Classical Test Theory

- Classical Test Theory (CTT) – often called the “true score model”
- Called classic relative to Item Response Theory (IRT) which is a more modern approach
- CTT describes a set of psychometric procedures used to test items and scales reliability, difficulty, discrimination, etc.
Classical Test Theory

- CTT analyses are the easiest and most widely used form of analyses. The statistics can be computed by readily available statistical packages (or even by hand).
- CTT Analyses are performed on the test as a whole rather than on the item and although item statistics can be generated, they apply only to that group of students on that collection of items.

Classical Test Theory

- Assumes that every person has a true score on an item or a scale if we can only measure it directly without error.
- CTT analyses assumes that a person’s test score is comprised of their “true” score plus some measurement error.
- This is the common true score model:

\[X = T + E \]

Classical Test Theory

- Based on the expected values of each component for each person we can see that:

\[\varepsilon(X_i) = t_i \]
\[E_i = X_i - t_i \]
\[\varepsilon(X_i - t_i) = \varepsilon(X_i) - \varepsilon(t_i) = t_i - t_i = 0 \]

- E and X are random variables, \(t \) is constant.
- However this is theoretical and not done at the individual level.
Classical Test Theory

- If we assume that people are randomly selected then \(t \) becomes a random variable as well and we get:
 \[X = T + E \]

- Therefore, in CTT we assume that the error :
 - is normally distributed
 - Uncorrelated with true score
 - Has a mean of Zero

\[X = T + E \]

Without \(\sigma_{\text{meas}} \)

With \(\sigma_{\text{meas}} \)

True Scores

- Measurement error around a \(T \) can be large or small
Domain Sampling Theory

- Another Central Component of CTT
- Another way of thinking about populations and samples
- Domain - Population or universe of all possible items measuring a single concept or trait (theoretically infinite)
- Test – a sample of items from that universe

A person’s true score would be obtained by having them respond to all items in the “universe” of items
We only see responses to the sample of items on the test
So, reliability is the proportion of variance in the “universe” explained by the test variance

A universe is made up of a (possibly infinitely) large number of items
So, as tests get longer they represent the domain better, therefore longer tests should have higher reliability
Also, if we take multiple random samples from the population we can have a distribution of sample scores that represent the population
Domain Sampling Theory
- Each random sample from the universe would be “randomly parallel” to each other
- Unbiased estimate of reliability
 \[r_{if} = \sqrt{\bar{r}_{ij}} \]
 - \(r_{ij} \) = correlation between test and true score
 - \(\bar{r}_{ij} \) = average correlation between the test and all other randomly parallel tests

Classical Test Theory Reliability
- Reliability is theoretically the correlation between a test-score and the true score, squared
- Essentially the proportion of X that is T
 \[\rho^2_{XT} = \frac{\sigma_T^2}{\sigma_X^2} = \frac{\sigma_T^2}{\sigma_T^2 + \sigma_E^2} \]
- This can’t be measured directly so we use other methods to estimate

CTT: Reliability Index
- Reliability can be viewed as a measure of consistency or how well a test “holds together”
- Reliability is measured on a scale of 0-1. The greater the number the higher the reliability.
CTT: Reliability Index

- The approach to estimating reliability depends on:
 - Estimation of “true” score
 - Source of measurement error
- Types of reliability:
 - Test-retest
 - Parallel Forms
 - Split-half
 - Internal Consistency

CTT: Test-Retest Reliability

- Evaluates the error associated with administering a test at two different times.
- *Time Sampling Error*
- How-To:
 - Give test at Time 1
 - Give SAME TEST at Time 2
 - Calculate r for the two scores
- • Easy to do; one test does it all.

