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What is Logistic Regression?

• Form of regression that allows the 
prediction of discrete variables by a mix 
of continuous and discrete predictors.

• Addresses the same questions that 
discriminant function analysis and 
multiple regression do but with no 
distributional assumptions on the 
predictors (the predictors do not have to 
be normally distributed, linearly related or 
have equal variance in each group)



What is Logistic Regression?

• Logistic regression is often used because 
the relationship between the DV (a 
discrete variable) and a predictor is non-
linear

• Example from the text: the probability of 
heart disease changes very little with a ten-
point difference among people with low-blood 
pressure, but a ten point change can mean a 
drastic change in the probability of heart 
disease in people with high blood-pressure.



Questions

• Can the categories be correctly predicted 
given a set of predictors?

• Usually once this is established the predictors 
are manipulated to see if the equation can be 
simplified.

• Can the solution generalize to predicting new 
cases?

• Comparison of equation with predictors plus 
intercept to a model with just the intercept



Questions

• What is the relative importance of each 
predictor?

• How does each variable affect the outcome?
• Does a predictor make the solution better or 

worse or have no effect?



Questions

• Are there interactions among predictors?
• Does adding interactions among predictors 

(continuous or categorical) improve the 
model?

• Continuous predictors should be centered 
before interactions made in order to avoid 
multicollinearity.

• Can parameters be accurately predicted?
• How good is the model at classifying 

cases for which the outcome is known ?



Questions

• What is the prediction equation in the presence 
of covariates?

• Can prediction models be tested for relative fit 
to the data?

• So called “goodness of fit” statistics

• What is the strength of association between the 
outcome variable and a set of predictors?

• Often in model comparison you want non-significant 
differences so strength of association is reported for 
even non-significant effects.



Assumptions

• The only “real” limitation on logistic 
regression is that the outcome must 
be discrete.



Assumptions

• If the distributional assumptions are met 
than discriminant function analysis may 
be more powerful, although it has been 
shown to overestimate the association 
using discrete predictors.

• If the outcome is continuous then 
multiple regression is more powerful 
given that the assumptions are met



Assumptions

• Ratio of cases to variables – using 
discrete variables requires that there are 
enough responses in every given 
category

• If there are too many cells with no responses 
parameter estimates and standard errors will 
likely blow up

• Also can make groups perfectly separable 
(e.g. multicollinear) which will make 
maximum likelihood estimation impossible.



Assumptions

• Linearity in the logit – the regression 
equation should have a linear 
relationship with the logit form of the 
DV.  There is no assumption about the 
predictors being linearly related to 
each other.



Assumptions

• Absence of multicollinearity
• No outliers
• Independence of errors – assumes a 

between subjects design.  There are 
other forms if the design is within 
subjects.



Background

• Odds – like probability.  Odds are usually 
written as “5 to 1 odds” which is 
equivalent to 1 out of five or .20 
probability or 20% chance, etc.

• The problem with probabilities is that they 
are non-linear

• Going from .10 to .20 doubles the probability, 
but going from .80 to .90 barely increases 
the probability.



Background

• Odds ratio – the ratio of the odds over 
1 – the odds.  The probability of 
winning over the probability of losing.  
5 to 1 odds equates to an odds ratio 
of .20/.80 = .25. 



Background

• Logit – this is the natural log of an 
odds ratio; often called a log odds 
even though it really is a log odds 
ratio.  The logit scale is linear and 
functions much like a z-score scale.



