Correlation and Regression

Cal State Northridge
$\Psi 427$
Ainsworth

Major Points - Correlation

\square Questions answered by correlation
\qquad
\square Scatterplots \qquad
\square An example
\square The correlation coefficient \qquad
\square Other kinds of correlations
\square Factors affecting correlations
\square Testing for significance \qquad
\qquad

The Question

\qquad
\square Are two variables related? \qquad
-Does one increase as the other increases?
-e. g. skills and income
\qquad
aDoes one decrease as the other increases?
-e. g. health problems and nutrition
\square How can we get a numerical measure of \qquad the degree of relationship?

Scatterplots

\square AKA scatter diagram or scattergram.
\square Graphically depicts the relationship between two variables in two dimensional space.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Direct Relationship

\qquad

An Example

\square Does smoking cigarettes increase systolic blood pressure?
\square Plotting number of cigarettes smoked per day against systolic blood pressure
\qquad -Fairly moderate relationship -Relationship is positive

Trend?

Smoking and BP

\square Note relationship is moderate, but real.
\qquad
\square Why do we care about relationship?
\qquad
-What would conclude if there were no relationship?
\qquad
-What if the relationship were near perfect? -What if the relationship were negative?
\qquad
\qquad
\qquad
\qquad

Heart Disease and Cigarettes

\square Data on heart disease and cigarette \qquad smoking in 21 developed countries (Landwehr and Watkins, 1987)
\square Data have been rounded for computational convenience.
-The results were not affected.
\qquad
\qquad
\qquad
\qquad
\qquad

The Data

Surprisingly, the U.S. is the first country on the list--the country with the highest consumption and highest mortality.

Country	Cigarettes	CHD
1	11	26
2	9	21
3	9	24
4	9	21
5	8	19
6	8	13
7	8	19
8	6	11
9	6	23
10	5	15
11	5	13
12	5	4
13	5	18
14	5	12
15	5	3
16	4	11
17	4	15
18	4	6
19	3	13
20	3	4
21	3	14

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Scatterplot of Heart Disease

\qquad
\square CHD Mortality goes on ordinate (Y axis) \qquad -Why?
\square Cigarette consumption on abscissa (X axis) \qquad -Why?
\square What does each dot represent?
\square Best fitting line included for clarity
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What Does the Scatterplot Show?

\qquad
\square As smoking increases, so does coronary
\qquad heart disease mortality.
\square Relationship looks strong
\square Not all data points on line. \qquad
aThis gives us "residuals" or "errors of prediction" \qquad
-To be discussed later

\qquad
\qquad
\qquad
\qquad

Types of Correlation

\square Positive correlation
aHigh values of X tend to be associated with high values of Y.
aAs X increases, Y increases
\qquad

Negative correlation
a High values of X tend to be associated with \qquad low values of Y.
-As X increases, Y decreases \qquad
\square No correlation
\square No consistent tendency for values on Y to \qquad increase or decrease as X increases

Correlation Coefficient

\qquad
\square A measure of degree of relationship. \qquad

- Between 1 and - 1
\square Sign refers to direction.
\qquad
\square Based on covariance
- Measure of degree to which large scores on X go with large scores on Y, and small scores on X go with small scores on Y
- Think of it as variance, but with 2 variables instead of 1 (What does that mean??) \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Covariance

\square Remember that variance is:
$\operatorname{Var}_{X}=\frac{\sum(X-\bar{X})^{2}}{N-1}=\frac{\Sigma(X-\bar{X})(X-\bar{X})}{N-1}$
\square The formula for co-variance is:

$$
\operatorname{Cov}_{X Y}=\frac{\Sigma(X-\bar{X})(Y-\bar{Y})}{N-1}
$$

\square How this works, and why?
\square When would $\operatorname{cov}_{X Y}$ be large and positive? Large and negative?

