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Chapter 1

Data Entry

1.1 Introduction

e SPSS for Windows is just like any other Windows program. Many familiar
Windows features are available in SPSS (e.g., menu bar, tool bar, cut, copy,
paste; Figure 1.1).

e Many features of the data editor are similar to those found in spreadsheet
applications (e.g., Microsoft Excel). One row per subject and one column
per variable (observation).

e Before entering data: define each variable in the dataset.

1.2 Defining Variables

SPSS introduced Data View and Variable View in the data editor since version
10. You can switch between the two views by clicking on the tap at the bottom of
SPSS window,

Switch to Variable View, then click on the box under Name. Type in the

1



2 CHAPTER 1. DATA ENTRY

Figure 1.1: SPSS for Windows

[ Untitled - SPSS Data Editor
File Edit View Data Transform Analyze Graphs Utiities Window Help

@] 5] B o|] B =] 4 Ei SlEE %

= | | -
EII\Data View £ Variable View [ |« L,AI

SPSS Processor is ready

variable name then type enter. SPSS will automatically assign its default setting
for other columns (e.g., type, width, decimals).

There are few restrictions on variables names:

e the name must begin with a letter. The remaining character can be any letter,
digit, a period, or symbols (@, #, _, or $).

e variable names can not end with a period.

e variable names that end with an underscore should be avoided (to avoid
conflict with variables automatically created by some procedure).

o the length of the name cannot exceed eight characters.
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e blanks and special characters cannot be used.

e cach variable name must be unique.

To change the default type and other settings, either click on the cell and type
or click on [...] button to open a dialog box.

e Define Variable Type (Figure 1.2). A variable does not always have to be
a number. Width and Decimals columns can be typed in from the Define
Variable dialog box or in the Variable view from data editor (along with
columns, align, and measure). If there are several variables with same type.
Type definition along with other columns can be copied and pasted. Since
variable name is limited to 8 character a longer name can be specified in the
Label column (upto 256 character with spaces). Measures columns identi-
fies variables as 3 different type (scale, ordinal, and nominal).

Figure 1.2: Variable Type

Variable Type
o
" Comma Width: |3—
= il |
¢ Do Decimal Places; [0 =
" Scientific notation e Help |

" Date
" Dollas
" Custom currency

" Sting

e Value Labels (Figure 1.3) is used to assign descriptive labels for each value
of a variable. This is particularly useful for categorical variables (e.g., sex,
1 for male and 2 for female).

e Missing Values (Figure 1.4) is used to assign missing value codes. A dis-
crete, range, or both can be used to define missing value codes.
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Figure 1.3: Value Label
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Figure 1.4: Missing Values
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Chapter 2

Data Management

2.1 Introduction

A data file should be created such that it can be accessed in the future with ease.
Here are some general guidelines.

e Label each levels of variable (not always; when you should vs. not)

e Create a codebook (a document that explains the dataset, including defini-
tions of all variables, how were they changed, how composite variable were
created, any recoding of the variable, etc.). Keep a copy of the file in the
same folder as the data file.

e Keep a copy of the original data file. Always work on a copy, NOT the
original.

o Give descriptive file names. File names in Windows could be as long as 256
characters.

e Include any and all information you have. They may be useful in the future
analyses.

e Each case or subject should have an unique identifier (e.g., id number). If
the data file does not have an unique identifier, you could use case numbers.

5



6 CHAPTER 2. DATA MANAGEMENT

To create case numbers in your data; click Transform — Compute. Type a
name under Target Variable and type $casenum in the Numeric Expression
box (Figure 2.1). Its equivalent syntax would be:

compute case = S$casenum.
execute.

Figure 2.1: Compute Variable

B Compute Variable @

Target Vanable: Numeric Ezpression:
case - $easenun
TypehlLabel .
[ow &
>e2 ol <l 708(8] Functons: [ 4]
.?«3 | <=|>=] 4]s] 8| g5 ] ~
G va « it iy ANYtest value value, ..
Hv5 ‘_I _L—J ‘Jg‘ﬂ ARSIN{numexpr]
e A & 0] 0 | .| |ARTAN{rumesp)
] CDFNORM(zvalue)

S =l =1 0] _Deete | |rprpernaLiLLig ) v
#v8
P If..
w10

v 0K ‘ Easte‘ Hesel| E‘.ancel| Help |

2.2 Transform Menu

Transform menu offers many different method to modify or create variables.

2.2.1 Recoding Variables

SPSS can recode a variable into same variable or different variable.

e Click on Transform — Recode — Into Same Variable (Figure 2.2). Move
over the variable(s) from left into variables box.
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e Click on Transform — Recode — Into Different Variable (Figure 2.3).
Move over the variable from the left into the input variable — output vari-
able box. Type in the new name in the output variable name box then click

change.
Figure 2.2: Recode Same
Yaniables:
o8 - (==
)9 e 4
B3 el
S [Esa) _Bew |
;,> v5 Cancel
g o
® i
b x
®v10 v |
Figure 2.3: Recode Different
I Recode into Different Variables E]

V _Input Wanable -> Dutput Vaniable: Output Variable

v

0 ] jE—

*® vd

# ¥ T——

@ vB

® 7

® v

304 [

®v10 I

| | | Heset | Concel | Hep

e From either Figure 2.2 or Figure 2.3, click on old and new values (Figure
2.4). Use the options under Old Values to specify which values to recode
and how.

e To fast reverse code a variable, try using compute statement where

recode variable = (minimum + maximum value) - variable.
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Figure 2.4: Recode Old and New Values

Recode into Different Variables: Old and New Values

Old Value Mew Value
 Value: |”|—' @ Vahue r— " Spstem-missing
(" System-missing " Copy old value(s)
(" System- of user-missing 0ld ~» New:
" Range: I l
| |
" Range:
LB
" Range: [~ Output variables are stings e
—— -
€ Algther valuss Continue | Canicel Help |

2.2.2 Creating a Composite Variable

A composite variable are usually created by either computing the mean or the sum
of items (variables). Make sure to check how a composite score is compute for a
scale. It does not make any difference as far as an analysis. However, some scales
have norms that you might want to compare it against.

For these purpose, SPSS has two built in command, Mean and Sum. Not to
mention, the old fashion method of computing a mean or sum; add all variables
to compute sum and divide by number of variables to compute the mean. Both
methods are accomplished in the Compute Variable windows (Figure 2.1).

For example,
selfest = mean(sel, se2, se3, sed, seb).

if sel through se5 are consecutive, the above equation can be replace by:
selfest = mean(sel to seb).

Note, if mean or sum function is used, it will compute a mean or sum using
all available case if there are missing data. You can place a restriction on SPSS
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such that it only computes a mean or sum if there is a minimum of observations by
using the functions; MEAN.x and SUM.x where X is replace by minimum number.

For example,

selfest = mean.3(sel to seb).

2.2.3 Categorizing a Variable

SPSS can automatically categorize a variable to a specific number of levels. Click
on Transform — Categorize Variables (Figure 2.5). Move over variable(s) from
the left to Create Categories For box, then type in the number of categories desired
at the bottom.

Figure 2.5: Categorize Variables

Categorize Variables @

r = Create Categories for: _ :
® v
#v3 _J
® v D Reset
® V5
D6 Cancel
7 Help
W S
®va
® V10 ~ MNumber of categones: |4

2.3 Small Set

If you have a data set with many variables, however, you don’t want to see all the
variables each time you go to the variables list, then:

e use sets or

e create a new smaller data set
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2.3.1 Use Sets

To use sets click on Utilities — Define Sets (Figure 2.6). You must define a set
before you could use them. You only need to define a set one time.