Background

LOGITS ARE CONTINOUS, LIKE Z 
SCORES
p = 0.50, then logit = 0
p = 0.70, then logit = 0.84
p = 0.30, then logit = -0.84



Plain old regression

• Y = A BINARY RESPONSE (DV)
• 1 POSITIVE RESPONSE (Success) P
• 0 NEGATIVE RESPONSE (failure) Q = (1-P)

• MEAN(Y) = P, observed proportion of 
successes

• VAR(Y) = PQ, maximized when P = .50, 
variance depends on mean (P)

• XJ = ANY TYPE OF PREDICTOR 
Continuous, Dichotomous, Polytomous



Plain old regression

0 1 1|Y X B BX ε= + +
• and it is assumed that errors are 

normally distributed, with mean=0 
and constant variance (i.e., 
homogeneity of variance)



Plain old regression

• an expected value is a mean, so 
0 1 1

ˆ( | )EY X B BX= +

• The predicted value equals the proportion of 
observations for which Y|X = 1; P is the 
probability of Y = 1(A SUCCESS) given X, and 
Q = 1- P (A FAILURE) given X.

1
ˆ ˆ( ) |YY P Xπ == =



Plain old regression

• For any value of X, only two errors (    ) 
are possible,       AND       .  Which 
occur at rates P|X AND Q|X and with 
variance (P|X)(Q|X) 

ˆY Y−
ˆ1 π− ˆ0 π−



Plain old regression

• Every respondent is given a probability 
of success and failure which leads to 
every person having drastically 
different variances (because they 
depend on the mean in discrete cases) 
causing a violation of the 
homoskedasticity assumption.



Plain old regression

• Long story short – you can’t use 
regular old regression when you have 
discrete outcomes because you don’t 
meet homoskedasticity.



An alternative – the ogive
function 

• An ogive function is a curved s-shaped 
function and the most common is the 
logistic function which looks like:



The logistic function



The logistic function
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• Where Y-hat is the estimated 
probability that the ith case is in a 
category and u is the regular linear 
regression equation:

1 1 2 2 K Ku A B X B X B X= + + + +L



The logistic function
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The logistic function

• Change in probability is not constant 
(linear) with constant changes in X

• This means that the probability of a 
success (Y = 1) given the predictor 
variable (X) is a non-linear function, 
specifically a logistic function



The logistic function

• It is not obvious how the regression 
coefficients for X are related to 
changes in the dependent variable (Y) 
when the model is written this way

• Change in Y(in probability units)|X
depends on value of X. Look at S-
shaped function



The logistic function

• The values in the regression equation 
b0 and b1 take on slightly different 
meanings.  

• b0 The regression constant (moves 
curve left and right)

• b1 <- The regression slope (steepness of 
curve)

• The threshold, where probability of 
success = .50
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Logistic Function

• Constant regression 
constant different 
slopes
• v2: b0 = -4.00   

b1 = 0.05 (middle)
• v3: b0 = -4.00   

b1 = 0.15 (top)
• v4: b0 = -4.00  

b1 = 0.025 (bottom)
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Logistic Function

• Constant slopes with 
different regression 
constants
• v2:  b0 = -3.00 

b1 =  0.05 (top)
• v3:  b0 = -4.00 

b1 =  0.05 (middle)
• v4:  b0 = -5.00 

b1 =  0.05 (bottom) 10090807060504030
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The Logit

• By algebraic manipulation, the logistic 
regression equation can be written in 
terms of an odds ratio for success:

0 1 1
ˆ( 1| ) exp( )
ˆ(1 ( 1| )) (1 )

i
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The Logit

• Odds ratios range from 0 to positive 
infinity

• Odds ratio: P/Q is an odds ratio; less 
than 1 = less than .50 probability, 
greater than 1 means greater than .50 
probability



The Logit

• Finally, taking the natural log of both 
sides, we can write the equation in 
terms of logits (log-odds):

0 1 1
ˆ( 1| )ln ln
ˆ(1 ( 1| )) (1 )
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For a single predictor



The Logit
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• For multiple predictors 



The Logit

• Log-odds are a linear function of the 
predictors

• The regression coefficients go back to 
their old interpretation (kind of)

• The expected value of the logit (log-
odds) when X = 0

• Called a ‘logit difference’; The amount 
the logit (log-odds) changes, with a one 
unit change in X; the amount the logit
changes in going from X to X + 1



Conversion

• EXP(logit) or  = odds ratio 
• Probability = odd ratio / (1 + odd 

ratio)
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