Multiple Regression

Ψ320 Ainsworth

More Hypothesis Testing

- What we really want to know:
 - Is the relationship in the population we have selected between X & Y strong enough that we can use the relationship to make predictions about Y based on X.
- What we actually know:
 - The extent of the relationship between X and Y made on a calculations of a single sample drawn from our population.

More Hypothesis Testing

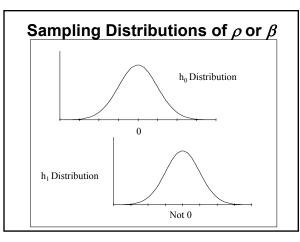
- The big question:
 - Is the relationship between X & Y in our sample SO STRONG, that it is unlikely that the relationship in the population is 0.
- We know:
 - Sampling Error will give us measures of the relationship (r and b) that will vary from sample to sample.
- BUT, if the true relationship is not zero, most of our r's and b's will be non-zero.

_		
-		
-		
-		—
-		
-		
-		
-		
-		
_		
_		
-		
-		
_		
-		
-		
-		
-		
-		
_		

More Hypothesis Testing

• So, hypothesis testing on regression is of the form:

Hypotheses for correlation:


$$h_0: \rho = 0$$
 or $h_0: \rho \ge 0$ or $h_0: \rho \le 0$

$$h_1: \rho = 0$$
 or $h_1: \rho < 0$ or $h_1: \rho > 0$

Hypotheses for regression:

$$h_0: \beta = 0$$
 or $h_0: \beta \ge 0$ or $h_0: \beta \le 0$

$$h_1: \beta = 0$$
 or $h_1: \beta < 0$ or $h_1: \beta > 0$

Multiple Regression

- Using several predictors to predict a single dependent variable
- Hypothesis Testing involves:
 - -Finding a measure of overall fit
 - -Testing each predictor

An Example

- Study by Kliewer et al. (1998) on effect of violence on internalizing behavior
 - -What is internalizing behavior?
- Predictors
 - Degree of witnessing violence
 - Measure of life stress
 - -Measure of social support

Violence and Internalizing

• Children 8-12 years in high-violence areas

 Hypothesis: violence and stress lead to internalizing behavior.

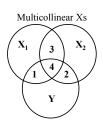
Co	rre	ıla	tic	n	s

	Pearson Correlation						
	Witnessed Violence	Social Support	Stress	Internalizing			
Witnessed Violence	1	.080	.048	.201*			
Social Support	.080	1	078	173			
Stress	.048	078	1	.268**			
Internalizing	.201*	173	.268**	1			

^{*} Correlation is significant at the 0.05 level (2-tailed).

** Correlation is significant at the 0.01 level (2-tailed).

- Note: both Stress and Witnessing Violence are significantly correlated with Internalizing.
- · Note: that predictors are largely independent of each other.


Multiple Regression Terms

- Multiple Correlation Coefficient
 - -also known as the Multiple Correlation or R
 - The correlation of Y with a set of X variables.
- Multicollinearity
 - What happens when your set of X variables are correlated with each other?
 - Complicates analysis
 - For this class assume Xs are independent

-		
-		

Multiple Correlation

- Directly analogous to simple r
- Always capitalized (e.g. R)
- · Always positive
 - -Correlation of \hat{Y} with observed Y
 - where \hat{Y} is computed from regression equation
 - It is the correlation between all Xs and Y simultaneously
 - -Often reported as R2 instead of R

 R^2 Independent Xs X_1 Y Y

- $\mathbf{X}_1, \mathbf{X}_2$, and Y represent the variables. The numbers reflect variance overlap as follows:
 - 1. Proportion of Y uniquely predicted by X₁
 - 2. Proportion of Y uniquely predicted by X₂
 - 3. Proportion of variance shared by \mathbf{X}_1 and \mathbf{X}_2
 - 4. Proportion of Y redundantly predicted by X₁ and X₂

R^2

• When Xs are independent

$$R^2 = \sum_{k=1}^{\# \text{ of } Xs} (r_{Y.X_k})^2$$
; then R is simply $\sqrt{R^2}$