CTT: Test-Retest Reliability

- Assume 2 administrations X_1 and X_2

\[
\varepsilon(X_{1i}) = \varepsilon(X_{2i}) \quad \sigma_{E_{1i}}^2 = \sigma_{E_{2i}}^2
\]

\[\therefore \rho_{X_1X_2} = \frac{\sigma_{X_1X_2}}{\sigma_{X_1}\sigma_{X_2}} = \frac{\sigma_{E_{1i}}^2}{\sigma_{E_{1i}}^2} = \rho_{XT}\]

- The correlation between the 2 administrations is the reliability
CTT: Test-Retest Reliability

- Sources of error
 - random fluctuations in performance
 - uncontrolled testing conditions
 - extreme changes in weather
 - sudden noises / chronic noise
 - other distractions
 - internal factors
 - illness, fatigue, emotional strain, worry
 - recent experiences

CTT: Test-Retest Reliability

- Generally used to evaluate constant traits.
 - Intelligence, personality
- Not appropriate for qualities that change rapidly over time.
 - Mood, hunger

- Problem: Carryover Effects
 - Exposure to the test at time #1 influences scores on the test at time #2
 - Only a problem when the effects are random.
 - If everybody goes up 5pts, you still have the same variability

CTT: Test-Retest Reliability

- Practice effects
 - Type of carryover effect
 - Some skills improve with practice
 - Manual dexterity, ingenuity or creativity
 - Practice effects may not benefit everybody in the same way.

- Carryover & Practice effects more of a problem with short inter-test intervals (ITI).
- But, longer ITI’s have other problems
 - developmental change, maturation, exposure to historical events
CTT: Parallel Forms Reliability

- Evaluates the error associated with selecting a particular set of items.
- **Item Sampling Error**
- **How To:**
 - Develop a large pool of items (i.e. Domain) of varying difficulty.
 - Choose equal distributions of difficult / easy items to produce multiple forms of the same test.
 - Give both forms close in time.
 - Calculate r for the two administrations.

CTT: Parallel Forms Reliability

- Also Known As:
 - Alternative Forms or Equivalent Forms
- Can give parallel forms at different points in time; produces error estimates of time and item sampling.
- One of the most rigorous assessments of reliability currently in use.
- Infrequently used in practice – too expensive to develop two tests.

CTT: Parallel Forms Reliability

- Assume 2 parallel tests X and X'

\[\varepsilon(X_i) = \varepsilon(X'_i)\]

\[\sigma^2_{E_i} = \sigma^2_{E'_i}\]

\[\therefore \rho_{XX} = \frac{\sigma^2_{XX}}{\sigma_X \sigma_{X'}} = \frac{\sigma^2_{X'}}{\sigma_X^2} = \rho_{XT}\]

- The correlation between the 2 parallel forms is the reliability.
What if we treat halves of one test as parallel forms? (Single test as whole domain)
That's what a split-half reliability does
This is testing for Internal Consistency
- Scores on one half of a test are correlated with scores on the second half of a test.
Big question: “How to split?”
- First half vs. last half
- Odd vs Even
- Create item groups called testlets

How to:
- Compute scores for two halves of single test, calculate \(r \).

Problem:
- Considering the domain sampling theory: what's wrong with this approach?
- A 20 item test cut in half is 2 10-item tests, what does that do to the reliability?
- If only we could correct for that...

Spearman Brown Formula
Estimates the reliability for the entire test based on the split-half
Can also be used to estimate the affect changing the number of items on a test has on the reliability

\[
r^* = \frac{j(r)}{1 + (j - 1)r}
\]
Where \(r^* \) is the estimated reliability, \(r \) is the correlation between the halves, \(j \) is the new length proportional to the old length.
Spearman Brown Formula

For a split-half it would be

\[r^* = \frac{2(r)}{1 + r} \]

Since the full length of the test is twice the length of each half

Example 1: a 30 item test with a split half reliability of .65

\[r^* = \frac{2(.65)}{1 + .65} = .79 \]

The .79 is a much better reliability than the .65

Example 2: a 30 item test with a test re-test reliability of .65 is lengthened to 90 items

\[r^* = \frac{3(.65)}{1 + (3-1) .65} = \frac{1.95}{2.3} = .85 \]

Example 3: a 30 item test with a test re-test reliability of .65 is cut to 15 items

\[r^* = \frac{.5(.65)}{1 + (.5 - 1) .65} = \frac{.325}{.675} = .48 \]
Detour 1: Variance Sum Law

- Often multiple items are combined in order to create a composite score
- The variance of the composite is a combination of the variances and covariances of the items creating it
- General Variance Sum Law states that if \(X \) and \(Y \) are random variables:
 \[
 \sigma^2_{X\pm Y} = \sigma^2_X + \sigma^2_Y \pm 2\sigma_{XY}
 \]

