Correlation and Regression

Cal State Northridge ¥427 Ainsworth

Major Points - Correlation

- $\hfill\square$ Questions answered by correlation
- $\ \ \square \ Scatterplots$
- 🗆 An example
- $\hfill\square$ The correlation coefficient
- $\hfill\square$ Other kinds of correlations
- $\hfill\square$ Factors affecting correlations
- $\hfill\square$ Testing for significance

The Question

- □ Are two variables related?
 - Does one increase as the other increases?e. g. skills and income
 - ■Does one decrease as the other increases? ■e. g. health problems and nutrition
- □ How can we get a numerical measure of the degree of relationship?

Scatterplots

- \square AKA scatter diagram or scattergram.
- Graphically depicts the relationship between two variables in two dimensional space.

An Example

- Does smoking cigarettes increase systolic blood pressure?
- Plotting number of cigarettes smoked per day against systolic blood pressure
 Fairly moderate relationship
 Relationship is positive

Smoking and BP

- □ Note relationship is moderate, but real.
- □ Why do we care about relationship?
 - ■What would conclude if there were no relationship?
 - ■What if the relationship were near perfect?
 - lacksquare What if the relationship were negative?

Heart Disease and Cigarettes

- Data on heart disease and cigarette smoking in 21 developed countries (Landwehr and Watkins, 1987)
- Data have been rounded for computational convenience.

■The results were not affected.

The Data

Surprisingly, the U.S. is the first country on the list--the country with the highest consumption and highest mortality.

Scatterplot of Heart Disease

- □ CHD Mortality goes on ordinate (Y axis) ■Why?
- Cigarette consumption on abscissa (X axis)

□Why?

- □ What does each dot represent?
- $\hfill\square$ Best fitting line included for clarity

What Does the Scatterplot Show?

- □ As smoking increases, so does coronary heart disease mortality.
- □ Relationship looks strong
- \square Not all data points on line.
 - ■This gives us "residuals" or "errors of prediction"
 - ■To be discussed later

Correlation

- \square Co-relation
- $\hfill\square$ The relationship between two variables
- □ Measured with a correlation coefficient
- Most popularly seen correlation coefficient: Pearson Product-Moment Correlation

Types of Correlation

- Positive correlation
 High values of X tend to be associated with high values of Y.
 - ■As X increases, Y increases
- Negative correlation
 High values of X tend to be associated with low values of Y.
 - ■As X increases, Y decreases
- \square No correlation
- No consistent tendency for values on Y to increase or decrease as X increases

Correlation Coefficient

- \square A measure of degree of relationship.
- □ Between 1 and -1
- $\hfill\square$ Sign refers to direction.
- Based on covariance
 - Measure of degree to which large scores on X go with large scores on Y, and small scores on X go with small scores on Y
 - Think of it as variance, but with 2 variables instead of 1 (What does that mean??)

	Country	X (Cig.)	Y (CHD)	$(X - \overline{X})$	$(Y - \overline{Y})$	$(X - \overline{X}) * (Y - \overline{Y})$
	1	11	26	5.05	11.48	57.97
	2	9	21	3.05	6.48	19.76
	3	9	24	3.05	9.48	28.91
	4	9	21	3.05	6.48	19.76
	5	8	19	2.05	4.48	9.18
	6	8	13	2.05	-1.52	-3.12
	7	8	19	2.05	4.48	9.18
	8	6	11	0.05	-3.52	-0.18
	9	6	23	0.05	8.48	0.42
I.	10	5	15	-0.95	0.48	-0.46
Example	11	5	13	-0.95	-1.52	1.44
	12	5	4	-0.95	-10.52	9.99
	13	5	18	-0.95	3.48	-3.31
	14	5	12	-0.95	-2.52	2.39
	15	5	3	-0.95	-11.52	10.94
	16	4	11	-1.95	-3.52	6.86
	17	4	15	-1.95	0.48	-0.94
	18	4	6	-1.95	-8.52	16.61
	19	3	13	-2.95	-1.52	4.48
	20	3	4	-2.95	-10.52	31.03
	21	3	14	-2.95	-0.52	1.53
	Mean	5.95	14.52			
	SD	2.33	6.69			
	Sum					222.44

Example

- □ Correlation = .713
- \square Sign is positive
- **□**Why?
- \square If sign were negative
- ■What would it mean?
- $\ensuremath{\blacksquare}$ Would not alter the degree of relationship.