· When Xs are multicollinear

$$R^2 \neq \sum_{k=1}^{\# \text{ of } Xs} (r_{Y.X_k})^2$$

R² for the Example

• Assuming Independent Xs

$$R^{2} = \sum_{k=1}^{\# \text{ of } Xs} (r_{Y,X_{k}})^{2} = .201^{2} + -.173^{2} + .268^{2} =$$

$$R^2 = .040 + .030 + .072 = .143$$
 and $R = \sqrt{.143} = .378$

• From SPSS

Model Summaryb

			Adjusted	Std. Error of
Model	R	R Square	R Square	the Estimate
1	.368ª	.136	.108	2.21737

a. Predictors: (Constant), STRESS, VIOLWIT, SOCSUPP

Regression Coefficients

- Multiple Slopes (1 for each X) and one intercept.
- With independent Xs the Bs are calculated in the same way as in simple regression
- · The intercept is now

$$a = \overline{Y} - b_1 \overline{X}_1 + b_2 \overline{X}_2 + b_3 \overline{X}_3 + \cdots$$

Slopes and Intercept

Coefficients

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	.517	1.288		.401	.689
	VIOLWIT	.038	.018	.202	2.111	.037
	SOCSUPP	076	.043	170	-1.766	.081
	STRESS	.272	.106	.245	2.560	.012

a. Dependent Variable: INTERNAL

$$\hat{Y} = b_1 X_1 + b_2 X_2 + b_3 X_3 + a$$

= (0.038*ViolWit) - (0.076*SocSupp) + (0.272*Stress) + 0.517

b. Dependent Variable: INTERNAL

Interpretation

- Note slope for Witness and Stress are positive, but slope for Social Support is negative.
 - -Does this make sense?
- If you had two subjects with identical Stress and SocSupp, a one unit increase in Witness would produce 0.038 unit increase in Internal.

Interpretation

- The interpretation holds true for other predictors as well
- R^2 has same interpretation as r^2
 - -13.6% of variability in Internal accounted for by variability in Witness, Stress, and SocSupp.

Predictions

Assume a participant's scores were:
 Witness = 35, SocSupp = 20 and
 Stress = 5

 $\hat{Y} = (0.038*ViolWit) - (0.076*SocSupp) + (0.272*Stress) + 0.517$

- = .038(35) .076(20) + .272(5) + 0.517
- =1.33-1.52+1.36+.517
- =1.69
- We would predict 1.69 as the level of Internal for that participant.

Residuals

- Residuals are calculated in the same way as in simple regression
- Error variance and standard error of estimate are also calculated the same way
 - Note: R² is used instead of r² in all formulas using r² and 1- r²

Partitioning Variance

- All of the SS (regression, error and total) are also calculated the same as in simple regression
 - Note: R^2 is used instead of r^2 in all formulas using r^2 and 1- r^2
- Testing for the overall prediction makes more sense now and is not as redundant with the test of the Bs
- As before, $s^2_{regression}/s^2_{residual} = F$

Hypothesis Overall Prediction

 Test of overall prediction and R² given in Analyzing the of Variance as before

ANOVA ^b								
Model	ı	Sum of Squares	df	Mear	Square	F	Sig.	
1	Regression	73.320	3		24.440	4.971	.003ª	
l	Residual	467.090	95	,	4.917			
	Total	540.410	98		<u></u>			
a. p	Predictors: (Cons	tant), STRES	S, VIOLWIT,	SOCS	SUPP			
b. _[Dependent Varial	ole: INTERNA	L.					
			The	se ai	e the v	ariances		

Testing Slopes and Intercept

• Tests on regression coefficients given along with the coefficients.

Coefficients								
	Unstandardized Coefficients B Std. Error		Standardized Coefficients					
			Std. Error	Beta	t	Sig.		
(Constant)		.517	1.288		.401	.689		
VIOLWIT	7	.038	.018	.202	2.111	.037		
SOCSUPP/	rı	076	.043	170	-1.766	.081		
STRESS	1	.272	.106	.245	2.560	.012		

• t test on two slopes are significant
Intercept These are the Bs These are the t-values