Example	Country	x (cig.)	Y (CHD)	($X-\overline{\bar{X}}$)	$(Y-\bar{Y})$	($X-\bar{X}){ }^{(Y-\bar{Y}}$)
	${ }^{1}$	${ }^{11}$	26	5.05	11.48	57.97
	$\stackrel{2}{2}$	9	${ }^{21}$	(6.488	19,76 2801
	${ }^{3}$	9	$\stackrel{24}{24}$	($\stackrel{9.48}{9.48}$	28.91 1976
	4	9	${ }^{21}$	${ }^{3.05}$	${ }^{6.48}$	19.76
	5	8	19	${ }_{\text {ce. }}^{\text {2.05 }}$	${ }_{4}^{4.48}$	9.18
	${ }^{6}$	${ }_{8}^{8}$	$\stackrel{13}{19}$		${ }_{\text {-1.52 }}^{4.48}$	-
	8	${ }^{6}$	11	$\stackrel{\text { 20.05 }}{0.05}$	-3.32	-0.18
	9	6	23 15 15	-0.05	8.48	0.42
	11	5	${ }_{13}^{13}$	${ }_{\text {-0.05 }}$	${ }_{-1.52}$	1.44
	12	5	4	${ }^{-0.95}$	-10.52	9.99
	13	5	18	${ }^{-0.95}$	3.48	-3.31
	14 15 15	5	${ }^{12}$	${ }_{\text {-0.95 }}^{-0.05}$	${ }_{\text {-2.52 }}^{-1152}$	2.39
	15 16 18	${ }_{4}$		--0.95	$\stackrel{-11.52}{-3.52}$	10.94 6.86
	17	4	15	-1.95	0.48	-0.94
	18	4	${ }_{6}^{6}$	${ }^{-1.95}$	${ }^{-8.52}$	16.61
	$\begin{array}{r}19 \\ 20 \\ \hline\end{array}$	${ }_{3}^{3}$	$\frac{13}{4}$	${ }_{-2.295}^{-2.95}$	- ${ }_{\text {-1.52 }}^{1052}$	4.48 3103
	20 21 1	${ }_{3}^{3}$	14	$\stackrel{-2.95}{-2.95}$	$\stackrel{-10.52}{ }$	$\stackrel{31.03}{1.53}$
	$\begin{gathered} \text { Mean } \\ \text { SD } \end{gathered}$	${ }_{2.33}^{5.95}$	${ }_{\substack{14.52 \\ 6.69}}$			1.52

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example
$\operatorname{Cov}_{\text {cig \&CHD }}=\frac{\Sigma(X-\bar{X})(Y-\bar{Y})}{N-1}=\frac{222.44}{21-1}=11.12$
\square What the heck is a covariance?
\square I thought we were talking about
correlation?

Correlation Coefficient

Pearson's Product Moment Correlation \square Symbolized by r
-Covariance \div (product of the 2 SDs)

$$
r=\frac{\operatorname{Cov}_{X Y}}{s_{X} s_{Y}}
$$

\square Correlation is a standardized covariance

Calculation for Example

\qquad
$\square \operatorname{Cov}_{X Y}=11.12$
$\square s_{X}=2.33$
$\square s_{Y}=6.69$

$$
r=\frac{\operatorname{cov}_{X Y}}{s_{X} s_{Y}}=\frac{11.12}{(2.33)(6.69)}=\frac{11.12}{15.59}=.713
$$

Example

\qquad
-Correlation = . 713 \qquad
\square Sign is positive \qquad aWhy?
-If sign were negative \qquad -What would it mean? -Would not alter the degree of relationship. \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Phi coefficient (Φ)
aused with two dichotomous scales.
Duses the same Pearson formula

Attractiveness	Date?
0	0
1	0
1	1
1	1
0	0
1	1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Factors Affecting r

\qquad \square Range restrictions
aLooking at only a small portion of the total scatter plot (looking at a smaller portion of the scores' variability) decreases r.
\square Reducing variability reduces r
\square Nonlinearity

- The Pearson r (and its relatives) measure the degree of linear relationship between two variables \qquad
alf a strong non-linear relationship exists, r will provide a low, or at least inaccurate measure of the true relationship.