Factors Affecting r

- Looking at only a small portion of the total scatter plot (looking at a smaller portion of the scores' variability) decreases r.
- Reducing variability reduces r
- □ Nonlinearity
 - ■The Pearson r (and its relatives) measure the degree of **linear** relationship between two variables
 - ■If a strong non-linear relationship exists, r will provide a low, or at least inaccurate measure of the true relationship.

Factors Affecting r

- $\hfill\square$ Heterogeneous subsamples
 - Everyday examples (e.g. height and weight using both men and women)
- □ Outliers
 - ■Overestimate Correlation
 - ■Underestimate Correlation

- $\hfill\square$ So you have a correlation. Now what?
- □ In terms of magnitude, how big is big?
- Small correlations in large samples are "big."
 Large correlations in small samples aren't always "big."
- Depends upon the magnitude of the correlation coefficient

AND

36

 $\hfill\square$ The size of your sample.

Testing r

Population parameter = ρ
 Null hypothesis H₀: ρ = 0
 Test of linear independence
 What would a true null mean here?
 What would a false null mean here?

Tables of Significance

We can convert r to t and test for significance:

$$t = r \sqrt{\frac{N-2}{1-r^2}}$$

 \square Where DF = N-2

Tables of Significance

$$\Box \text{ In our example } r \text{ was } .71$$

$$\Box \text{ N-2} = 21 - 2 = 19$$

$$t = r\sqrt{\frac{N-2}{1-r^2}} = .71^* \sqrt{\frac{19}{1-.71^2}} = .71^* \sqrt{\frac{19}{.4959}} = 6.90$$

$$\Box \text{ T-crit (19)} = 2.09$$

$$\Box \text{ Since } 6.90 \text{ is larger than } 2.09 \text{ reject } \rho = 0.$$

What is regression?

42

- □ How do we predict one variable from another?
- How does one variable change as the other changes?

□ Influence

Linear Regression

43

44

- □ A technique we use to predict the most likely score on one variable from those on another variable
- Uses the nature of the relationship (i.e. correlation) between two variables to enhance your prediction

Linear Regression: Parts

- $\hfill Y$ the variables you are predicting $\begin{tabular}{ll} \blacksquare i.e. dependent variable \\ \end{tabular}$
- $\hfill X$ the variables you are using to predict $\hfill \mathbf{\Box}$ i.e. independent variable
- $\Box \hat{Y}$ your predictions (also known as Y')

Why Do We Care?

- 45
 - $\hfill\square$ We may want to make a prediction.
 - □ More likely, we want to understand the relationship.
 - How fast does CHD mortality rise with a one unit increase in smoking?
 - ■Note: we speak about predicting, but often don't actually predict.

An Example

46

47

- □ Cigarettes and CHD Mortality again
- Data repeated on next slide
- We want to predict level of CHD mortality in a country averaging 10 cigarettes per day.

The Data

Based on the data we have what would we predict the rate of CHD be in a country that smoked 10 cigarettes on average?

First, we need to establish a prediction of CHD from smoking...

Country	Cigarettes	CHD
1	11	26
2	9	21
3	9	24
4	9	21
5	8	19
6	8	13
7	8	19
8	6	11
9	6	23
10	5	15
11	5	13
12	5	4
13	5	18
14	5	12
15	5	3
16	4	11
17	4	15
18	4	6
19	3	13
20	3	4
21	3	14

Regression Line

🗆 Formula

$$\hat{Y} = bX + a$$

- \hat{Y} = the predicted value of Y (e.g. CHD mortality)
- X = the predictor variable (e.g. average cig./adult/country)

For Our Data

52

 $\Box \operatorname{Cov}_{XY} = 11.12$ $\Box s_X^2 = 2.33^2 = 5.447$ $\Box b = 11.12/5.447 = 2.042$ $\Box a = 14.524 - 2.042*5.952 = 2.32$ $\Box \operatorname{See} SPSS \text{ printout on next slide}$

Answers are not exact due to rounding error and desire to match SPSS.