Figure 2.6: Define Sets

Define Variable Sets X

I i Help
i
Variables in Set:
'
v2
v3
wd
:
o
' [
w3
w10

Type a name for your set you are defining (e.g., little). Move over variable(s)
in your set, then click Add Set button and Close.

Once you have define your set, goto Utilities — Use Sets (Figure 2.7). Move
over your set name to Set in Use box and remove ALLVARIABLES. Keep NEW-
VARIABLES in the Set in Use box.

2.3.2 Create Smaller Dataset

To create a smaller data set, click on File — Save As (Figure 2.8), type in a file
name. Then click on Variables (Figure 2.9). Remove or Add check mark next to
variables you want to keep or delete.
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Figure 2.7: Use Sets

Use Sets

[4LLVARIEBLES LU
NEWVARIABLES

e |

Help

2.4 Select Cases

Select Cases (Figure 2.10) under Data Menu allows SPSS to perform analysis on
only select cases. Cases can be selected on certain criteria that can be specified. A
criteria can be specified according some condition, random sample, and based on
time or case range. Unselected case can be temporary filtered or deleted. Don’t
forget to go back and turn off the filter once you are finished.

One useful criteria is If condition is satisfied (Figure 2.11). Conditional state-
ment can be specified using any built-in or custom functions.

2.5 Split File

Often times, it is necessary to analyze the data within each group separately. In-
stead of running an analysis multiple times. Split file (Figure 2.12) under Data
Menu can be used to analyze within each group simultaneously. Output will be
generated for each group. Don’t forget to turn off the split file once you are fin-
ished.
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Figure 2.8: Save As

: Save Data As
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Figure 2.9: Save As Variables
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B Select Cases

Figure 2.10: Select Cases
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Figure 2.12: Split Files
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Chapter 3

Data Screening

Before any analysis is performed, you must do everything possible to ensure a
data file is clean (e.g., meet the necessary assumptions of a statistical procedure)
or at least know the weakness of your data.

3.1 Descriptive Information

3.1.1 SPSS Explore

e The best method for data screening via descriptive information is the Ex-
plore procedure. To start, click on Analyze — Descriptive Statistics —
Explore (Figure 3.1). Move over the variables to the Dependent List. If you
have group data, you should screen the data within each group. An indepen-
dent variable can be inserted under Factor List. However, if it is a factorial
design, a syntax command must be used. A syntax command can be created
easily by clicking on Paste instead of OK.

e Click on Statistics button from Figure 3.1. Check Descriptive and Outliers
( Figure 3.2). By checking on Outliers, it will produce 5 highest and lowest
scores with their case numbers.

e Click on Plots button from Figure 3.1. Uncheck Stem-and-leaf. It is not

15
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Figure 3.1: Explore

@;ﬂ ~ Dependentlist [Cox |
v

P ] Lz
v Reset
® v Factor List:

b s [Caroal]
7 E Help
® v

$va Label Cases by:

S ) e —

Display

= Both ( Stafistics  Plots Statistics... | Plots... | Dptions...

Figure 3.2: Explore - Statistics

Explore: Statistics @

v Descriptives
Confidence Interval for Mear: |95 %
[ M-estimators

[ Percentiles

| Contirue | Cancel Help

useful anymore with computers’ ability to generate high resolution charts.
Check Histogram (Figure 3.3).

e Click on Options button from Figure 3.1. I would recommend choosing
Exclude cases pairwise to start (Figure 3.4). Once you know, there is no silly
mistake then you might want to come back and perform listwise deletion.

3.1.2 Example Output of the Explore

e Case Processing Summary is produced first (Figure 3.5). This table shows
how many total cases with the number of missing per variable.
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Figure 3.3: Explore - Plots

Explore: Plots @

Boxplots Descriptive

% Factor levels together | [ Stem-and-leaf

" Dependents together | ¥ Hi
" Hone Help

il

[T Mormality plots with tests
Spread vs. Level with Levene Test
o

=
g j
:

Figure 3.4: Explore - Options

Explore: Options @
Missing Values

e Next, Descriptive table is produced with the usual mean and standard devia-
tion as well as some distributional information (e.g., skewness and kurtosis)

(Figure 3.6).

e Extreme Values (Figure 3.7) table list five highest and lowest values with
their case numbers. This is very useful in detecting outliers.

e Histogram and Boxplot are produced next (Figure 3.8 and 3.9). It is alway
good idea to have a picture.
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Figure 3.5: Explore - Case Processing Summary

Case Processing Summary

Cases
Walid Missing Total
N Percent N Percent N Percent
Vi 100 100.0% 0 D% 100 100.0%
v2 100 100.0% o 0% 100 100.0%
v3 100 100.0% o 0% 100 100.0%
V4 100 100.0% 1] 0% 100 100.0%
V5 100 100.0% [+] 0% 100 100.0%

Figure 3.6: Explore - Descriptives

Descriptives

Statistic | Std. Error_|

Vi Mean 547 34

95% Confidence Interval  Lower Bound 520

for Mean Upper Bound 574

5% Trimmed Mean 5.57

Median 6.00

Variance 1.807

Std. Denviation 1.344

Mirirmum 0

Maximum 8

Range 8

Interquartile Ranga 1.00

Skewness -1.042 241

Kurtosis 2.036 A7TE
vz Mean 4.23 A28

95% Confidence Interval  Lower Bound 3.38

for Maan Upper Bound 5.08

5% Trimmed Mean 367

3.2 Linearity and Homoscedasticity

To check for linearity and homoscedasticity, use scatterplots. Click on Graphs
— Scatter (Figure 3.10). Four choices are presented. Usually for data screening
purposes, start with Matrix (Figure 3.11). if you notice something strange use
Simple to get a larger view of the possible problem.

For testing these assumptions, basically as long as there is not non-linearity
nor heteroscedasticity, then everything is okay.
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Figure 3.7: Explore - Extreme Values

Extreme Values
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5 B4
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3
4
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Figure 3.8: Explore - Histogram
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3.3 Detecting Multivariate Outliers

In order to compute Mahalanobis Distances, you must perform a linear regression
(see Chapter 5). Move over the variables you want to screen into independent
variables and use any variable as dependent (good option would be id variable).
Go to Save option (Figure 5.4) and choose Mahalanobis under Distances section.
This will create a new variables in the data set Mah_x where x is a counter (first
time you compute it. x will be 1). Ignore any output that is produced. Perform an
Explore procedure on the newly created variable. Look for extreme values (Figure
3.13). Mah_x will be x2 (degrees of freedom = number of variables) distributed.
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Figure 3.9: Explore - Boxplot

3.4 What if the data is not Normal?

The two most common approaches to non-normal data:

e relying on the robustness of a method (do nothing approach)

e transformation of variables

3.4.1 Robustness of a method

Most basic statistical method (e.g., t-test, ANOVA) are fairly robust against viola-
tion of normality. The results will still be meaningful even with some violations.



