

Statistics AGAIN?

• What do we want to do with statistics?

- Organize and Describe patterns in data
- Taking incomprehensible data and converting it to:Tables that summarize the data

2

- Graphs
- Extract (i.e. INFER) meaning from data
 - Infer POPULATION values from SAMPLES
- Hypothesis Testing Groups
- Hypothesis Testing Relation/Prediction

Desc	rip	tives					
• Disorg	ganiz	zed Data					
Comedy	7	Suspense	8	Comedy	7	Suspense	7
Drama	8	Horror	7	Drama	5	Comedy	6
Horror	8	Comedy	5	Drama	3	Drama	3
Suspense	7	Horror	8	Comedy	6	Suspense	6
Horror	8	Comedy	6	Drama	7	Horror	9
Drama	5	Horror	9	Drama	6	Suspense	4
Drama	5	Horror	7	Suspense	3	Suspense	4
Horror	7	Suspense	5	Horror	10	Suspense	5
Horror	9	Suspense	6	Comedy	6	Drama	8
Comedy	7	Comedy	5	Comedy	4	Drama	4
		Psy 427 - C	al State	Northridge			3

Descriptives		
 Reducing and Descri 	bing Data	
Genre	Average Rating	
Comedy	5.9	
Drama	5.4	
Horror	8.2	
Suspense	5.5	
	Cal State Northridge	4

- Inferential statistics:
 - Is a set of procedures to infer information about a population based upon characteristics from samples.
 - Samples are taken from Populations
 - Sample Statistics are used to infer population parameters

	Population	Sample
Definition	The group (people, things, animals, etc.) you are intending to measure or study; they share some common characteristic	A subset of the population; used as a representative of the population
Size	Large to Theoretically Infinite	Substantially Smaller than the population (e.g 1 to (population - 1))
Descriptive Characteristics	Parameters	Statistics
Symbols	Greek	Latin
Mean	μ	\overline{X}
Standard Deviation	σ	s or SD

Inferential

- Sometimes manipulation is not possible
- Is prediction possible?
- Can a relationship be established?
 - E.g., number of cigarettes smoked by per and the likelihood of getting lung cancer,
 - The level of child abuse in the home and the severity of later psychiatric problems.
 - Use of the death penalty and the level of crime.

Psy 427 - Cal State Northridge

Measurement

- Statistical analyses depend upon the measurement characteristics of the data.
- **Measurement** is a process of assigning numbers to constructs following a set of rules.
- We normally measure variables into one of four different levels of measurement:
 - Nominal
 - Ordinal
 - Interval
 - Ratio

Psy 427 - Cal State Northridge

Percentile

$$X_p = (p)(n+1)$$

- Where X_P is the score at the desired percentile, p is the desired percentile (a number between 0 and 1) and n is the number of scores)
- If the number is an integer, than the desired percentile is that number
- If the number is not an integer than you can either round or interpolate; for this class we'll just round (round up when p is below .50 and down when p is above .50)

Psy 427 - Cal State Northridge

Percentile

- Apply the formula $X_p = (p)(n+1)$
 - 1. You'll get a number like 7.5 (think of it as placei.proportion)
 - 2. Start with the value indicated by *place1* (e.g. 7.5, start with the <u>value</u> in the 7th place)
 - 3. Find *place2* which is the next highest place number (e.g. the 8th place) and subtract the value in place from the value in place2, this distance
 - 4. Multiple the *proportion* number by the *distancei* value, this is distance2
 - Add distance2 to the value in place1 and that is the 5. interpolated value

Psy 427 - Cal State Northridge

Psy 427 - Cal State Northridge

Psy 427 - Cal State Northridge

Mea	asure	es of C	entral	ſenden	су
	Measure	Definition	Level of Measurement	Disadvantage	
	Mode	Most frequent value	nom., ord., int./rat.	Crude	
	Median	Middle value	ord., int./rat.	Only two points contribute	
	Mean	Arithmetic average	int./rat.	Affected by skew	
		Psy 427 - Cal State N	orthridge		31

How do scores spread out?

