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Matrices

Summaries and reconfiguration
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Trace

If the matrix is an SSCP matrix then 
the trace is the sum-of-squares
If the matrix is the 
variance/covariance matrix than the 
trace is simply the sum of 
variances.
If it is a correlation matrix the trace 
is just the number of variables.



Determinant 
this is considered the 
generalized variance 
of a matrix.  Usually 
signified by |   | 
(e.g. |A|)
For a 2 X 2 matrix 
the determinate is 
simply the product of 
the main diagonal –
the product of the 
other diagonal
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Determinant

For any other matrices the calculations 
are best left to computer

If a determinate of a matrix equals 0 than 
that matrix cannot inverted, since the 
inversion process requires division by the 
determinate.  What is a common cause of 
determinates equaling zero?



Eigenvalues and Eigenvectors

this is a way of rearranging and 
consolidating the variance in a 
matrix.
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Eigenvalues and Eigenvectors

Think of it as taking a matrix and 
allowing it to be represented by a 
scalar and a vector (actually a few 
scalars and vectors, because there 
is usually more than one solution).



Eigenvalues and Eigenvectors

Another way 
to look at 
this is:
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Eigenvalues and Eigenvectors
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If v1 and v2 equal zero the above statement is true, but boring.
A non-boring solution comes when the determinate of the 
leftmost matrix is 0.
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Eigenvalues and Eigenvectors
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Eigenvalues and Eigenvectors

Using the first eigenvalue we solve 
for its corresponding eigenvector
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Eigenvalues and Eigenvectors

Using the 
second 
eigenvalue we 
solve for its 
corresponding 
eigenvector
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Eigenvalues and Eigenvectors

Let’s show that the original equation 
holds
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Canonical Correlation



Canonical Correlation

measuring the relationship between 
two separate sets of variables.  
This is also considered multivariate 
multiple regression (MMR)



Canonical Correlation

Often called Set correlation
Set 1 
Set 2 

p doesn’t have to equal q

Number of cases required ≈ 10 per 
variable in the social sciences where 
typical reliability is .80, if higher reliability 
than less subjects per variable.

( )1, , py y…
( )1, , qx x…



Canonical Correlation

In general, CanCorr is a method 
that basically does multiple 
regression on both sides of the 
equation  

this isn’t really what happens but 
you can think of this way in general.
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Canonical Correlation

A better way to think about it:
Creating some single variable that 
represents the Xs and another single 
variable that represents the Ys.
This could be by merely creating 
composites (e.g. sum or mean)
Or by creating linear combinations of 
variables based on shared variance



Canonical Correlation

Canonical
Variate for

the Xs

x1

x2

xn

Canonical
Variate for

the Ys

y1

y2

yn

Make a note that the arrows are coming from 
the measured variables to the canonical 
variates.



Canonical Correlation

In multiple regression the linear 
combinations of Xs we use to 
predict y is really a single canonical 
variate.



Jargon

Variables

Canonical Variates – linear combinations 
of variables

One CanV on the X side

One CanV on the Y side

Canonical Variate Pair - The two CanVs
taken together make up the pair of 
variates



Background 

Canonical Correlation is one of the most 
general multivariate forms – multiple 
regression, discriminate function analysis 
and MANOVA are all special cases of 
CanCorr

Since it is essentially a correlational
method it is considered mostly as a 
descriptive technique.



Background

The number of canonical variate pairs you 
can have is equal to the number of 
variables in the smaller set.

When you have many variables on both 
sides of the equation you end up with 
many canonical correlates.  Because they 
are arranged in descending order, in most 
cases the first couple will be legitimate 
and the rest just garbage.



Questions

How strongly does a set of variables 
relate to another set of variables? How 
strong is the canonical correlation?

How strongly does a variable relate to its 
own canonical variate?

How strongly does a variable relate to the 
other set’s canonical variate?



Assumptions

Multicollinearity/Singularity
Check Set 1 and Set 2 separately

Run correlations and use the collinearity 
diagnostics function in regular multiple 
regression

Outliers – Check for both univariate and 
multivariate outliers on both set 1 and set 
2 separately



Assumptions

Normality

Univariate – univariate normality is not 
explicitly required for MMR

Multivariate – multivariate normality is 
required and there is not way to test for except 
establishing univariate normality on all 
variables, even though this is still no 
guarantee.



Assumptions

Linearity – linear relationship 
assumed for all variables in each set 
and also between sets

Homoskedasticity – needs to be 
checked for all pairs of variables 
within and between sets.


