPSS multinomial (nomreg) is 
used for un-ordered multinomial data.



Strength of association 
(pseudo R-square)

• There are several measures intended to 
mimic the R-squared analysis, but none 
of them are an R-squared.  The 
interpretation is not the same, but they 
can be interpreted as an approximate 
variance in the outcome accounted for 
by the 



Strength of association 
(pseudo R-square)

• McFadden’s            

this value tends to be smaller than R-
square and values of .2 to .4 are 
considered highly satisfactory.
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Strength of association 
(pseudo R-square)

• Cox and Snell is also based on log-
likelihood but it takes the sample size 
into account:  

but it cannot reach a maximum of 1 like 
we would like so…

2 21 exp [ ( ) (0)]CSR LL B LL
n

 = − − −  



Strength of association 
(pseudo R-square)

• The Nagelkerke measure adjusts the C 
and S measure for the maximum value so 
that 1 can be achieved: 

2
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