Given multiple variables we can create a variance/covariance matrix

For 3 items:

\[
\begin{array}{ccc}
X_1 & X_2 & X_3 \\
X_1 & \sigma^2_1 & \sigma_{12} & \sigma_{13} \\
X_2 & \sigma_{21} & \sigma^2_2 & \sigma_{23} \\
X_3 & \sigma_{31} & \sigma_{32} & \sigma^2_3 \\
\end{array}
\]

Example Variables \(X, Y \) and \(Z \)

Covariance Matrix:

\[
\begin{array}{ccc}
X & Y & Z \\
X & 55.83 & 29.52 & 30.33 \\
Y & 29.52 & 17.49 & 16.15 \\
Z & 30.33 & 16.15 & 29.06 \\
\end{array}
\]

By the variance sum law the composite variance would be:

\[
\sigma^2_{X,Y,Z} = \sigma^2_{\text{Total}} = \sigma^2_X + \sigma^2_Y + \sigma^2_Z + 2\sigma_{XY} + 2\sigma_{XZ} + 2\sigma_{YZ}
\]
Detour 1: Variance Sum Law

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>55.83</td>
<td>29.52</td>
<td>30.33</td>
</tr>
<tr>
<td>Y</td>
<td>29.52</td>
<td>17.49</td>
<td>16.15</td>
</tr>
<tr>
<td>Z</td>
<td>30.33</td>
<td>16.15</td>
<td>29.06</td>
</tr>
</tbody>
</table>

- By the variance sum law the composite variance would be:
 \[s^2_{\text{Total}} = 55.83 + 17.49 + 29.06 + +2(29.52) + 2(30.33) + 2(16.15) = \]
 \[= 254.41 \]

CTT: Internal Consistency Reliability

- If items are measuring the same construct they should elicit similar if not identical responses.
- Coefficient OR Cronbach’s Alpha is a widely used measure of internal consistency for continuous data.
- Knowing the a composite is a sum of the variances and covariances of a measure we can assess consistency by how much covariance exists between the items relative to the total variance.

Coefficient Alpha is defined as:

\[
\alpha = \frac{k}{k-1} \left(1 - \frac{\sum s_{ij}}{s^2_{\text{Total}}} \right)
\]

- \(s^2_{\text{Total}} \) is the total variance
- \(s^2_{\text{Total}} \) is the composite variance (if items were summed)
- \(s_{ij} \) is covariance between the \(i \)th and \(j \)th items where \(i \) is not equal to \(j \)
- \(k \) is the number of items
CTT: Internal Consistency Reliability

- Using the same continuous items X, Y and Z
- The covariance matrix is:

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>55.83</td>
<td>29.52</td>
<td>30.33</td>
</tr>
<tr>
<td>Y</td>
<td>29.52</td>
<td>17.49</td>
<td>16.15</td>
</tr>
<tr>
<td>Z</td>
<td>30.33</td>
<td>16.15</td>
<td>29.06</td>
</tr>
</tbody>
</table>

- The total variance is 254.41
- The sum of all the covariances is 152.03

\[
\alpha = \frac{k}{k-1} \left(\sum_s s_k \right) = \frac{3}{3-1} \left(\frac{152.03}{254.41} \right) = 0.8964
\]

CTT: Internal Consistency Reliability

- Coefficient Alpha can also be defined as:

\[
\alpha = \frac{k}{k-1} \left(\frac{s_{total}^2 - \sum s_i^2}{s_{total}^2} \right)
\]

- \(s_{total}^2\) is the composite variance (if items were summed)
- \(s_i^2\) is variance for each item
- \(k\) is the number of items

CTT: Internal Consistency Reliability

- Using the same continuous items X, Y and Z
- The covariance matrix is:

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>55.83</td>
<td>29.52</td>
<td>30.33</td>
</tr>
<tr>
<td>Y</td>
<td>29.52</td>
<td>17.49</td>
<td>16.15</td>
</tr>
<tr>
<td>Z</td>
<td>30.33</td>
<td>16.15</td>
<td>29.06</td>
</tr>
</tbody>
</table>

- The total variance is 254.41
- The sum of all the variances is 102.38

\[
\alpha = \frac{k}{k-1} \left(\frac{s_{total}^2 - \sum s_i^2}{s_{total}^2} \right) = \frac{3}{3-1} \left(\frac{254.41-102.38}{254.41} \right) = 0.8964
\]
CTT: Internal Consistency Reliability