3.4. WHAT IF THE DATA IS NOT NORMAL? 21

Figure 3.11: Scatterplot - Matrix

M Scatterplot Matrix g]
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#) v2 J
#v3
®vi III Reset
e
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® i v III
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3.4.2 Transformation

There are no firm guidelines when a variable should be transformed. It depends
on the statistical methods and interpretation of the transformed variable. If you
are not sure whether to transform or not, you could analyze your data both ways;
transformed and not transformed. If the results are same, then use the original
variables. However, if the results are vastly different transformed variables result
will be more reliable and accurate.
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Figure 3.12: Scatterplot - Matrix Output

Vi
V2
va
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Figure 3.13: Mahalanobis Distances: Histogram
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Figure 3.14: Several Common Transformations

Positive Moderate

new variable = sqrt(old variable)

Positive Severe

new variable = [g10(old variable)
new variable = [g10(C + old variable)?

Positive Substantial

new variable = 1/4 variable

new variable = /(¢ 4 old variable)

“K = largest score + 1

Negative Moderate

new variable = sqrt(K — old variable)®

Negative Severe

new variable = [g10(K — old variable)

Negative Substantial

new variable = 1/ g _ q1d variable)

PIf zero is in the range use this equation, where C' =smallest score+1.
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Chapter 4

Matrix Command in SPSS

4.1 Introduction

SPSS offers Matrix commands allowing a researcher to compute any custom equa-
tion using matrix algebra. Full list of commands are listed in spssbase.pdf file in
the spss folder. This chapter will only cover select few commands that will be
useful for GLM (Table 4.1).

To start programming your own matrix commands, open a syntax window
by clicking on File — New — Syntax. After commands have been typed in, to
execute, click on Run — All or Selection.

Matrix commands in SPSS start and end with special commands letting SPSS
know that you are starting your own customize computations.

matrix.
***jnsert commands here**x*
end matrix.

25
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4.2 Defining a Matrix

A matrix (or vector) can be defined by typing in the elements of the matrix in
the syntax or have SPSS read in a matrix from a file (e.g., SPSS data window).
Although, there are more than one method of reading in a matrix from external
source, only one method will be discussed here (i.e., reading from SPSS data
window).

4.2.1 from syntax

A matrix is defined using { }. Columns in a matrix is separated by commas and
rows by semi-colon.

to define the following matrix:
1 2 3
A= 4.1
(2 3 3) D
matrix.

compute A = {1,2,3;2,3,3}.
end matrix.

compute keyword must be specified before defining a matrix (of course, en-
closed by matrix-end matrix commands).

4.2.2 from SPSS data window

Often, it is not reasonable to input a data from syntax windows. It is easier to
use the SPSS data window. Data from SPSS data windows can then be read in by
columns. for instance, if there are y, x1, and x2 in your data windows and you
wish to read them into matrix command, use a get statement:

matrix.
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get maty /variable = vy.
end matrix.

get statement is followed by a name of a matrix, maty. Any name can be used
for matrix name as long as it is not a built-in keywords. A matrix name, maty, is
followed by a keyword /variable = and name of the variable in the data window.
Get statement can be used to read in multiple columns at the same time.

matrix.
get matx /variable = x1 x2.
end matrix.

maty has one column, while matx has two columns with number of rows equal
to number of cases in the data window.

4.3 Simple Computation

Any computation can be performed as long as it is defined.

matrix.

compute A = {1,2,3;2,3,3}.
compute B = {2,5,4;2,4,3}.
compute C = A + B.

end matrix.

Regression coefficients (regression coefficient and intercept) for a simple lin-
ear regression can be computed as:

f=(X'X)"'X'Y (4.2)
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matrix.
get y /variable = y.
get x1 /variable = x1.

compute n = nrow(y) .

compute x0 = make(n,1,1).
compute x = {x0,x1}.

compute b = inv(t (x)*x)*t (x)*y.

end matrix.

In the commands above, there are slightly more complicated than simple com-
putation.

e nrow(y) command was defined to computed number of rows.

e make(n,1,1) command was defined to create the dummy variable of ones for
the design matrix.

e x was created by concatenating x0 and x1.

e t(x) command computes transpose of x.

4.4 Generating output

Now that computation has been complete. There must be a method to output the
results. This is done by using the print command. For example, to output the
regression coefficient and intercept add

print b /title ’regression coefficients’.

before end matrix command. It will print b with the title regression coeffi-
cients.

another method is to save a matrix as a SPSS data file using save command.

save matvar /outfile = 'filename’ /variables = varnames.
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where matvar is matrix variable, filename is name of the file (use .sav exten-
sion), and varnames is name of the variables.
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Table 4.1: Some useful Matrix Commands

CDENORM cumulative normal distribution function
CHICDF cumulative chi-squared distribution function
CMAX column maxima

CMIN column minima

CSSQ column sum of square

DESIGN create design matrix

DET determinant

DIAG diagonal of matrix

FCDF cumulative F distribution function
IDENT create identity matrix

INV inverse

KRONECKER Kronecker product of two matrices
MAKE create a matrix with all elements equal
MMAX maximum element in matrix

MMIN minimum element in matrix

MSSQ matrix sum of squares

MSUM matrix sum

NCOL number of columns

NROW number of rows

RESHAPE change shape of matrix

RMAX row maxima

RMIN row minima

RSSQ row sum of squares

RSUM row sums

SQRT square roots of matrix elements

SSCP sums of squares and cross-products

T (synonym for TRANSPOS)

TCDF cumulative normal t distribution function
TRACE calculate trace

TRANSPOS transposition of matrix




Chapter 5

Multiple Regression

5.1 Assumptions

5.1.1 Dependent Variable

e interval/ratio scale

e normally distributed (technically, errors/residuals should be normally dis-
tributed)

e no univariate outliers

5.1.2 Independent Variables

e any level of measurement. However, nominal and ordinal variables must be
dummy coded.

e multicollinearity/singularity
- tolerance =1 — SMC
- VIF = 1/tolerance

31
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5.1.3 Relationship between DV and IV

e linearity

e homoscedasticity (in group data, e.g., ANOVA, this is known as homogene-
ity of variance). Hetereoscedasticity standard errors can be used if a data
violate this assumption (not available in SPSS).

e independence of residuals
e no multivariate outliers
— “what if a population I am studying has multivariate outliers and I

don’t want to delete cases?”

x with outliers, it has undue influence on parameters estimated (i.e.,
regression coefficients and standard errors). We want cases to
be equally weighted. But, what we really want is cases to be
equally important/influential on estimating parameters. weighting
variables can be used.

5.2 Setup in SPSS

Multiple Regression is used to predict an interval or ratio dependent variable from
a set of independent variables (most likely interval or ratio, but it is capable of
using nominal and ordinal variables as long as the variables are dummy coded).

e To start: click on Analyze — Regression — Linear (Figure 5.1).

e SPSS is capable of performing 5 different method of multiple regression
which could be classified into 3 categories:
— standard multiple regression
* enter
— sequential multiple regression

*x stepwise
+ forward
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Figure 5.1: Linear Regression

M [inear Regression E]

® x1 Dependent: =
D T r—— f
®x3 Paste
g“ Frevioss | BlockTof1  Mewt Reset
*5
Independent(s) Cancel
g » _Heb |
D ®n2 3
Method: |Enter |
Selection Vanable:
[ [ —

Case Labels:

L] I
WLS >> Statisics...|  Plots.. | Save.. | Qptions.. |

* remove
* backward
— hierarchical multiple regression
*+ use Block feature in SPSS. Within each Block, there can be dif-

ferent methods (standard or sequential).

e click on Statistics in the Linear Regression (Figure 5.1) dialog box (Figure
5.2):
— always check:

x estimates

x model fit

x confidence intervals

x part and partial correlations

— first run

x descriptives
x collinearity diagnostics

— sequential
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Figure 5.2: Linear Regression - Statistics

Linear Regression: Statistics

Regression Coefficients v Moded fit
v Estimates I R squared change Cancel
q & W Descriptives 4

¥ Part and partial comelations Help
¥ Colinearity diagnostics

Residuals

I DuwbinAw/atson
™ Casewise diagnostics

c F

{

* R squared change

e Plots and Save in regression can be used for regression diagnostics.

e No plots. If you want to: click on Plots in the Linear Regression (Figure 5.1)
dialog box (Figure 5.3). Move over the variables from the left to appropriate
boxes in the middle. To draw more than one graph, click on Next at the top.