- •Variability
 - •Tell us how far scores spread out
 - •Tells us how the degree to which scores deviate from the central tendency

Measure of Var	iability	
Measure	Definition	Related to:
Range	Largest - Smallest	Mode
Interquartile Range Semi-Interquartile Range	X ₇₅ - X ₂₅ (X ₇₅ - X ₂₅)/2	Median
Average Absolute Deviation	$\frac{\sum X_i - \bar{X} }{N}$	
Variance	$\frac{\sum_{i=1}^{N} (X_i - \overline{X})^2}{N - 1}$	Mean
Standard Deviation	$\sqrt{rac{\sum\limits_{i=1}^{N} \left(X_i - \overline{X} ight)^2}{N-1}}$	
Psy 427 - Cal State North	hridge	36

Variance

- The average squared distance of each score from the mean
- Also known as the **mean square**
- \bullet Variance of a sample: $s^{\scriptscriptstyle 2}$
- \bullet Variance of a population: $\sigma^{\scriptscriptstyle 2}$

Psy 427 - Cal State Northridge

44

Psy 427 - Cal State Northridge

Why N-1?

• When using a sample (which we always do) we want a statistic that is the best estimate of the parameter

$$E\left(\frac{\sum (X_i - \overline{X})^2}{N - 1}\right) = \sigma^2 \qquad E\left(\sqrt{\frac{\sum (X_i - \overline{X})^2}{N - 1}}\right) = \sigma$$
Pey 427 · Cal State Northridge 45

Term	Terms that Describe	Example
	left side is mirror image of right side	
"Positively skewed"	right tail is longer then the left	
"Negatively skewed"	left tail is longer than the right	
"Unimodal"	one highest point	
"Bimodal"	two high points	
"Normal"	unimodal, symmetric, asymptotic Psy 427 - Cal State Northridge	

Normal Distribution (Characteristics)

- Bell shaped, symmetrical, unimodal
- Mean, median, mode all equal
- No real distribution is perfectly normal
- But, many distributions are approximately normal, so normal curve statistics apply
- Normal curve statistics underlie procedures in most inferential statistics.

52

54

Psy 427 - Cal State Northridge

The standard normal distribution

- •A normal distribution with the added properties that the mean = 0 and the s = 1
- Converting a distribution into a standard normal means converting raw scores into Z-scores

Properties of Z-Scores

- Z-score indicates how many SD's a score falls above or below the mean.
- Positive z-scores are above the mean.
- Negative z-scores are below the mean.
- Area under curve \rightarrow probability
- Z is continuous so can only compute probability for range of values

Psy 427 - Cal State Northridge

Properties of Z-Scores

- Most z-scores fall between -3 and +3 because scores beyond 3sd from the mean
- Z-scores are standardized scores → allows for easy comparison of distributions

What about negative Z values?

- Since the normal curve is symmetric, areas beyond, between, and below positive z scores are identical to areas beyond, between, and below negative z scores.
- There is no such thing as negative area!

Norms and Norm-Referenced Tests

- Norm statistical representations of a population (e.g. mean, median).
- Norm-referenced test (NRT) Compares an individual's results on the test with the preestablished norm
- Made to compare test-takers to each other
- I.E. The Normal Curve

Psy 427 - Cal State Northridge

Norms and Norm-Referenced Tests
Normally rather than testing an entire population, the norms are inferred from a representative sample or group (inferential stats revisited).
Norms allow for a better understanding of

- Norms allow for a better understanding of how an individual's scores compare with the group with which they are being compared
- Examples: WAIS, SAT, MMPI, Graduate Record Examination (GRE) Psy427 - Cal State Northridge

Criterion-Referenced Tests

- Criterion-referenced tests (CRTs) intended to measure how well a person has mastered a specific knowledge set or skill
- Cutscore point at which an examinee passes if their score exceeds that point; can be decided by a panel or by a single instructor
- Criterion the domain in which the test is designed to assess

```
Psy 427 - Cal State Northridge
```