Item Formats

- Dichotomous Format
 - Two alternatives
 - True/False
 - MMPI/2, MMPI/A
- Polytomous or Polychotomous Format
 - More than two alternatives
 - Multiple choice
 - Psy427 Midterm, SAT, GRE,

Item Formats

- Distractors
 - Item Formats
 - Incorrect choices on a polychotomous test
 - Best to have three or four
 - BUT -
 - one study (Sidick, Barret, & Doverspike, 1994) found equivalent validity and reliability for a test with two distractors (three items) as one with four distractors (five items).
 - SO, best might be to have two to four (further study is needed)
Should you guess on polytomous tests?

- Depends... Correction for guessing:

\[\text{Corrected Score} = R - \frac{W}{n-1} \]

- \(R \) is the number correct
- \(W \) is the number incorrect
- \(n \) is the number of polytomous choices
- If no correction for guessing, guess away.
- If there is a correction for guessing, better to leave some blank (unless you can beat the odds)

Other Test Items

- Likert scales
 - On a rating scale of 1-5, or 1-6, 1-7, etc. where
 - 1 = strongly disagree
 - 2 = moderately disagree
 - 3 = mildly disagree
 - 4 = mildly agree
 - 5 = moderately agree
 - 6 = strongly agree
 - rate the following statements....

Other Test Items

- Likert scales
 - Even vs. odd number of choices
 - Even numbers prevents “fence-sitting”
 - Odd numbers allows people to be neutral
 - Likert items are VERY popular measurement items in psychology.
 - Technically ordinal but are often assumed continuous if 5 or more choices
 - With that assumption we can calculate means, factor analyze, etc.
Other Test Items

- Category format
 - Like Likert, but with MANY more categories
 - e.g., 10-point scale
 - Best if used with anchors
 - Research supports use of 7-point scales to 21-point scales

Other Test Items

- Visual Analogue Scale

 No Headache | Worst Headache

- Also used in research
 - dials, knobs
 - time sampling

Checklists & Q-Sorts

- Both used in qualitative research as well as quantitative research
- Checklists
 - Present list of words (adjectives)
 - Have person choose to endorse each item
 - Can determine perceptions of concepts using checklists.
Checklists & Q-Sorts

- Adjective Checklists (from http://www.encyclopedia.com/doc/1O87-AdjectiveCheckList.html)
 - In psychometrics, any list of adjectives that can be marked as applicable or not applicable
 - to oneself
 - to one's ideal self
 - to another person, OR
 - to some other entity or concept.

Checklists & Q-Sorts

- Checklists
 - When written with initial uppercase letters (ACL), the term denotes more specifically a measure consisting of a list of 300 adjectives, from absent-minded to zany
 - Selected by the US psychologist Harrison G. Gough (born 1921) and introduced as a commercial test in 1952.
 - The test yields 24 scores, including measures of personal adjustment, self-confidence, self-control, lability, counselling readiness, some response styles, and 15 personality needs, such as achievement, dominance, and endurance.

Checklists & Q-Sorts

- Q-Sorts
 - Introduced by William Stephenson in 1935
 - PhD in physics 1926, PhD in psychology in 1929
 - Student of Charles Spearman
 - Goal: to get a quantitative description of a person's perceptions of a concept
 - Process: give subject a pile of numbered "cards" & have them sort them into piles
 - Piles represent graded degrees of description (most descriptive to least descriptive).
Checklists & Q-Sorts

- Q-Sorts
 - Means of self-evaluation of client's current status
 - The Q-Sort consists of a number of cards, often as many as 40 or 50, even 100 items each consisting of a single trait, belief, or behavior.
 - The goal is to sort these cards into one of five columns ranging from statements such as 'very much like me' to 'not at all like me.'
 - There are typically a specific number of cards allowed for each column, forcing the client to balance the cards evenly.
- Example:
 - California Q-sort, Attachment Q-sort

Example Q-sort

California Q-Sort
Attachment Q-sort

- Methods used to evaluate test items.
- What are good items?
- Techniques
 - Item Difficulty (or easiness)
 - Discriminability
 - Extreme Group
 - Item/Total Correlation
 - Item Characteristic Curves
 - Item Response Theory
 - Criterion-Referenced Testing

Item Difficulty

- The proportion of people who get a particular item correct or that endorse an item (if there is no "correct" response, e.g. MMPI)
- Often thought of as the item’s easiness because it is based on the number correct/endorsed
Item Difficulty

- The difficulty can be given in proportion for or it can be standardized in to a Z-value

\[
Z = \frac{\ln(1 - p) - \ln(p)}{1.7}
\]

Item Difficulty

- For example a test with the difficulty of .84

\[
Z = \frac{(\ln(.16) - \ln(.84))}{1.7}
\]

\[
= \frac{(-1.83 + .17)}{1.7}
\]

\[
= -1.66/1.7
\]

\[
= -1.00
\]

(-2 → 2 is typical range)

Difficult Item (35%)

