
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
Descriptives

- Disorganized Data

Comedy	7	Suspense	8	Comedy	7	Suspense	7
Drama	8	Horror	7	Drama	5	Comedy	6
Horror	8	Comedy	5	Drama	3	Drama	3
Suspense	7	Horror	8	Comedy	6	Suspense	6
Horror	8	Comedy	6	Drama	7	Horror	9
Drama	5	Horror	9	Drama	6	Suspense	4
Drama	5	Horror	7	Suspense	3	Suspense	4
Horror	7	Suspense	5	Horror	10	Suspense	5
Horror	9	Suspense	6	Comedy	6	Drama	8
Comedy	7	Comedy	5	Comedy	4	Drama	4
	Psy 427- Cal State Nothtridge						
				3			

\qquad
\qquad

- Reducing and Describing Data

Genre	Average Rating
Comedy	5.9
Drama	5.4
Horror	8.2
Suspense	5.5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Tnferential
 - Measured constructs can be assessed for co-relation (where the "coefficient of correlation" varies between -1 to +1)
 $-1 \quad 0$

- "Regression analysis" can be used to assess whether a measured construct predicts the values on another measured construct (or multiple) (e.g., the level of crime given the level of death penalty usage).

Measurement

- Ratio Scale Measurement
- If we have a true ratio scale, where o represents an a complete absence of the variable in question, then we form a meaningful ratio among the scale values such as:

$$
4 / 2=2
$$

- However, if o is not a true absence of the variable, then the ratio $4 / 2=2$ is not meaningful.

- A percentile is the score at which a specified percentage of scores in a distribution fall below
- To say a score 53 is in the 75th percentile is to say that 75% of all scores are less than 53
- The percentile rank of a score indicates the percentage of scores in the distribution that fall at or below that score.
- Thus, for example, to say that the percentile rank of 53 is 75 , is to say that 75% of the scores on the exam are less than 53 .

- What percent of the scores fall below a particular score?

$$
P R=\frac{(\text { Rank }-.5)}{\mathrm{N}} \times 100
$$

- Percentile Ranks are the Ranks not the scores

$$
X_{P}=(p)(n+1)
$$

- Where X_{p} is the score at the desired percentile, p is the desired percentile (a number between o and 1) and n is the number of scores)
- If the number is an integer, than the desired percentile is that number
- If the number is not an integer than you can either round or interpolate; for this class we'll just round (round up when p is below 50 and down when p is above .50)

\qquad
- Apply the formula $X_{P}=(p)(n+1)$

1. You'll get a number like 7.5 (think of it as placeı.proportion)
2. Start with the value indicated by placel (e.g. 7.5, start with the value in the $7^{\text {th }}$ place)
3. Find place 2 which is the next highest place number (e.g. the $8^{\text {th }}$ place) and subtract the value in placer from the value in place2, this distances
4. Multiple the proportion number by the distancen value, this is distance2
5. Add distances to the value in places and that is the interpolated value

- Example $1: 25^{\text {th }}$ percentile:
$\{1,4,9,16,25,36,49,64,81\}$
- $\mathrm{X}_{25}=(.25)(9+1)=2.5$
- places $=2$, proportion $=.5$
- Value in placeı $=4$
- Value in placez $=9$
- distance $=9-4=5$
- distance $2=5$ * $.5=2.5$
- Interpolated value $=4+2.5=6.5$
- 6.5 is the $25^{\text {th }}$ percentile
\qquad
\qquad
\qquad

- To calculate Quartiles you simply find the scores the correspond to the 25,50 and 75 percentiles. \qquad
- $\mathrm{Q}_{1}=\mathrm{P}_{25}, \mathrm{Q}_{2}=\mathrm{P}_{50}, \mathrm{Q}_{3}=\mathrm{P}_{75}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

- Only used for interval \& ratio data.

$$
\text { Mean }=M_{X}=\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

- Major advantages:
- The sample value is a very good estimate of the population value.

\qquad
- Regardless of numbers of scores, distributions can be described with \qquad three pieces of info: \qquad
- Central Tendency
- Variability
-Shape (Normal, Skewed, etc.)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
- When calculated for the entire population

$$
\sigma^{2}=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{N}
$$

Standard Deviation

- Variance is in squared units
- What about regular old units
- Standard Deviation = Square root of the variance

$$
s=\sqrt{\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{N-1}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Degrees of Freedom - Usually referred to as $d f$	
- Number of observations minus the number of restrictions	
$\ldots+\ldots+\ldots+\ldots$ - 4 free spaces	
$2+\ldots+\ldots+\ldots=10-3$ free spaces	
$2+4+\ldots+\ldots=10-2$ free spaces	
$2+4+3+\ldots=10$	
Last space is not free!! Only 3 dfs.	
	${ }_{4}$

\qquad
Degrees of Freedom
\qquad

- Number of observations minus the number of restrictions

\qquad
\qquad
- Regardless of numbers of scores, distributions can be described with three pieces of info:
\qquad
- Central Tendency
- Variability
-Shape (Normal, Skewed, etc.)
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]- The distribution relies on only the mean and \mathbf{s}
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

- Z-score indicates how many SD's a \qquad score falls above or below the mean.
- Positive z -scores are above the mean. \qquad
- Negative z-scores are below the mean.
- Area under curve \rightarrow probability
$\bullet \mathrm{Z}$ is continuous so can only compute probability for range of values
\qquad

\qquad
\qquad
\qquad

Have \rightarrow Need Chart

When rough estimating isn't enough

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

 What about negative Z values?

\qquad
\qquad

- Since the normal curve is symmetric, areas beyond, between, and below \qquad positive z scores are identical to areas beyond, between, and below negative z \qquad scores.
- There is no such thing as negative area!

- Norm - statistical representations of a population (e.g. mean, median).
\qquad
- Norm-referenced test (NRT) - Compares an individual's results on the test with the pre- \qquad established norm
- Made to compare test-takers to each other \qquad
- I.E. - The Normal Curve \qquad
\qquad
Norms and Norm-Referenced Tests
- Normally rather than testing an entire
population, the norms are inferred from a
representative sample or group (inferential
stats revisited).
- Norms allow for a better understanding of
how an individual's scores compare with the
group with which they are being compared
- Examples: WAIS, SAT, MMPI, Graduate
Record Examination (GRE)
Psy 427 -cas stae Nothirige

\qquad
\qquad
- Criterion-referenced tests (CRTs) - intended to measure how well a person has mastered a specific \qquad knowledge set or skill
- Cutscore - point at which an examinee passes if their score exceeds that point; can be decided by a
\qquad panel or by a single instructor
- Criterion - the domain in which the test is designed to assess
\qquad
\qquad

[^0]: Normal Distribution (Ch

 - Horizontal Axis = possible
 - Vertical Axis = density (i.e.
 probability or proportion)
 - Defined as
 $\quad f(X)=\frac{1}{\sigma \sqrt{2 \pi}}(e)^{-(X-\mu)^{2} / 2 \sigma^{2}}$

 $$
 f\left(X_{i}\right)=\frac{1}{(s) \sqrt{2 *(3.14159265)}} *(2.71828183)^{-\left(X_{i}-\bar{X}\right)^{2} / 2 s^{2}}
 $$

 (Characteristics)
 -
 Vertical Axis = density (i.e. $f(\mathrm{X})$ related to

