MANOVA - Equations

Lecture 11 Psy524 Andrew Ainsworth

Data design for MANOVA

IV1	IV2	DV1 DV2		DVM	
1	1	S01(11)	S01(11)	S01(11)	
		S02(11)	S02(11)	S02(11)	
		S03(11)	S03(11)	S03(11)	
	2	S04(12)	S04(12)	S04(12)	
		S05(12)	S05(12)	S05(12)	
		S06(12)	S06(12)	S06(12)	
2	1	S07(21)	S07(21)	S07(21)	
		S08(21)	S08(21)	S08(21)	
		S09(21)	S09(21)	S09(21)	
	2	S10(22)	S10(22)	S10(22)	
		S11(22)	S11(22)	S11(22)	
		S12(22)	S12(22)	S12(22)	

Data design for MANOVA

	Mild			Moderate			Severe		
ili indefi Indiated	WRAT-R	WRAT-A	(IQ)	WRAT-R	WRAT-A	(IQ)	WRAT-R	WRAT-A	(IQ)
lines for el	115	108	(110)	100	105	(115)	89	78	(99)
Treatment	98	105	(102)	105	95	(98)	100	85	(102)
	107	98	(100)	95	98	(100)	90	95	(100)
Treat and a	90	92	(108)	70	80	(100)	65	62	(101
Control	85	95	(115)	85	68	(99)	80	70	(95)
	80	81	(95)	78	82	(105)	72	73	(102)

MANOVA is a multivariate generalization of ANOVA, so there are analogous parts to the simpler ANOVA equations

ANOVA –

 $\sum_{i} \sum_{j} (Y_{ij} - GM_{(y)})^2 = n \sum_{j} (\bar{Y}_j - GM_{(y)})^2 + \sum_{i} \sum_{j} (Y_{ij} - \bar{Y}_j)^2$

 $SS_{Total(y)} = SS_{bg(y)} + SS_{wg(y)}$

□ When you have more than one IV the interaction looks something like this:

 $n_{km} \sum_{k} \sum_{m} (DT_{km} - GM_{(DT)})^2 = n_k \sum_{k} (D_k - GM_{(D)})^2 + n_m \sum_{m} (T_m - GM_{(T)})^2 + n_m \sum_{m} (D_k - GM_{(D)})^2 + n_m \sum_{m} (D_k$ $\left[n_{km}\sum_{L}\sum_{k}\left(DT_{km}-GM_{(DT)}\right)^{2}-n_{k}\sum_{k}\left(D_{k}-GM_{(D)}\right)^{2}-n_{m}\sum_{m}\left(T_{m}-GM_{(T)}\right)^{2}\right]$

 $SS_{bg} = SS_D + SS_T + SS_{DT}$

The full factorial design is:

 $\sum_{i} \sum_{k} \sum_{m} (Y_{ikm} - GM_{(ikm)})^2 = n_k \sum_{k} (D_k - GM_{(D)})^2 + n_m \sum_{m} (T_m - GM_{(T)})^2 + n_m \sum_{k} (D_k - GM_{(D)})^2 + n_m \sum_{k} (D_k$ $\left| n_{km} \sum_{k} \sum_{m} \left(DT_{km} - GM_{(DT)} \right)^{2} - n_{k} \sum_{k} \left(D_{k} - GM_{(D)} \right)^{2} - n_{m} \sum_{m} \left(T_{m} - GM_{(T)} \right)^{2} \right|$ $+\sum\sum\sum(Y_{ikm}-DT_{km})^2$

- MANOVA You need to think in terms of matrices
 - Each subject now has multiple scores, there is a matrix of responses in each cell
 - Matrices of difference scores are calculated and the matrix squared
 - When the squared differences are summed you get a sum-of-squares-and-cross-products-matrix (S) which is the matrix counterpart to the sums of squares.
 - The determinants of the various S matrices are found and ratios between them are used to test hypotheses about the effects of the IVs on linear combination(s) of the DVs
 - In MANCOVA the S matrices are adjusted for by one or more covariates

If you take the three subjects in the treatment/mild disability cell:

You can get the means for disability by averaging over subjects and treatments

 $D_1 = \begin{bmatrix} 95.83 \\ 96.50 \end{bmatrix} D_2 = \begin{bmatrix} 88.83 \\ 88.00 \end{bmatrix} D_3 = \begin{bmatrix} 82.67 \\ 77.17 \end{bmatrix}$

Means for treatment by averaging over subjects and disabilities

The grand mean is found by averaging over subjects, disabilities and treatments.