If you are taking a criterion referenced test in a social psychology course and you need to score a 92 in order to get an A, the criterion is

a) Social Psychology *
b) Scoring a 92
c) Getting an A
d) Not enough info.
Difficult Item (35%)

\[Z = \frac{[\ln(1 - p)] - \ln(p)}{1.7} \]

\[Z = \frac{(\ln(.65) - \ln(.35))}{1.7} \]

\[= \frac{(-.431 + 1.050)}{1.7} \]

\[= \frac{.619}{1.7} \]

\[= .364 \]

Moderate Item (51%)

The correlation between X and Y is .54. X has a SD of 1.2 and Y has a SD of 5.4. What is the regression coefficient (b) when Y is predicted by X?

a) .12
b) 2.43*
c) .375
d) .45

Difficult Item (51%)

\[Z = \frac{[\ln(1 - p)] - \ln(p)}{1.7} \]

\[Z = \frac{(\ln(.49) - \ln(.51))}{1.7} \]

\[= \frac{(-.713 + .673)}{1.7} \]

\[= \frac{-0.004}{1.7} \]

\[= -.00235 \]
Easy Item (100%)

- For the following set of data [5 9 5 5 2 4], the mean is
 a) 4
 b) 5
 c) 4.5
 d) 6

Difficult Item (100%)

\[Z = \frac{\ln(1-p) - \ln(p)}{1.7} \]
\[Z = \frac{(\ln(0) - \ln(1))}{1.7} \]
\[= \text{error} \]

Optimum Difficulty

- Mathematically: half-way between chance and 100%.
- Steps (assuming a 5-choice test)
 1. Find half-way between 100% and chance
 - \(\frac{1 - 2}{2} = 0.5 \)
 2. Add this value to chance alone
 - \(0.5 + 2 = 2.5 \)
- Alternately: Chance + \(\frac{1}{2} \) = optimum difficulty
- A good test will have difficulty values between .30 and .70
Discriminability

- Can be defined in 2 ways:
 1. How well does each item distinguish (discriminate) between individuals who are scoring high and low on the test as a whole (e.g. the trait of interest).
 2. Or simply how well is each item related to the trait (e.g. loadings in factor analysis)
 - 1 and 2 are really the same the more an item is related to the trait the better it can distinguish high and low scoring individuals

Discriminability

- Extreme Group Method
 - First
 - Identify two “extreme” groups
 - Top third vs. bottom third
 - Second
 - Compute “Difficulty” for the top group
 - Compute “Difficulty” for the bottom group
 - Compute the difference between Top Difficulty and Bottom Difficulty
 - Result = Discriminability Index

<table>
<thead>
<tr>
<th>Item</th>
<th>High Scores</th>
<th>Low Scores</th>
<th>Discriminability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>12</td>
<td>11</td>
<td>0.05</td>
</tr>
<tr>
<td>2.</td>
<td>13</td>
<td>12</td>
<td>0.06</td>
</tr>
<tr>
<td>3.</td>
<td>14</td>
<td>13</td>
<td>0.07</td>
</tr>
<tr>
<td>4.</td>
<td>15</td>
<td>14</td>
<td>0.08</td>
</tr>
<tr>
<td>5.</td>
<td>16</td>
<td>15</td>
<td>0.09</td>
</tr>
<tr>
<td>6.</td>
<td>17</td>
<td>16</td>
<td>0.10</td>
</tr>
<tr>
<td>7.</td>
<td>18</td>
<td>17</td>
<td>0.11</td>
</tr>
<tr>
<td>8.</td>
<td>19</td>
<td>18</td>
<td>0.12</td>
</tr>
<tr>
<td>9.</td>
<td>20</td>
<td>19</td>
<td>0.13</td>
</tr>
<tr>
<td>10.</td>
<td>21</td>
<td>20</td>
<td>0.14</td>
</tr>
<tr>
<td>11.</td>
<td>22</td>
<td>21</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Discriminability

- Extreme Group Method
 - First
 - Identify two “extreme” groups
 - Top third vs. bottom third
 - Second
 - Compute “Difficulty” for the top group
 - Compute “Difficulty” for the bottom group
 - Compute the difference between Top Difficulty and Bottom Difficulty
 - Result = Discriminability Index
Discriminability

- Item/Total Correlation
 - Let the total test score "stand in" for the trait of interest; a roughly estimated "factor" of sorts
 - Correlate each item with the total test score; items with higher item/total correlations are more discriminating
 - These correlations are like rough factor loadings

Discriminability

- Point Biserial Method
 - If you have dichotomous scored items (e.g. MMPI) or items with a correct answer
 - Correlate the proportion of people getting each item correct with total test score.
 - One dichotomous variable (correct/incorrect) correlated with one continuous variable (total score) is a Point-Biserial correlation
 - Measures discriminability

Discriminability

- Point Biserial Method

<table>
<thead>
<tr>
<th>Item/Total Correlation</th>
<th>Item</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For example:

- Item 1: I enjoy the excitement of a crowd.
- Item 2: I spend most of my spare time by myself.
- Item 3: I am never happier than when alone.
- Item 4: My worries seem to disappear when I get into a crowd.
- Item 5: Whenever possible I avoid being in a crowd.
- Item 6: I like to go to parties and other affairs.
Discriminability

- The discrimination can be standardized into a Z-value as well

\[Z = \frac{1}{2} \left[\ln(1 + r) - \ln(1 - r) \right] \]
Selecting items

- Using Difficulty and Discrimination together

![Item Difficulty and Discrimination Graph](image)

Item Characteristic Curves

- A graph of the proportion of people getting each item correct, compared to total scores on the test.
- Ideally, lower test scores should go along with lower proportions of people getting a particular item correct.
- Ideally, higher test scores should go along with higher proportions of people getting a particular item correct.

