Hypothesis Tests: Two Related Samples

AKA Dependent Samples Tests
AKA Matched-Pairs Tests

4320
Ainsworth

Major Points

- Related samples? Matched Samples?
- Difference scores?
- An example
- *t* tests on difference scores
- Advantages and disadvantages
- Effect size

2

Review: Hypothesis Testing

- 1. State Null Hypothesis
- 2. Alternative Hypothesis
- α . Decide on α (usually .05)
- Decide on type of test (distribution; z, t, etc.)
- 5. Find critical value & state decision rule
- 6. Calculate test
- 7. Apply decision rule

•	
•	
•	
-	
•	
•	
•	
•	

Related/Dependent Samples

- Samples can be related for 2 basic reasons
- First, they are the same people in both samples
 - This is usually called either repeated measures or within subjects design

4

Related/Dependent Samples

- Samples can be related for 2 basic reasons
- Second, individuals in the two sample are so similar they are essentially the same person
 - Often called a matched-pairs design

5

Related/Dependent Samples

- Repeated Measures
- The same participants give us data on two measures
 - e.g. Before and After treatment
 - IQ levels before IQPLUS, IQ levels after IQPLUS

Sample #1 Pre-Treatment	Treatment	Sample #1 Post-Treatment
----------------------------	-----------	-----------------------------

Related/Dependent Samples

- Matched-Pairs Design
- Two-separate groups of participants; but each individual in sample 1 is matched (on aspects other than DV) with an individual in sample 2

Related/Dependent Samples

- With dependent samples, someone high on one measure is probably high on other.
- Scores in the two samples are highly correlated
 - Since they are correlated cannot treat them as independent (next chapter)
 - However the scores can be manipulated (e.g. find the differences between scores)

8

Difference Scores

- Calculate difference between first and second score
 - e. g. Difference = Before After
- Base subsequent analysis on difference scores
 - Ignoring Before and After data

An Example

- Therapy for rape victims
 - Foa, Rothbaum, Riggs, & Murdock (1991)
- One group received Supportive Counseling
- Measured post-traumatic stress disorder symptoms before and after therapy

10

Hypotheses?

- $H_{0: \mu_{\text{symptoms/before}}} \le \mu_{\text{symptoms/after}}$
- $H_{1:}$ $\mu_{\text{symptoms/before}} > \mu_{\text{symptoms/after}}$ OR
- $H_{0: \mu_{symptoms/before}} \mu_{symptoms/after} \le 0$
- $H_{1:}$ $\mu_{\text{symptoms/before}}$ $\mu_{\text{symptoms/after}} > 0$
- H_0 : $\mu_{\text{(symptoms/before symptoms/after)}} \le 0$
- $H_{1:} \mu_{\text{(symptoms/before symptoms/after)}} > 0$

11

Supportive Therapy for PTSD

Person	Pre -	Post -
. 0.00	Treatment	Treatment
1	21	15
2	24	15
3	21	17
4	26	20
5	32	17
6	27	20
7	21	8
8	25	19
9	18	10

Mean 23.889 15.667 SD 4.197 4.243

Supportive Therapy for PTSD

- We want to compare the means to see if the mean after is significantly larger than the mean before
- However, we can't perform the test this way (reasons I'll explain in the next chapter)
- Since scores in the 2 conditions come from the same people we can use that to our advantage (subtract post from pre)

Calculating a difference score

Person	Pre -	Post -	Difference
Person	Treatment	Treatment	(Pre - Post)
1	21	15	6
2	24	15	9
3	21	17	4
4	26	20	6
5	32	17	15
6	27	20	7
7	21	8	13
8	25	19	6
9	18	10	8
Mean	23.889	15.667	8.222

4.243

Supportive Therapy for PTSD

Person	Difference (Pre - Post)				
1	6				
3	9				
3	4				
4	6				
5	15				
6	7				
7	13				
8	6				
9	8				
Mean	8.222				

SD

4.197

SD 3.598

We now have a single sample problem identical to chapter 12.

3.598

These are change scores for each person.

Results

- The Supportive Counseling group decreased number of symptoms
- Was this enough of a change to be significant?
- Before and After scores are not independent.
 - See raw data (subjects high stayed high,
 - r = .637 (obviously dependent samples)

Results

- If no change, mean of differences should be zero
 - So, test the obtained mean of difference scores (we'll call D) against $\mu = 0$.
 - Then, use same test as in Chapter 12.
- We don't know σ, so use s and solve for t

t_D test

 \overline{D} and s_D are the mean and standard deviation of the difference scores.

Standard Error of D is
$$s_{\bar{D}} = \frac{s_D}{\sqrt{n}}$$

$$t_D = \frac{\overline{D} - \mu}{s_{\overline{D}}} = \frac{8.222 - 0}{3.598 / 9} = \frac{8.222}{1.199} = 6.86$$

$$df = n - 1 = 9 - 1 = 8$$

t test

- 8 df, α = .05, 1-tailed \rightarrow t_{crit} = 1.860
- We calculated t = 6.86
- Since 6.86 > 1.860, reject H_0
- Conclude that the mean number of symptoms after therapy was less than mean number before therapy.
- Supportive counseling seems to help reduce symptoms

SPSS Printout

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair	PRE	23.89	9	4.197	1.399
1	POST	15.67	9	4.243	1.414

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	PRE & POST	9	.637	.065

Paired Samples Test

1			Paire	ed Difference	8				
					95% Confidence Interval of the				
				Std. Error	Differ	ence			
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	PRE - POST	8.22	3.598	1.199	5.46	10.99	6.856	8	.000

20

Related/Dependent Samples

- Advantages
 - Eliminate subject-to-subject variability
 - Control for extraneous variables
 - Need fewer subjects
- Disadvantages
 - Order effects
 - Carry-over effects
 - Subjects no longer naive
 - Change may just be a function of time
 - Sometimes not logically possible

-		

Effect Size Again

- We could simply report the difference in means.
 - Difference = 8.22
 - But the units of measurement have no particular meaning to us—Is 8.22 large?
- We could "scale" the difference by the size of the standard deviation.

22

Effect Size

$$d = \frac{\mu_1 - \mu_2}{\sigma} = \frac{\mu_{Before} - \mu_{After}}{\sigma_{Before}}$$
$$= \frac{23.89 - 15.67}{4.20} = \frac{8.22}{4.20} = 1.96$$

Note: This effect size d is not the same thing as D (difference) It's called d here because it is in reference to Cohen's d

23

Effect Size

- The difference is approximately 2 standard deviations, which is very large.
- Why use standard deviation of Before scores?
- Notice that we substituted statistics for parameters.