Figure 5.3: Linear Regression - Plots

Linear Regression: Plots

Coni
Scatter 1 of 1

“ZPRED
“ZRESID Cancel
“DRESID

*ADJPRED |I| Y | Help
b

“SRESID

*SDRESID \I\

Standardized Residual Plots I~ Produce al patial DlOlS
[~ Histogram
™ Natmal probability plot

e Don’t save anything. if you want to: click on Save in the Linear Regression
(Figure 5.1) dialog box (Figure 5.4). Many of these variables are used for
regression diagnostic purposes.
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Figure 5.4: Linear Regression - Save

Linear Regression: Save @
Predicted Valus Residuals

r u [ Unstandardized
IS 1l [~ Standardized S
I Adusted I Studentized Help
[~ S.E. of mean predictions ™ Deleted
[ Studentized deleted
Distances
[~ Mahalanobis Influence Statistics
™ Cook's I~ DiBetals)
I Leverage values ™ Standardized DiBetafs)

I~ DiEit
I Standardized DIFit
[ Covanance ratio

Prediction Intervals
[T Mean [ |ndividual
Confidence Intervak: %

Save to New File
[ Coefficient statistics

Export model information to XML file

| _Bouse |

e Don’t change the Options (Figure 5.5).

5.3 Output in SPSS

5.3.1 Model summary

Model Summary (Figure 5.6):

e R = correlation between the DV and set of IVs

e R square = proportion (amount) of variability in the dependent variable ex-
plained by the set of independent variables in the sample

e Adjusted R square = estimated proportion of variability in the dependent
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Figure 5.5: Linear Regression - Options

Linear Regression: Options @

Stepping Method Criteria
& Use probability of F
' — Cancel
Ertry: [DE Removal: m Q
" UseF value Help

V' Include constant in equation
Missing Values
# Exchude cases listwise
(" Eschude cases paivise
" Replace with mean

variable explained by the set of independent variables in the population (ad-
justing for sample size and number of independent variables)

e Std. Error of the Estimate = standard deviation of the sampling distribution
of the residuals (dependent variable - predicted dependent variable)

Figure 5.6: Linear Regression - Model Summary

Model Summary

Adjusted R | Std. Error of
Model R R Square Square the Estimate
1 Be7a 753 739 2.271

a. Predictors: (Constant), X5, X4, X1, X2, X3

5.3.2 ANOVA table
ANOVA table (Figure 5.7):

e there is a significant prediction of the dependent variable by the independent
variables.
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Figure 5.7: Linear Regression - ANOVA

ANOVAP
Sum of
Model Squares df Mean Square F Sig.
1 Regression 1474.769 5 294.954 57.167 .0002
Residual 484.991 94 5.159
Total 1959.760 a9
a. Predictors: (Constant), X5, X4, X1, X2, X3

b. Dependent Variable: ¥

5.3.3 Regression Coefficients

Regression Coefficients (Figure 5.8):

e correlations

— zero-order = Pearson product moment correlation
— partial

— part (semi-partial)
e tolerance (do not want it to be close to zero)

e VIF (do not want it to be too large)

5.3.4 Collinearity Diagnostics

Collinearity Diagnostics (Figure 5.9)

e cxamine the last row: do not want Condition Index to be larger than 30 and
two of the variance proportions to be larger than .50 excluding the constant.
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Figure 5.8: Linear Regression - Coefficients

Coefficients®
- - -
Cosfficients Coefficients 95% Confidence Interval for B
Model Beta t Sig.
1 (Constant) 3.108 .00z 4777
x1 537 B8.854 000 378 506
x2 500 aor4 o0a 174 287
X3 -154 -2472 015 -4 -026
w4 094 1492 139 -086 B03
x5 381 5326 .000 366 J0
Coefficients®
Correlations Collinearity Stalistics
Model Zarg-order Partial Part Tolerance VIF
1 (Constant)
x1 829 B74 A54 TT 1395
x2 240 640 A4 687 1.455
X3 -309 -247 =127 881 1.469
x4 546 A52 077 ] 1.487
x5 480 546 325 728 1374

a. Dependent Variable: Y

Figure 5.9: Linear Regression - Collinearity Diagnostics

Collinearity Diagnostics®

Candition Variance Proporions |
Model  Dimension Eigenvalue Index {(Constant) x1 X2 X3 X4 X5
1 1 5903 1.000 00 (i o0 on ] oo
2 5.625E-02 10.244 00 .00 06 06 00 .29
3 1.926E-02 17.506 00 00 34 37 06 0z
4 1.418E-02 20,400 00 18 27 02 .08 57
5 5.526E-03 32678 02 33 26 15 85 oo
(i3 219TE-03 51,830 97 51 07 39 00 11

a. Dependent Variable: ¥



Chapter 6

Regression Diagnostics

All the computations described in this chapter can be computed and saved into the
data file using Save option (Figure 5.4) under Multiple Regression (Chapter 5).
After the variables have been computed, Explore procedure (Section 3.1.1) can be
used to detect any influential cases.

The issue of diagnostics involves the detection of outliers and extremely in-
fluential data points that may distort the interpretation of regression output. The
issue of diagnostics can be broken down into two separate subtopics:

e outliers

o Influence analysis

6.1 OQOutliers

An outlier is an extreme datum that may bias the interpretation of the parameter
estimates (i.e., regression coefficients and standard errors) in a regression analysis.
Outliers may arise because of:

e Recording or input error.
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e Measurement error.
e Inappropriate or misunderstood instructions.

e A variety of other reasons.
There are three major approaches to the detection of outliers:

o Use of standardized residuals.
e Use of studentized residuals.

e Use of studentized deleted residuals.

6.1.1 Standardized Residuals (ZRESID)

A standardized residual is simply computed as the residual score (i.e., the differ-
ence between the Y;, predicted Y -score, and the actual Y-score from a regression
equation), divided by the standard error for the regression (i.e., sy.x). In other
words,

N

Y, - ¥;

Sy. X

ZRESID; =

6.1)

6.1.2 Studentized Residual (SRESID)

Therefore, the studentized residual approach divides each residual score by an
estimate of its own standard error. In the case of the simple linear regression, this
standard error is given by:

Se, = Sy.x \/ 1— F + M} (6.2)
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Where S.Sx is the sum of squares for X. Note that the more X; deviates from
the X, the smaller the standard error of the residual.

Also, note that when the assumptions of the model are reasonably met, the
SRESID follows a t-distribution with df = N — K — 1, where K is the number
of independent variables.

6.1.3 Studentized Deleted Residuals (SDRESID)

The greater the extent to which a given data point is an outlier, the more its reten-
tion in the analysis will lead to upward bias in the standard error of estimate sy. x
and thereby running the risk of failing to identify it as an outlier To correct for this
potential problem, we can compute the standard error of a deleted residual as:

Se; = SY-X; \/ 1— F + M} (6.3)

Where sy.x, is the standard error of estimate when person ¢ has been deleted
from the analysis.