![Item Characteristic Curves Graph](image)
Item Characteristic Curves

43. I prefer to pass by people I know but have not seen for a long time, unless they speak to me first.
Item Characteristic Curves

- "46. I am a very sociable person."
- "82. I like to go to parties and other affairs where there is lots of loud fun."
- "151. It makes me uncomfortable to put on a party even when others are doing the same sort of things."
Item Characteristic Curves

“68: I find it hard to make talk when I meet new people.”

Item Characteristic Curves

“178. I wish I were not so shy.”

Item Characteristic Curves

“240: In a group of people I would not be embarrassed to be called upon to start a discussion or give an opinion about something I know well.”
Item Characteristic Curves

"246. I am likely not to speak to people until they speak to me."

Item Characteristic Curves

"257. I find it very hard to talk in front of the class."

Item Characteristic Curves

"262. I seem to make friends about as quickly as others do."
Item Characteristic Curves

“319. I love to go dancing.”

Cal State Northridge - Psy 427

Item Characteristic Curves

“320. I am never happier than when alone.”

Cal State Northridge - Psy 427

Item Characteristic Curves

“331. I enjoy social gatherings just to be with people.”

Cal State Northridge - Psy 427

Item Characteristic Curves

"335. I enjoy the excitement of a crowd."

```
<table>
<thead>
<tr>
<th>Total Score Groups</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>100.00</td>
</tr>
<tr>
<td>5-9</td>
<td>90.00</td>
</tr>
<tr>
<td>10-14</td>
<td>80.00</td>
</tr>
<tr>
<td>15-19</td>
<td>70.00</td>
</tr>
<tr>
<td>20-24</td>
<td>60.00</td>
</tr>
</tbody>
</table>
```

Item Characteristic Curves

"336. I do not mind meeting strangers."

```
<table>
<thead>
<tr>
<th>Total Score Groups</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>100.00</td>
</tr>
<tr>
<td>5-9</td>
<td>90.00</td>
</tr>
<tr>
<td>10-14</td>
<td>80.00</td>
</tr>
<tr>
<td>15-19</td>
<td>70.00</td>
</tr>
<tr>
<td>20-24</td>
<td>60.00</td>
</tr>
</tbody>
</table>
```

Item Characteristic Curves

"339. My worries seem to disappear when I get into a crowd of lively friends."

```
<table>
<thead>
<tr>
<th>Total Score Groups</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>100.00</td>
</tr>
<tr>
<td>5-9</td>
<td>90.00</td>
</tr>
<tr>
<td>10-14</td>
<td>80.00</td>
</tr>
<tr>
<td>15-19</td>
<td>70.00</td>
</tr>
<tr>
<td>20-24</td>
<td>60.00</td>
</tr>
</tbody>
</table>
```
Item Characteristic Curves

"408. Some people think it's hard to get to know me."

\[\text{Total Score Groups} \]

- 0-4
- 5-8
- 9-12
- 13-16
- 17-20
- 21-24

Other Evaluation Techniques

- Item Response Theory
 - viewing item response curves at different levels of difficulty
 - Looks at standard error at different ranges of the trait you are trying to measure
 - More on this in the next topic
Other Evaluation Techniques

- **Criterion-Referenced Tests**
 - Instead of comparing a score on a test or scale to other respondents’ scores we can compare each individual to what they “should have scored”.
 - Requires that there is a set objective in order to assess whether the objective has been met.
 - E.g. In intro stats students should learn how to run an independent samples t-test a criterion referenced test could be used to test this. This needs to be demonstrated before moving on to another objective.

Other Evaluation Techniques

- **Criterion-Referenced Tests**
 - To evaluate CRT items
 - Give the test to 2 groups one exposed to the material and one that has not seen the material.
 - Distribute the scores for the test in a frequency polygon.
 - The antimode (least frequent value) represents the cut score between those who were exposed to the material and those who weren’t.
 - Scores above the cut score are assumed to have mastered the material, and vice versa.

Criterion Referenced Test

[Image of a Frequency Polygon of a Criterion Referenced Test]
Other Evaluation Techniques

- Criterion-Referenced Tests
 - Often used with Mastery style learning
 - Once a student indicates they’ve “mastered” the material he/she moves on to the next “module” of material
 - If they do not pass the cut score for mastery they receive more instruction until they can master the material