Factors Affecting r

\qquad
\square Heterogeneous subsamples
aEveryday examples (e.g. height and weight
\qquad using both men and women)
\square Outliers
-Overestimate Correlation \qquad
-Underestimate Correlation \qquad
\qquad
\qquad

Countries With Low Consumptions \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Testing Correlations	
${ }^{36}$	
	\square So you have a correlation. Now what?
	$\square \mathrm{In}$ terms of magnitude, how big is big?
	-Small correlations in large samples are "big."
	- Large correlations in small samples aren't always "big."
	\square Depends upon the magnitude of the correlation coefficient
	AND
	\square The size of your sample.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Testing r

\square Population parameter $=\rho$
\qquad
\square Null hypothesis $H_{0}: \rho=0$ \qquad aTest of linear independence
-What would a true null mean here? \qquad -What would a false null mean here?
\square Alternative hypothesis $\left(H_{1}\right) \rho \neq 0$ aTwo-tailed
\qquad
\qquad
\qquad

Tables of Significance

\qquad
\square We can convert r to t and test for \qquad significance:

$$
t=r \sqrt{\frac{N-2}{1-r^{2}}}
$$

\square Where DF $=\mathrm{N}-2$

Tables of Significance

- In our example r was .71

$$
\square N-2=21-2=19
$$

$$
t=r \sqrt{\frac{N-2}{1-r^{2}}}=.71 * \sqrt{\frac{19}{1-.71^{2}}}=.71 * \sqrt{\frac{19}{.4959}}=6.90
$$

\square T-crit (19) $=2.09$
\square Since 6.90 is larger than 2.09 reject $\rho=0$.
\qquad

Computer Printout
\square Printout gives test of significance.
Correlations

		CIGARET	CHD
CIGARET	Pearson Correlation	1	$.713^{* *}$
	Sig. (2-tailed)	.	.000
	N	21	21
CHD	Pearson Correlation	$.713^{* *}$	1
	Sig. (2-tailed)	.000	.
	N	21	21
. Correlation is significant at the 0.01 level (2-tailed).			

Linear Regression
\square A technique we use to predict the most likely score on one variable from those on another variable
\square Uses the nature of the relationship (i.e. correlation) between two variables to enhance your prediction

\quad Linear Regression: Parts
\square
$\square \mathrm{Y}-$ the variables you are predicting
ai.e. dependent variable
$\square \mathrm{X}$ - the variables you are using to predict
ai.e. independent variable
$\square \hat{\mathrm{Y}}$ - your predictions (also known as Y^{\prime})

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why Do We Care?

45
\square We may want to make a prediction.
\square More likely, we want to understand the relationship.
-How fast does CHD mortality rise with a \qquad one unit increase in smoking?
aNote: we speak about predicting, but often don't actually predict.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Y - the variables you are predicting
ai.e. dependent variable
Di.e. independent variable
$\hat{\mathrm{Y}}$ - your predictions (also known as Y^{\prime})

An Example
ם Cigarettes and CHD Mortality again ם Data repeated on next slide - We want to predict level of CHD mortality in a country averaging 10 cigarettes per day.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Data	County Cigaetes CHO		
	$\frac{1}{2}$	$\stackrel{11}{9}$	${ }^{26}$
	${ }_{4}$	9	${ }_{21}^{24}$
Based on the data we have	${ }^{5}$	$\stackrel{8}{8}$	${ }^{19}$
what would we predict the	${ }^{7}$	${ }_{8}^{8}$,
rate of CHD be in a country	-8	6	$\stackrel{11}{11}$
that smoked 10 cigarettes on	- 10	S 	${ }^{13}$
average?	- 12	5 5	+ ${ }_{18}^{4}$
First, we need to establish a	$\stackrel{14}{15}$	5	12
prediction of CHD from	$\stackrel{1}{16}$	$\stackrel{5}{4}$	
smoking...	${ }^{17}$	4	${ }^{15}$
	19	3	${ }^{13}$
	1-1	${ }_{3}$	${ }_{14}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Regression Line
$\quad \square$ Formula
$\hat{Y}=b X+a$
\quada $=$ the predicted value of Y (e.g. CHD mortality) $\square X=$ the predictor variable (e.g. average cig./adult/country)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Regression Coefficients
\square "Coefficients" are a and b
$\square b=$ slope
aChange in predicted Y for one unit change
in X
$\square a=$ intercept
avalue of \hat{Y} when $X=0$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square Slope $\quad b=\frac{\operatorname{cov}_{X Y}}{s_{X}^{2}}$ or $b=r\left[\frac{s_{y}}{s_{x}}\right]$ or $b=\frac{N \sum X Y-\sum X \sum Y}{\left[N \sum X^{2}-\left(\sum X\right)^{2}\right]}$
-Intercept