However, this approach would involve computing N separate regression anal-
yses, one for every deleted individual. An alternative approach would be to com-
pute:

N—-K-2

6.4
N — K — 1 — SRESID? ©4)

Note also that SDRESID is distributed as ¢t with df = N — K — 2.
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6.2 Influence Analysis

An influential observation is one which has, either alone or together with other
observations, a much larger impact on regression outcomes (i.e., regression coef-
ficients, standard errors, ¢-values, etc.) than most other observations.

Note, an outlier can be, but is not necessarily, an influential observation.

6.2.1 Leverage

The way to assess an observations’ influence is to compute its leverage® (h;).

h; = (6.5)

Note the following about Leverage:

1. Leverage is solely a function of the independent variables. Thus a case that
may be influential by virtue of its status as a dependent variables may not
be detected on the basis of its leverage.

2. The greater the deviation of X; from the X, the greater the leverage.
3. The maximum value of leverage is | and the minimum value is V.

4. The average leverage for a set of scores is ¥ +1/y, where K is the number
of independent variables.

5. It has been suggested that leverage can be considered high if it is h; >

2K + 1)/

For those familiar with matrix algebra, the coefficient h; can also be found as
the " diagonal element in the matrix X (X'X)~1X’, where X is the N x (K +1)
matrix of independent variables augmented by a column of 1’s.

LSPSS computes leverage using a slightly different equation. It does not add 1/, to the com-
putation of leverage
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6.2.2 Cook’s D

As we recall, leverage only identifies a case as independent variables rather than
dependent variables as influential. To detect influential scores, regardless of whether
or not they are independent or dependent variables, we can use Cook’s D (dis-
tance) measure:

SRESID? h;
D, — i ‘ 6.6
- () (£25) 66

Although there are significance tests for D, for diagnostic purposes it is suffi-
cient to look for large D values in relation to the rest of the data.

6.2.3 DFBETA

One can also look at the effects on specific parameter estimates of a given observa-
tion. In DFBETA,, indicates the change in & (intercept or regression coefficient)
when ¢ is deleted.

In the case of a simple regression, we will refer to DFBETA,, as a change in
the intercept a, and DFBETA;, as a change in the regression coefficient b when 3
is deleted.

While there are more laborious formulas one might use, the easiest and the
one requiring only a single run of the data is:

DFBETA,, = a — a;

B NZX?—X&XZ-V i (NZ);EZ—)&W) Xi] (1 fim)
6.7

where e; is the residual.
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Turning our attention to the regression coefficient, we have:

DFBETA;, = b — b;

NZ);?Z—)& X2 (NZXZ?JY D X»?) Xi] (ﬁ) (6.8)

6.2.4 Standardized STDFBETA

We must now face the problem of deciding what constitutes a large DFBETA.
One way to answer this question is by means of standardization. We will call this
STDFBETA.

DFBETA,,
MSR; (st )

STDFBETA; = (6.9)

NY X7-(3Xi)?

Where MSR; is the mean square residual when ¢ is deleted. MSR; can be
found by:

MSR; = ¢ __1-hs (6.10)



Chapter 7

Between-Subjects Analysis of
Variance

7.1

Assumptions

Normality: the dependent variable (technically speaking, the errors) should
be normally distributed within each cell. Usually ANOVA is robust against
violations of normality as long as a variable is skewed in the same direction
across all cells of the design.

Homogeneity of variance: variances of the dependent variable are same in
each cell in the design. ANOVA must meet this assumption. There is no
way around this violation of assumption.

Qutliers: no univariate outliers. Outliers will bias results.

Sample size: good rule of thumb is minimum of 10 subjects per cell. also,

the ratio between largest sample size to smallest size should be less than
3:1.
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7.2 One-way Between-Subjects ANOVA

Both one-way and factorial ANOVASs can be performed through the GLLM proce-
dure in SPSS. It does not make a difference for SPSS whether there are one IV or
multiple I'Vs.

A one-way between-subjects ANOVA can be performed using two different
procedure in SPSS (GLM and One-way ANOVA under Compare Means). Both
procedure generate the same results. One-way ANOVA does offer easy method of
performing contrasts while GLLM produces richer information (e.g., effect size).

The outputs for both one-way and factorial ANOVAs are similar. Examine the
two-way between-subject ANOVA outputs (Section 7.3.3) for help.

If there is a significant difference (i.e., main effect), then a researcher should
consider performing a post hoc comparisons. A post hoc comparisons can be re-
quested by clicking on Post Hoc button from the GILM dialog box. SPSS provides
vast number of post hoc comparisons (Figure 7.1).

Figure 7.1: General Linear Model - Post Hoc

Univariate: Post Hoc Multiple Comparisons for Observed Means

Factor(s} Post Hoc Tests for:
ot = = Conti
sy Prr— O |
E Cancel
Help
Equal Yariances Assumed
[~ LSD ™ SNK [T WallerDuncan
[~ Bonferoni [~ Tukey l—
[~ Sidak I Tukey'sb [~ Dunnett

[~ Scheffe [T Duncan

I~ REGWF [~ Hochberg's GT2
[~ REGWQ [~ Gabriel o

Equal Variances Not Assumed

[~ Tamhane's T2 [ Dunnet's T3 [ GamesHowell [~ Dunnett'sC
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7.3 Two-way Between-Subjects ANOVA

7.3.1 Example of the Design

A between-subjects analysis of variance is demonstrated using a simple dataset.

Anxiety
Low Medium High

Sex Male

Female

7.3.2 Setup in SPSS

e Click on Analyze — General Linear Model — Univariate (Figure 7.2). Fill
in the variables as shown above.

e Click Options (Figure 7.3). Check Descriptive Statistics, Estimate of effect
size (will report partial n?), and homogeneity tests (will report Levene’s test
of homogeneity of variance).

e Click Plots from the main window (Figure 7.4). Move over the variables
in to the middle. Usually, move over the variable with more levels as Hori-
zontal Axis. For this example, move over Anxiety into Horizontal Axis and
Sex as Separate Lines. Don’t forget to click on Add button at the bottom.
SPSS is capable of generating multiple plots.

7.3.3 Output in SPSS

Figure 7.5 displays SPSS test of homogeneity of variance (Levene’s Test of Equal-
ity of Error Variance). The test should not be significant. However, this test is
liberal. Worry if it is significant at « = .001. If it is significant at & = .001, then
examine the variance of each cell to deter ming what is causing the problem. A
better test, which is not available in SPSS, would be Brown-Forsythe.
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Figure 7.2: General Linear Model - Univariate

B Univariate @

B = Dependent Yariable: Model
O (o —
Contrasts...
Emed Factor(s} -
@2 8 e |
& anviely 7
Post Hoc...
Random Factors): ‘541
S Save...
D DOptions...
LCovanate(s}
|:| WLS Weight:
[—
oK | Paste | Beset | Eancel| Help |

7.3.4 Research hypotheses and How to test them

Starting Questions

e Is there a significant difference on math scores between male and female
college students averaged across anxiety levels? (Main effect of Sex)

e [s there a significant difference on math scores among anxiety levels aver-
aged across sex? (Main effect of anxiety)

e Is the pattern of difference on the math scores among anxiety levels different
between male and female college students? (Interaction of sex and anxiety)

What’s Next?