Note:

- □ The values we obtained are shown on printout.
- \Box The intercept is the value in the *B* column labeled "constant"
- □ The slope is the value in the *B* column labeled by name of predictor variable.

Making a Prediction

55

□ Second, once we know the relationship we can predict $\hat{Y} = bX + a = 2.042X + 2.367$ $\hat{Y} = 2.042*10 + 2.367 = 22.787$ □ We predict 22.77 people/10,000 in a

country with an average of 10 C/A/D will die of CHD

Residuals

58

59

- When we predict Ŷ for a given X, we will sometimes be in error.
- $\Box Y \hat{Y} \text{ for any X is a an error of estimate}$ $\Box \text{ Also known as: a residual}$
- \square We want to $\Sigma(Y\text{-}\hat{Y})$ as small as possible.
- $\hfill\square$ BUT, there are infinitely many lines that can do this.
- Just draw ANY line that goes through the mean of the X and Y values.
- □ Minimize Errors of Estimate... How?

Minimizing Residuals

□ Again, the problem lies with this definition of the mean:

$$\sum (X - \overline{X}) = 0$$

□ So, how do we get rid of the O's? □ Square them.

Regression Line:

A Mathematical Definition

The regression line is the line which when drawn through your data set produces the smallest value of:

$$\sum (Y - \hat{Y})^2$$

- \square Called the Sum of Squared Residual or $\mathsf{SS}_{\mathsf{residual}}$
- □ Regression line is also called a "least squares line." 60

□ Residual variance □ The variability of predicted values $\sum (V + \hat{V})^2 + CC$

$$s_{Y-\hat{Y}}^{2} = \frac{\Sigma(Y_{i} - \hat{Y}_{i})^{2}}{N-2} = \frac{SS_{residual}}{N-2}$$

Country	X (Cig.)	Y (CHD)			$(Y - Y')^2$	
1	11	26	24.829		1.371	- I
2	9	21	20.745		0.065	Example
3	9	24	20.745		10.595	•
63 ⁴	9	21	20.745		0.065	
5	8	19	18.703	0.297	0.088	$\Sigma (Y - \hat{Y})^2 = 440.756$
6	8	13	18.703	-5.703	32.524	$s_{Y-\hat{Y}}^2 = \frac{\Sigma(Y_i - \hat{Y}_i)^2}{N-2} = \frac{440.756}{21-2} = 23.198$
7	8	19	18.703	0.297	0.088	N-2 21-2
8	6	11	14.619	-3.619	13.097	
9	6	23	14.619	8.381	70.241	$s_{Y-\hat{Y}} = \sqrt{\frac{\Sigma(Y_i - \hat{Y}_i)^2}{N-2}} = \sqrt{\frac{440.756}{21-2}} =$
10	5	15	12.577	2.423	5.871	$s_{Y-\hat{Y}} = \sqrt{\frac{-(c_i - c_i)}{N-2}} = \sqrt{\frac{-(c_i - c_i)}{21-2}} =$
11	5	13	12.577	0.423	0.179	
12	5	4	12.577	-8.577	73.565	$=\sqrt{23.198}=4.816$
13	5	18	12.577	5.423	29.409	
14	5	12	12.577	-0.577	0.333	
15	5	3	12.577	-9.577	91.719	
16	4	11	10.535	0.465	0.216	
17	4	15	10.535	4.465	19.936	
18	4	6	10.535	-4.535	20.566	
19	3	13	8.493	4.507	20.313	
20	3	4	8.493	-4.493	20.187	
21	3	14	8.493	5.507	30.327	
Mean	5.952	14.524				
SD	2.334	6.690				
Sum				0.04	440.757	

Regression and Z Scores

- \square When your data are standardized (linearly transformed to z-scores), the slope of the regression line is called β
- \square DO NOT confuse this β with the β associated with type II errors. They're different.
- \square When we have one predictor, $r=\beta$
- $\Box Z_y = \beta Z_x$, since A now equals 0