- From SPSS

***** Method 1 (space saver) will be used for this analysis *****

RELIABILITY ANALYSIS - SCALE (ALPHA)

Reliability Coefficients
N of Cases = 100.0 N of Items = 3
Alpha = .8964

CTT: Internal Consistency Reliability

- Coefficient Alpha is considered a lower-bound estimate of the reliability of continuous items
- It was developed by Cronbach in the 50’s but is based on an earlier formula by Kuder and Richardson in the 30’s that tackled internal consistency for dichotomous (yes/no, right/wrong) items

Detour 2: Dichotomous Items

- If Y is a dichotomous item:
 - P = proportion of successes OR items answer correctly
 - Q = proportion of failures OR items answer incorrectly
 - \(\bar{y} = P \), observed proportion of successes
 - \(s_y^2 = PQ \)
Kuder and Richardson developed the KR$_{20}$ that is defined as
\[
\alpha = \frac{k}{k-1} \left(\frac{s^2_{total} - \sum pq}{s^2_{total}} \right)
\]
- Where pq is the variance for each dichotomous item
- The KR$_{21}$ is a quick and dirty estimate of the KR$_{20}$

What if you’re not using a test but instead observing individual’s behaviors as a psychological assessment tool?
- How can we tell if the judge’s (assessor’s) are reliable?

Typically a set of criteria are established for judging the behavior and the judge is trained on the criteria.
- Then to establish the reliability of both the set of criteria and the judge, multiple judges rate the same series of behaviors.
- The correlation between the judges is the typical measure of reliability.
- But, couldn’t they agree by accident? Especially on dichotomous or ordinal scales?
CTT: Reliability of Observations

- Kappa is a measure of inter-rater reliability that controls for chance agreement
- Values range from -1 (less agreement than expected by chance) to +1 (perfect agreement)
- +.75 “excellent”
- .40 - .75 “fair to good”
- Below .40 “poor”

Standard Error of Measurement

- So far we’ve talked about the standard error of measurement as the error associated with trying to estimate a true score from a specific test
- This error can come from many sources
- We can calculate it’s size by:
 \[s_{\text{meas}} = s \sqrt{1 - r} \]
 - s is the standard deviation; r is reliability

Standard Error of Measurement

- Using the same continuous items X, Y and Z
- The total variance is 254.41
- s = SQRT(254.41) = 15.95
- \(\alpha = .8964 \)

\[s_{\text{meas}} = 15.95 \times \sqrt{1 - .8964} = 5.13 \]
CTT: The Prophecy Formula

- How much reliability do we want?
- Typically we want values above .80
- What if we don’t have them?
- The Spearman-Brown can be algebraically manipulated to achieve

\[j = \frac{r_d (1 - r_o)}{r_o (1 - r_d)} \]

* \(j \) = # of tests at the current length.
* \(r_d \) = desired reliability, \(r_o \) = observed reliability

CTT: The Prophecy Formula

- Using the same continuous items X, Y and Z
- \(\alpha = .8964 \)
- What if we want a .95 reliability?

\[j = \frac{r_d (1 - r_o)}{r_o (1 - r_d)} = \frac{.95(1 - .8964)}{.8964(1 - .95)} = \frac{.0984}{.0448} = 2.2 \]

- We need a test that is 2.2 times longer than the original
- Nearly 7 items to achieve .95 reliability

CTT: Attenuation

- Correlations are typically sought at the true score level but the presence of measurement error can cloud (attenuate) the size the relationship

- We can correct the size of a correlation for the low reliability of the items.

- Called the Correction for Attenuation
Correction for attenuation is calculated as:

\[\hat{r}_{12} = \frac{r_{12}}{\sqrt{r_{11}r_{22}}} \]

- \(\hat{r}_{12} \) is the corrected correlation
- \(r_{12} \) is the uncorrected correlation
- \(r_{11} \) and \(r_{22} \) the reliabilities of the tests

For example, X and Y are correlated at .45, X has a reliability of .8 and Y has a reliability of .6, the corrected correlation is

\[\hat{r}_{12} = \frac{r_{12}}{\sqrt{r_{11}r_{22}}} = \frac{.45}{\sqrt{.8 \times .6}} = \frac{.45}{\sqrt{.48}} = .65 \]