If you have a specific hypothesis, test it. If you do not have a specific hypothesis,
there are general guideline (Figure 7.7).

e for overall analysis without any option, the syntax would be:
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GLM

Figure 7.3: General Linear Model - Options

Univariate: Options E]

E stimated Marginal Means
Factor(s) and Factor Interactions: Display Means for:
[OVERALL)
sex
anyiety
sex*anmiety
[ Compare main effects
Display
¥ Homogeneity tests
v Esh i [~ Spread vs. level plot
[~ Observed power [~ Residual plot
[~ Parameter estimates [ Lack of fit
[~ Contrast coefficient matrix [~ General estimable function
Significance level !.05 Confidence intervals are 95%

Confinue ! Cancel Help

mathsco by sex anxiety
/design =

sex anxiety sex*anxiety.
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e is the pattern of difference on math scores at low and medium anxiety levels
different between male and female college students? (interaction contrast)

GLM

mathsco by sex anxiety

/lmatrix

= "interaction contrast”

sex*anxiety 1 -1 0 -1 1 0

/design =
Sex Male
Female

sex anxiety sex*anxiety.

Anxiety
Low Medium High
1 -1 0
1 1 -1 0

-1 -1 1 0
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Figure 7.4: General Linear Model - Plots

Univariate: Profile Plots @

Eactors: Honzontal Axs: Continue
sEy i anwiety
anxiety Cancel |

Separate Lines:
[ eoesm e
Separate Plots:

1 N —

Plots: ddd | |

Figure 7.5: General Linear Model - Levene’s Test

Levene's Test of Equality of Error Variances?®

Dependent Variable: MATHSCO

F df1 df2 Sig.
3.827 5 84 .004
Tests the null hypothesis that the error variance of the dependent variable is equal across groups.
a. Design: Intercept+SEX+ANXIETY+SEX * ANXIETY

To perform any contrast, you would need to understand /lmatrix. The gen-
eral format of the command is:

/lmatrix = "label™
effect ***contrast coefficients***

effect in the example above was sex*anxiety. The effect is followed by
contrast coefficient for each cell. In the example above the order was:

low male, medium male, high male, low female, medium female, high fe-
male (without commas)

the output for the above contrast is displayed in the Custom Hypothesis
Tests section (Figure 7.8).
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Figure 7.6: General Linear Model - ANOVA

Tests of Between-Subjects Effects
Dependent Variable: MATHSCO

Type Il Sum Partial Eta
Source of Squares df Mean Square F Sig. Squared
Corrected Model 2897.580° 5 579.516 19.721 .000 .540
Intercept 477575.697 1 477575.697 | 16251.837 .000 995
SEX 39.931 1 39.931 1.359 247 .016
ANXIETY 368.553 2 184.276 6.271 .003 130
SEX * ANXIETY 2489.096 2 1244548 42.352 .000 .502
Error 2468.420 84 29.386
Total 482941.697 90
Corrected Total 5366.000 89

a. R Squared = .540 (Adjusted R Squared = .513)

e is the pattern of difference on math scores at low compared to average of
medium and high anxiety levels different between male and female college

students? (interaction contrast)

/2

GLM

mathsco by sex anxiety
/lmatrix = "interaction contrast"”
sex*anxiety 1 -1/2 -1/2 -1 1/2 1
/design = sex anxiety sex*anxiety.

Anxiety

Low Medium High
1 —1/2 —1/2
Sex Male 1 1 -1/2 | —1/2

Female —1| —1 1/2 1/2

It is easier to answer multiple comparisons than simple main effects. Simple
main effects are made-up of simple comparisons just like main effects are

made-up of marginal comparisons.

e is there a significant difference on math scores among anxiety levels for

male college students? (simple main effect)
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Figure 7.7: General Linear Model - Flow Chart

main effects

sig

L 3
marginal
comparisons

interaction effect

sig

stop stop

ns

-
interaction
contrasis

sig
r
simple main
effects

sig

¥
simple

stop
compansons

GLM
mathsco by sex anxiety
/lmatrix = "simple main effect of anxiety for male"

anxiety 1 -1 0
sex*anxiety 0 0 0 1 -1 Q;
anxiety 0 1 -1
sex*anxiety 0 0 0 0 1 -1;

/design = sex anxlety sex*anxiety.

e is there a significant difference on math scores between male and female
college students for medium anxiety levels? (simple main effect)

GLM

mathsco by sex anxiety

/lmatrix = "simple main effect of sex"
-1
sex*anxiety 0 1 0 0 -1 O

sex 1

/design = sex anxlety sex*anxiety.

e is there a significant difference on math scores between low and medium
anxiety levels for female college students? (simple comparisons)

GLM
mathsco by sex anxiety
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Figure 7.8: General Linear Model - Custom Hypothesis Tests

Contrast Results (K Matrix)?

Dependent
Variable

Contrast MATHSCO
L1 Contrast Estimate 10.937
Hypothesized Value 0

Difference (Estimate - Hypothesized) 10.937

Std. Error 2.799

Sig. .000

95% Confidence Interval  Lower Bound 5.370

for Difference Upper Bound 16.504

a. Based on the user-specified contrast coefficients (L") matrix: interaction contrast

Test Results
Dependent Variable: MATHSCO

Sum of
Source Squares df Mean Square F Sig.
Contrast 448.549 1 448.549 15.264 .000
Error 2468.420 84 29.386
/lmatrix = "simple comparison"

anxiety 1 -1 0
sex*anxiety 0 0 0 1 -1 O
/design = sex anxiety sex*anxiety.

e is there a significant difference on math scores between low and average of
medium and high anxiety levels for male students? (simple comparison)

GLM

mathsco by sex anxiety

/lmatrix = "simple comparison"
anxiety 1 -1/2 -1/2
sex*anxiety 1 -1/2 -1/2 0 0 0
/design = sex anxiety sex*anxiety

e is there a significant difference on math scores between low and average of
medium and high anxiety levels averaged across sex? (marginal compari-
son)
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GLM
mathsco by sex anxiety
/lmatrix = "marginal comparison"

anxiety 1 -1/2 -1/2
sex*anxiety 1/2 -1/4 -1/4 1/2 -1/4 -1/4
/design = sex anxlety sex*anxiety.

7.4 Contrast Matrices

7.4.1 Deviation Coding

Compares the effect for each category of the IV, except one, to the grand mean.
Select either first or last as the omitted category.

For example with 3 groups: by = §; — g and by = 4o — .

7.4.2 Difference Contrast

The effect for each category of the IV except the first is compared to the average
of the previous categories.

For example with 3 groups: by = o — 7; and by = 3 — 71 + 72/,

7.4.3 Helmert Contrast

The effect for each category of the IV except the last is compared to the average
of subsequent categories.

For example with 3 groups: by = g; — %2 + 83/, and by = o — 7o.
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7.4.4 Simple Contrast

Each category except one of the IV is compared to a reference category. Select
either first or last as the reference category.

For example with 3 groups: b; = 3, — y1 and by = 73 — 1.

7.4.5 Repeated

Compares adjacent categories. Each category of the predictor variable or factor
except the first category is compared to the category that proceed it.

For example with 3 groups: b; = 41 — ¥» and by = 7 — ¥s.



56 CHAPTER 7. BETWEEN-SUBJECTS ANALYSIS OF VARIANCE



Chapter 8

Within and Mixed Analysis of
Variance

8.1

Assumptions

Normality: the dependent variable (technically speaking, the errors) should
be normally distributed within each cell. Usually ANOVA is robust against
violations of normality as long as a variable is skewed in the same direction
across all cells of the design.

Homogeneity of variance: variances of the dependent variable are same in
each cell in the design. ANOVA must meet this assumption. There is no
way around this violation of assumption.