$$
a=\bar{Y}-b \bar{X}
$$

\qquad

For Our Data
$\square \square \square \operatorname{Cov}_{X Y}=11.12$
$\square \mathrm{~s}^{2}=2.33^{2}=5.447$
$\square b=11.12 / 5.447=2.042$
$\square a=14.524-2.042 * 5.952=2.32$
\square See SPSS printout on next slide
Answers are not exact duue to rounding error and desirie to match
SPSS.

\qquad
\qquad
$\square \operatorname{Cov}_{X Y}=11.12$
$\square s^{2} x=2.33^{2}=5.447$ \qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Note:

${ }^{54} \quad \square$
\square The values we obtained are shown on printout.
\square The intercept is the value in the B column labeled "constant" \qquad
\square The slope is the value in the B column labeled by name of predictor variable. \qquad
\qquad
\qquad

Making a Prediction
asecond, once we know the relationship
we can predict
$\hat{Y}=b X+a=2.042 X+2.367$
$\hat{Y}=2.042 * 10+2.367=22.787$
\square We predict 22.77 people $/ 10,000$ in a
country with an average of $10 \mathrm{C} / \mathrm{A} / \mathrm{D}$
will die of CHD

Accuracy of Prediction

- Finnish smokers smoke 6 C/A/D
\square We predict:

$$
\begin{aligned}
& \hat{Y}=b X+a=2.042 X+2.367 \\
& \hat{Y}=2.042 * 6+2.367=14.619
\end{aligned}
$$

- They actually have 23 deaths $/ 10,000$
- Our error ("residual") =
$23-14.619=8.38$
a a large error
56

Residuals

\square When we predict \hat{Y} for a given X, we will sometimes be in error.
$\square Y-\hat{Y}$ for any X is a an error of estimate
\qquad
\square Also known as: a residual
\square We want to $\Sigma(Y-\hat{Y})$ as small as possible. \qquad
\square BUT, there are infinitely many lines that can do this.
\square Just draw ANY line that goes through the mean of the X and Y values. \qquad
\square Minimize Errors of Estimate... How?

Minimizing Residuals
\square Again, the problem lies with this definition of the mean:
\quadSo, how do we get rid of the 0's? \square Square them.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Regression Line:
A Mathematical Definition
\square The regression line is the line which when
drawn through your data set produces the
smallest value of:
$\sum_{\text {(}}(Y-\hat{Y})^{2}$
\square Called the Sum of Squared Residual or
SSresidual Regression line is also called a "least squares line."

Summarizing Errors of Prediction

\quad| Residual variance |
| :--- |
| םThe variability of predicted values |

$s_{Y-\hat{Y}}^{2}=\frac{\Sigma\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{N-2}=\frac{S S_{\text {residual }}}{N-2}$
\qquad ed values

$$
s_{Y-\hat{Y}}^{2}=\frac{\Sigma\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{N-2}=\frac{S S_{\text {residual }}}{N-2}
$$

Standard Error of Estimate
\square Standard error of estimate םThe standard deviation of predicted values
$s_{Y-\hat{Y}}=\sqrt{\frac{\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{N-2}}=\sqrt{\frac{S S_{\text {residual }}}{N-2}}$
\square A common measure of the accuracy of
our predictions
$\square W e$ want it to be as small as possible.

\qquad
\qquad
\qquad
\qquad
\qquad our predictions
-We want it to be as small as possible.