Country	X (Cig.)	Y (CHD)	Y'	(Y - Y')	$(Y - Y')^2$	(Y' - Ybar)	(Y - Ybar)	
1	11	26	24.829	1.171	1.371	106.193	131.699	
2	9	21	20.745	0.255	0.065	38.701	41.939	
3	9	24	20.745	3.255	10.595	38.701	89.795	
68 ₄	9	21	20.745	0.255	0.065	38.701	41.939	
5	8	19	18.703	0.297	0.088	17.464	20.035	
6	8	13	18.703	-5.703	32.524	17.464	2.323	
7	8	19	18.703	0.297	0.088	17.464	20.035	
8	6	11	14.619	-3.619	13.097	0.009	12.419	
9	6	23	14.619	8.381	70.241	0.009	71.843	
10	5	15	12.577	2.423	5.871	3.791	0.227	Example
11	5	13	12.577	0.423	0.179	3.791	2.323	•
12	5	4	12.577	-8.577	73.565	3.791	110.755	
13	5	18	12.577	5.423	29.409	3.791	12.083	
14	5	12	12.577	-0.577	0.333	3.791	6.371	
15	5	3	12.577	-9.577	91.719	3.791	132.803	
16	4	11	10.535	0.465	0.216	15.912	12.419	
17	4	15	10.535	4.465	19.936	15.912	0.227	
18	4	6	10.535	-4.535	20.566	15.912	72.659	
19	3	13	8.493	4.507	20.313	36.373	2.323	
20	3	4	8.493	-4.493	20.187	36.373	110.755	
21	3	14	8.493	5.507	30.327	36.373	0.275	
Mean	5.952	14.524						
SD	2.334	6.690						
Sum				0.04	440.757	454.307	895.247	

It is a measure of the percent of predictable variability

 r^2 = the correlation squared

or

70

$$r^2 = \frac{SS_{regression}}{SS_Y}$$

 The percentage of the total variability in Y explained by X

*r*² for our example

$$r = .713$$

$$r = .713^{2} = .508$$

$$r^{2} = \frac{SS_{regression}}{SS_{Y}} = \frac{454.307}{895.247} = .507$$

$$r^{2} = \frac{SS_{regression}}{SS_{Y}} = \frac{454.307}{895.247} = .507$$

$$r^{2} = \frac{SS_{regression}}{SS_{Y}} = \frac{454.307}{895.247} = .507$$

Coefficient of Alienation
TZ
D It is defined as
$$1 - r^2$$
 or
 $1 - r^2 = \frac{SS_{residual}}{SS_Y}$
D Example
 $1 - .508 = .492$
 $1 - r^2 = \frac{SS_{residual}}{SS_Y} = \frac{440.757}{895.247} = .492$

r², SS and s_{Y-Y}
r³
r² * SS_{total} = SS_{regression}
r (1 - r²) * SS_{total} = SS_{residual}
We can also use r² to calculate the
standard error of estimate as:

$$s_{y-\hat{y}} = s_y \sqrt{(1-r^2)(\frac{N-1}{N-2})} = 6.690^* \sqrt{(.492)(\frac{20}{19})} = 4.816$$

74

□ We can test for the overall prediction of the model by forming the ratio: $s_{regression}^2$

$$\frac{s_{regression}}{s_{residual}^2} = F$$
 statistic

 If the calculated F value is larger than a tabled value (F-Table) we have a significant prediction

Testing Slope and Intercept

- The regression coefficients can be tested for significance
- Each coefficient divided by it's standard error equals a t value that can also be looked up in a t-table
- \square Each coefficient is tested against 0

Testing

80

- The t values in the second from right column are tests on slope and intercept.
- The associated p values are next to them.
- □ The slope is significantly different from zero, but not the intercept.
- □ Why do we care?

Testing

- What does it mean if slope is not significant?
 - ■How does that relate to test on *r*?
- □ What if the intercept is not significant?
- Does significant slope mean we predict quite well?