Homogeneity of Covariance: covariances (relationships) among the depen-
dent variable at different levels of within-subjects independent variable is
same.

Outliers: no univariate outliers. Outliers will bias results.

Sample size: good rule of thumb is minimum of 10 subjects per cell. also,
the ratio between largest sample size to smallest size should be less than

3:1.
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58 CHAPTER 8. WITHIN AND MIXED ANALYSIS OF VARIANCE

8.2 Within-Subjects ANOVA
Both within-subjects and mixed ANOVA are performed using the same procedure
in SPSS (GLM — Repeated Measures).

If there are only one within-subjects IV (factor), then only define one within-
subjects factor at Define dialog box (Figure 8.1). This dialog box does offer ability
to define multiple within-subjects IV.

One difference between a between-subjects and within-subjects ANOVA as far

as procedure in SPSS is in post hoc comparisons. The usual Tukey and Scheffé
are not available for within-subject IV.

8.3 Mixed ANOVA

Mixed ANOVA is when there are combination of both within-subjects and between-
subjects IV.

8.3.1 Example of the Design

A mixed analysis of variance is demonstrated using a simple dataset.

Quarter
Fall Winter Spring

Sex Male

Female

8.3.2 Setup in SPSS

e Click on Analyze — General Linear Model — Repeated Measures. Fill in
the Within-Subject Factor name with Number of Levels and click Add then
Define (Figure 8.1).
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Figure 8.1: Repeated Measures Define

Repeated Measures Define Factor(s) " |

Within-Subject Factor Mame: quartet |:|
_Best |

Number of Levels: ﬁ_

_ | _Concel |
| _Heb_|
I Measure >>

e Repeated Measure dialog box is displayed next (Figure 8.2). Move over
Sex into the Between-Subjects Factor and fall to spring into Within-Subjects
Variables box.

&

Figure 8.2: Repeated Measures

M Repeated Measures @
Within-Subjects Vanables  [quarter) 0K
ED fall1] Paste
winter(2]
spiing(3) Beset
D Cancel
Help

Between-Subjects Factor(s}

=|®

Covariates:

]

Model... Cngtrasls...| Plots... | Post Hoc... Save... DOptions...

e Click Options (Figure 8.3). Check Descriptive Statistics, Estimate of effect
size (will report partial n?), and homogeneity tests (will report Levene’s test
of homogeneity of variance).
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Figure 8.3: Repeated Measures - Options

Repeated Measures: Options @

E stimated Marginal Means
Factor(s] and Factor Interactions: Display Means for:
[OVERALL) sex

sex E quartes
quarter sex"“quarter
sex"quarter

I~ Compare main effects

Display
Iv Descriptive statistics I Transformation matrix

[v Homogeneity tests

[~ Spread vs. level plots

L] P;ianale{ estimates [~ Residual plots

[~ SSCP matrices [~ Lack of fit test

[~ Residual SSCP matix [ General estimable function
Significance level |05 Confidence intervals are 95%

Continue I Cancel Help

e Click Plots from the main window (Figure 8.4). Move over the variables in
to the middle. Usually, move over the within-subject independent variable
as Horizontal Axis. For this example, move over Quarter into Horizontal
Axis and Sex as Separate Lines. Don’t forget to click on Add button at the
bottom. SPSS is capable of generating multiple plots.

8.3.3 Output in SPSS

SPSS report both multivariate and univariate results whenever within-subjects (re-
peated) independent variable is used. A researcher must decide a priori, whether
to perform an analysis univariately or multivariately and ignore the other outputs.

Mauchly’s Test of Sphericity (Figure 8.5) is a test of homogeneity of covari-
ance. The test should be not significant. This table also displays Epsilon for
adjustment to degrees of freedom for violations of homogeneity of covariance.

If the assumption of homogeneity of covariance is met, interpret the sphericity
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Figure 8.4: Repeated Measures - Plots

Repeated Measures: Profile Plots @

Eactors: Honzontal Awms: Continue
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Separate Lines:
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D Separate Plots:
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Figure 8.5: Mixed ANOVA - Test of Sphericity

Mauchly's Test of Sphericity”
Measure: MEASURE 1

Epsilon®

Approx. Greanhouse
Within Subjects Effect | Mauchly's W | Ghi-Square df Sig. -Geisser Huynh-Feldt | Lower-bound
QUARTER 737 5240 2 016 792 561 500 |

Tests the mull hypothesis that the eror covariance matrix of the orth blag g p jonal to an identity matrix.
a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are digplayed in the Tests of Within-Subjects Effects table.
b.
Degign: Intercapt+SEX
Within Subjects Design: QUARTER

assumed row in Figure 8.6 else other rows that adjust degrees of freedom. The
between-subjects effect is not printed in the same table (Figure 8.7).

8.3.4 Research hypotheses and How to test them

Starting Questions

e Is there a significant difference on math scores between male and female
college students averaged across three quarters? (Main effect of Sex)

e Is there a significant difference on math scores among three quarters aver-
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Figure 8.6: Mixed ANOVA - Within Subjects Effects

Tests of Within-Subjects Effects
Measure: MEASURE 1

Type Il Sum Partial Eta
Sourca of Squares df Mean Square F o Sig. Squared
QUARTER Sphencity Assumed 368.553 2 184.276 5.849 005 A73
Greenhouse-Geisser 368.553 1.584 232,745 5849 009 A73
Huynh-Feldt 368.553 1.723 213.952 5,849 .oo7 A73
Lower-bound 368.553 1.000 368.553 5.849 022 A73
QUARTER * SEX  Sphericity Assumed 2489.096 2 1244.548 39.501 000 585
Greenhouse-Geisser 2489006 1.584 1571804 39501 ] 585
Huynh-Feldt 2489.096 1723 1444965 39.501 000 585
Lower-bound 2489.096 1.000 2489.096 39.501 000 585
Erme{QUARTER)  Sphericity Assumed 1764.391 56 31.507
Greenhouse-Geisser 1764.391 44.338 39.794
Huynh-Feldt 1764.391 48.233 36.581
Lower-bound 1764.391 28.000 63.014

Figure 8.7: Mixed ANOVA - Between Subjects Effects

Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

Type Il Sum Partial Eta
Source of Squares df Mean Square F Sig. Squared
Intercapt AT7575.697 1 AT7575.697 | 18993.706 000 899
SEX 39.931 1 39.91 1,588 218 054
Error 704.029 28 25.144

aged across sex? (Main effect of quarter)

o Is the pattern of difference on the math scores among three quarters different
between male and female college students? (Interaction of sex and quarter)

What’s Next?

If you have a specific hypothesis, test it. If you do not have a specific hypothesis,
there are general guideline (Figure 7.7).

e for overall analysis without any option, the syntax would be:

GLM
fall winter spring by sex
/wsfactor = quarter 3
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/wsdesign = quarter
/design = sex.

e isthe pattern of difference on math scores at fall and winter quarter different
between male and female college students? (interaction contrast). /mmatrix
statement is required to contrast within-subjects IV while /Imatrix contrasts
between-subjects IV.

GLM
fall winter spring by sex
/wsfactor = quarter 3
/wsdesign = quarter

/lmatrix sex 1 -1
/mmatrix all 1 -1 0
/design = sex.