Regression and Z Scores
\square When your data are standardized (linearly
transformed to z-scores), the slope of the
regression line is called β
\square NO NOT confuse this β with the β
associated with type Il errors. They're
different.
\square When we have one predictor, $r=\beta$
$\square z_{y}=\beta z_{x}$, since A now equals 0

Partitioning Variability

```
\squareSums of square deviations
    \squareTotal }\quadS\mp@subsup{S}{\mathrm{ total }}{}=\sum(Y-\overline{Y}\mp@subsup{)}{}{2
    \squareRegression }\quadS\mp@subsup{S}{\mathrm{ regression }}{}=\sum(\hat{Y}-\overline{Y}\mp@subsup{)}{}{2
    \squareResidual we already covered
            SS
\squareSS total }=\mp@subsup{SS}{\mathrm{ regression }}{}+S\mp@subsup{S}{\mathrm{ residual }}{
```

	Partitioning Variability
\square Degrees of freedom	
-Total	
-dff $\mathrm{fotal}=\mathrm{N}-1$	
\square Regression	
- dfregression $^{\text {a }}$ number of predictors	
\square Residual	
- df $\mathrm{resisidual}=\mathrm{df}_{\text {fotal }}-\mathrm{df} \mathrm{f}_{\text {regesesion }}$	
$\square d f_{\text {total }}=d f_{\text {regression }}+d f_{\text {residual }}$	

Partitioning Variability
Variance (or Mean Square) -Total Variance $-s_{\text {total }}^{2}=S S_{\text {total }} / d f_{\text {total }}$ -Regression Variance $\boxed{\\|} \mathrm{s}^{2}{ }_{\text {regression }}=S S_{\text {regression }} / \mathrm{df}_{\text {regression }}$ - Residual Variance $\square \mathrm{s}^{2}{ }_{\text {residual }}=S S_{\text {residual }} / \mathrm{df}_{\text {residual }}$

\qquad
\qquad

-Total Variance

- $\mathrm{s}_{\text {total }}^{2}=\mathrm{SS}_{\text {total }} / \mathrm{df}_{\text {total }}$
\square Regression Variance
\qquad
\qquad
\qquad
-Residual Variance
\qquad
\qquad

Country	X (Cig.)	Y (CHD)	Y^{\prime}	(Y - Y')	$\left(\mathrm{Y}-\mathrm{Y}^{\prime}\right)^{2}$	(Y^{\prime} - Ybar)	(Y - Ybar)
1	11	26	24.829	1.171	1.371	106.193	131.699
2	9	21	20.745	0.255	0.065	38.701	41.939
3	9	24	20.745	3.255	10.595	38.701	89.795
${ }^{80} 4$	9	21	20.745	0.255	0.065	38.701	41.939
5	8	19	18.703	0.297	0.088	17.464	20.035
6	8	13	18.703	-5.703	32.524	17.464	2.323
7	8	19	18.703	0.297	0.088	17.464	20.035
8	6	11	14.619	-3.619	13.097	0.009	12.419
9	6	23	14.619	8.381	70.241	0.009	71.843
10	5	15	12.577	2.423	5.871	3.791	0.227
11	5	13	12.577	0.423	0.179	3.791	2.323
12	5	4	12.577	-8.577	73.565	3.791	110.755
13	5	18	12.577	5.423	29.409	3.791	12.083
14	5	12	12.577	-0.577	0.333	3.791	6.371
15	5	3	12.577	-9.577	91.719	3.791	132.803
16	4	11	10.535	0.465	0.216	15.912	12.419
17	4	15	10.535	4.465	19.936	15.912	0.227
18	4	6	10.535	-4.535	20.566	15.912	72.659
19	3	13	8.493	4.507	20.313	36.373	2.323
20	3	4	8.493	-4.493	20.187	36.373	110.755
21	3	14	8.493	5.507	30.327	36.373	0.275
Mean 5.952 14.524 SD 2.334 6.690 0.04 440.757 454.307 Sum 895.247 $\mathrm{Y}^{\prime}=\left(2.04^{*} \mathrm{X}\right)+2.37$							

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

${ }_{69} S S_{\text {Toata }}=\sum(Y-\bar{Y})^{2}=895.247 ; d f_{\text {otal }}=21-1=20$
$S S_{\text {regression }}=\sum(\hat{Y}-\bar{Y})^{2}=454.307 ; d f_{\text {regression }}=1$ (only 1 predictor)
$S S_{\text {residual }}=\sum(Y-\hat{Y})^{2}=440.757 ; d f_{\text {residual }}=20-1=19$ \qquad
$s_{\text {toata }}^{2}=\frac{\sum(Y-\bar{Y})^{2}}{N-1}=\frac{895.247}{20}=44.762$ \qquad
$s_{\text {regression }}^{2}=\frac{\sum(\hat{Y}-\bar{Y})^{2}}{1}=\frac{454.307}{1}=454.307$ \qquad
$S_{\text {residalal }}^{2}=\frac{\sum(Y-\hat{Y})^{2}}{N-2}=\frac{440.757}{19}=23.198$
Note $: \sqrt{s_{\text {residual }}^{2}}=s_{Y-\hat{\gamma}}$