Differences are found by subtracting the matrices, for the first child in the mild/treatment group:

$$(Y_{111} - GM) = \begin{bmatrix} 115\\108 \end{bmatrix} - \begin{bmatrix} 89.11\\87.22 \end{bmatrix} = \begin{bmatrix} 25.89\\20.75 \end{bmatrix}$$

Instead of squaring the matrices you simply multiply the matrix by its transpose, for the first child in the mild/treatment group:

$$(Y_{111} - GM)(Y_{111} - GM)' = \begin{bmatrix} 25.89\\20.75 \end{bmatrix} \begin{bmatrix} 25.89\\20.75 \end{bmatrix} = \begin{bmatrix} 670.29 & 537.99\\537.99 & 431.81 \end{bmatrix}$$

This is done on the whole data set at the same time, reorganaizing the data to get the appropriate S matrices. The full break of sums of squares is:

$$\sum_{i} \sum_{k} \sum_{m} (Y_{ikm} - GM)(Y_{ikm} - GM)' = n_{k} \sum_{k} (D_{k} - GM)(D_{k} - GM)'$$

+ $n_{m} \sum_{m} (T_{m} - GM)(T_{m} - GM)' + [n_{km} \sum_{km} (DT_{km} - GM)(DT_{km} - GM)']$
- $n_{k} \sum_{k} (D_{k} - GM)(D_{k} - GM)' - n_{m} \sum_{m} (T_{m} - GM)(T_{m} - GM)']$
+ $\sum_{i} \sum_{k} \sum_{m} (Y_{ikm} - DT_{km})(Y_{ikm} - DT_{km})'$

- □ If you go through this for every combination in the data you will get four S matrices (not including the S total matrix): $S_{D} = \begin{bmatrix} 570.29 & 761.72 \\ 761.72 & 1126.78 \end{bmatrix} S_{T} = \begin{bmatrix} 2090.89 & 1767.56 \\ 1767.56 & 1494.22 \end{bmatrix}$
- $S_{DT} = \begin{bmatrix} 2.11 & 5.28 \\ 5.28 & 52.78 \end{bmatrix} S_{s/DT} = \begin{bmatrix} 544.00 & 31.00 \\ 31.00 & 539.33 \end{bmatrix}$

- Once the S matrices are found the diagonals represent the sums of squares and the off diagonals are the cross products
- The determinant of each matrix represents the generalized variance for that matrix
- Using the determinants we can test for significance, there are many ways to this and one of the most is Wilk's Lambda

 $\left| S_{error} \right|$ $\left| S_{effect} + S_{error} \right|$

this can be seen as the percent of non-overlap between the effect and the DVs.

For the interaction this would be:

$$\begin{split} \left| S_{s/DT} \right| &= 292436.52 \\ S_{DT} + S_{s/DT} &= \begin{bmatrix} 2.11 & 5.28 \\ 5.28 & 52.78 \end{bmatrix} + \begin{bmatrix} 544.00 & 31.00 \\ 31.00 & 539.33 \end{bmatrix} = \begin{bmatrix} 546.11 & 36.28 \\ 36.28 & 529.11 \end{bmatrix} \\ \left| S_{DT} + S_{s/DT} \right| &= 322040.95 \\ \Lambda &= \frac{292436.52}{322040.95} = .908068 \end{split}$$

Approximate Multivariate F for Wilk's Lambda is

$$F(df_1, df_2) = \left(\frac{1-y}{y}\right) \left(\frac{df_2}{df_1}\right)$$

where
$$y = \Lambda^{1/s}$$
, $s = \sqrt{\frac{p^2 (df_{effect})^2 - 4}{p^2 + (df_{effect})^2 - 5}}$,

 $p = number of DVs, df_1 = p(df_{effect})$

$$df_2 = s \left[(df_{error}) - \frac{p - df_{effect} + 1}{2} \right] - \left[\frac{p(df_{effect}) - 2}{2} \right]$$

Test Statistic – Wilk's Lambda So in the example for the interaction:

$$s = \sqrt{\frac{(2)^{2}(2)^{2} - 4}{(2)^{2} + (2)^{2} - 5}} = 2$$

$$y = .908068^{1/2} = .952926$$

$$df_{1} = 2(2) = 4$$

$$df_{error} = dt(n-1) = 3(2)(3-1) = 12$$

$$df_{2} = 2\left[12 - \frac{2-2+1}{2}\right] - \left[\frac{2(2)-2}{2}\right] = 22$$

$$Approximate F(4,22) = \left(\frac{.047074}{.952926}\right)\left(\frac{22}{4}\right) = 0.2717$$

Eta Squared

$\eta^2 = 1 - \Lambda$

Partial Eta Squared