Unlike in between-subjects ANOVA, you only need to specify the marginal
contrast coefficients, not contrast coefficients for each cell. Actual contrast
output is similar to between-subjects output (Figure 7.8).

e is the pattern of difference on math scores at fall quarter compared to aver-
age of winter and spring quarters different between male and female college
students? (interaction contrast)

GLM
fall winter spring by sex
/WSFACTOR = quarter 3
/WSDESIGN = quarter
/lmatrix sex 1 -1
/mmatrix all 1 -1/2 -1/2
/design = sex.

e is there a significant difference on math scores among three quarters for
male college students? (simple main effect). Select only male using Select
Cases (Section 2.4) and simply run a one-way within-subjects ANOVA.

e is there a significant difference on math scores between male and female
college students for winter quarter? (simple main effect)
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GLM
fall winter spring by sex
/wsfactor = quarter 3
/wsdesign = quarter

/lmatrix sex 1 -1
/mmatrix all 0 1 0
/design = sex.

e isthere a significant difference on math scores between fall and winter quar-
ters for female college students? (simple comparisons). Simply select only
females and perform a paired t-test.

e is there a significant difference on math scores between fall and average of
winter and spring quarters for male students? (simple comparisons). Select
only male students and perform a one-way within-subjects ANOVA with
following syntax.

GLM
fall winter spring
/wsfactor = quarter 3
/wsdesign = quarter

/mmatrix all 1 -1/2 -1/2.

e is there a significant difference on math scores between fall and average of
winter and spring quarters averaged across sex? (Marginal comparisons).
Perform a one-way within-subjects ANOVA with the following syntax:

GLM
fall winter spring
/wsfactor = quarter 3
/wsdesign = quarter

/mmatrix all 1 -1/2 -1/2.



Chapter 9

Analysis of Covariance

9.1 Introduction

Only Between-Subjects ANCOVA will be discussed in this chapter. However,
ANCOVA can be performed with any design as long as they meet the following
conditions.

9.1.1 Whatis a covariate?

A covariate is a variable that will influence or impact the dependent variable that
cannot be manipulated which you want to account for in a study. A covariate is
interval or ratio scale and should be normally distributed without any outliers.

9.1.2 How do you choose a covariate?
e A covariate should be correlated to a dependent variable.

e A covariate should not be correlated to independent variable(s).
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e More than one covariate can be used. However, limit the number of co-
variates. For each covariate used, you lose a degree of freedom from the
error term. If a covariate is not related to the dependent variable, you lose
power. Also, there is higher chance of multicollinearity/singularity among
covariates and IV.

9.1.3 Assumptions

e Same assumptions as ANOVA (Section 7.1).

o Homogeneity of Regression: the relationship between a covariate and the
dependent variable is same across all cells in the study. A covariate and the
dependent variable must be linearly related.

e If more than one covariate is used, multicollinearity/singularity among co-
variates and IV.

9.1.4 1If a covariate is not

e interval/ratio scale - just use the variable as another IV, randomized block
design.

e Linearly related to DV - one option would be to categorize a covariate and
use it as another IV, randomized block design.

9.2 Example of the Design

A between-subjects ANCOVA is demonstrated using a simple dataset similar to
ANOVA example (Section 7.3.1).

Anxiety
Low Medium High

Sex Male

Female
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Let say, we performed a 3X2 between-subjects analysis of covariance to de-
termine the effect of sex and anxiety on math scores of college students after
adjusting for amount of study time. It has two independent variables: sex with
2 levels (male, female) and anxiety levels (low, medium, high). The dependent
variable is math scores. A covariate is amount of study time.

9.3 Setup in SPSS

Click on Analyze — General Linear Model — Univariate (Figure 7.2).

e Fill in the variables. Move over the covariate to Covariate(s) box.

Click Options (Figure 7.3). Choose all the same settings from Section 7.3.2
plus Parameter estimates.

choose the same settings for Plots.

9.4 Output in SPSS

The Descriptive Statistics (Figure 9.1displayed at the beginning is the unadjusted
(observed) means.

In ANCOVA, Levene’s test (Figure 9.2) is a test of both homogeneity of vari-
ance and homogeneity of regression. Unfortunately, if it is significant, you don’t
know if there is a violation of homogeneity of variance, homogeneity of regres-
sion, or both. Further test would be required. A test of homogeneity of regression
can be performed by computing the regression coefficient(s) for each cell in the
design and comparing them (or by computing and testing the interaction effect of
covariate and IV).

Interpretation of the Results based on Figure 9.3:

e The amount of study time was significantly predict math scores.
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Figure 9.1: ANCOVA - Descriptive Statistics

Descriptive Statistics

Dependent Variable: MATH

SEX ANXIETY Mean Std. Deviation N
male low 8.95 3.300 20
medium 9.61 3.696 18
high 11.00 2.784 17
Total 9.80 3.341 55
female low 9.25 4,297 16
medium 8.28 2.675 18
high 8.33 3.395 18
Total 8.60 3.443 52
Total low 9.08 3.722 36
medium 8.94 3.251 36
high 9.63 3.353 35
Total 9.21 3.429 107

Figure 9.2: ANCOVA - Levene’s Test

Levene's Test of Equality of Error Variances?

Dependent Variable: MATH

F df1 df2 Sig.
2.175 5 101 .063
Tests the null hypothesis that the error variance of the dependent variable is equal across groups.
a. Design: Intercept+STIME+SEX+ANXIETY+SEX * ANXIETY

e There was no significant difference on the math scores between male and
females after adjusting for the amount of study time.

e There was a significant difference on the math scores among the levels of
anxiety after adjusting for the amount of study time.

e The effect of anxiety on the math scores was not different between males
and females after adjusting for the amount of study time.

According to Parameter Estimates (Figure 9.4), the math scores was predicted
to go down by .652 points for each increase in the study time. Also, the amount
of study time explains 36.7% of the variance of the math scores. Ignore other
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Figure 9.3: ANCOVA - Table

Tests of Between-Subjects Effects
Dependent Variable: MATH

Type Il Sum Partial Eta
Source of Squares df Mean Square F Sig. Squared
Corrected Model 512.642° 6 85.440 11.650 .000 411
Intercept 3123.969 1 3123.969 425.949 .000 .810
STIME 424.425 1 424.425 57.870 000 .367
SEX 20.380 1 20.380 2779 .089 .027
ANXIETY 60.990 2 30.495 4.158 .018 077
SEX * ANXIETY 19.037 2 9.519 1.298 278 .025
Error 733.414 100 7.334
Total 10332.000 107
Corrected Total 1246.056 106

a. R Squared = 411 (Adjusted R Squared = .376)

parameter estimates (for now). SPSS uses indicator coding by default. In factorial
design, they usually do not test the desired effects.

The estimated marginal means printed at the end is the adjusted means. The
adjusted means are also used in a plot instead of observed means.
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Figure 9.4: ANCOVA - Parameter Estimates

Dependent Variable: MATH

Parameter Estimates

Parameter B Std. Errar t
Tercept 14.020 983 | 14.263
STIME -652 085 -T.807
[SEX=1] 2176 1115 -1.951
[SEX=3] o . )
[ANXIETY=1] 935 931 1.005
[ANXIETY=2] 488 808 539
[ANXIETY=3] o :
ﬁﬁ};i—g}\f:u 2365 1.468 1611
}iﬁi[é'wlzl 1.155 1327 &1
[SEX=1)* &

[ANXIETY=3]

1SEX=2] * ¢

[ANKIETY=1]

[SEX=2] * ¢

[ANXIETY=2]

[SEX=2]* o

[ANXIETY=3]
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Lower Bound
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a. This parameter is set to zero because it is redundant,