Coefficient of Determination
\square It is a measure of the percent of
predictable variability
$r^{2}=$ the correlation squared
or
$r^{2}=\frac{S S_{\text {regression }}}{S S_{Y}}$
\square The percentage of the total variability in
Y explained by X

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad incidence of CHD mortality is associated with variability in smoking.

Coefficient of Alienation
םIt is defined as $1-r^{2}$ or
$1-r^{2}=\frac{S S_{\text {residual }}}{S S_{Y}}$
\square Example
$1-.508=.492$
$1-r^{2}=\frac{S S_{\text {residual }}}{S S_{Y}}=\frac{440.757}{895.247}=.492$

$\mathrm{r}^{2}, \mathrm{SS}$ and $\mathrm{s}_{\mathrm{Y}-\mathrm{Y}}$
$\square \mathrm{r}^{2} * \mathrm{SS}_{\text {total }}=\mathrm{SS}_{\text {regression }}$
$\square\left(1-\mathrm{r}^{2}\right) * \mathrm{SS}_{\text {total }}=\mathrm{SS}_{\text {residual }}$
\square We can also use r^{2} to calculate the
standard error of estimate as:
$s_{Y-\hat{Y}}=s_{y} \sqrt{\left(1-r^{2}\right)\left(\frac{N-1}{N-2}\right)}=6.690^{*} \sqrt{(.492)\left(\frac{20}{19}\right)}=4.816$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Testing Overall Model

\qquad

- We can test for the overall prediction of
\qquad the model by forming the ratio: \qquad $\frac{s_{\text {regression }}^{2}}{s_{\text {residual }}^{2}}=F$ statistic
- If the calculated F value is larger than a tabled value (F -Table) we have a significant prediction

Testing Overall Model

\square	Example $\quad \frac{s_{\text {regression }}^{2}}{s_{\text {residual }}^{2}}=\frac{454.307}{23.198}=19.594$
\square	F-Table -F critical is found using 2 things $\mathrm{df}_{\text {regression }}$ (numerator) and $\mathrm{df}_{\text {residual. }}$ (demoninator)
\square	F-Table our $\mathrm{F}_{\text {crit }}(1,19)=4.38$
\square	$19.594>4.38$, significant overall
\square	Should all sound familiar...

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Testing Slope and Intercept
The regression coefficients can be tested for significance \square Each coefficient divided by it's standard error equals a t value that can also be looked up in a t-table \square Each coefficient is tested against 0

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Testing the Slope
\square With only 1 predictor, the standard error for the slope is: $\qquad s e_{b}=\frac{S_{Y-\hat{Y}}}{S_{X} \sqrt{N-1}}$ \square For our Example: $s e_{b}=\frac{4.816}{2.334 \sqrt{21-1}}=\frac{4.816}{10.438}=.461$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square These are given in computer printout as a t test.

Coefficients ${ }^{3}$						
Madel		Unstandardized Coefficients		$\begin{aligned} & \text { Standardi } \\ & \text { zed } \\ & \text { Coefficien } \end{aligned}$ ts	t	Sig.
		日	Std. Error	Beta		
1	(Constant)	2.367	2.941		805	431
	cigarette Consumption per Adult per Day	2.042	461	713	4.426	000

\qquad
\qquad

Testing
\& The t values in the second from right
column are tests on slope and intercept.
\square The associated p values are next to
them.
\square The slope is significantly different from
zero, but not the intercept.
\square Why do we care?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| Testing |
| :--- | :--- |
| \square What does it mean if slope is not
 significant?
 aHow does that relate to test on r ? |
| \square What if the intercept is not significant? |
| \square Does significant slope mean we predict |
| quite well? |

