

HYPOTHESIS TESTS SO FAR...

- We've discussed
- One-sample t-test
- Dependent Sample t-tests
- Independent Samples t-tests
- One-Way Between Groups ANOVA
- Factorial Between Groups ANOVA
- One-Way Repeated Measures ANOVA
- Correlation
- Linear Regression
- What do all of these tests have in common?

PARAMETRIC VS. NON-PARAMETRIC

- Parametric Tests Statistical tests that involve assumptions about or estimations of population parameters.
 - (what we've been learning)
 - E.g., normal distribution, interval/ratio level measurement, homogeneity of variance
- Nonparametric Tests
 - Also known as distribution-free tests
 - Statistical tests that do not rely on assumptions of distributions or parameter estimates
 - E.g., does not assume interval/ratio, no normality assumption
- (what we're going to be introducing today)

SOME NON-PARAMETRIC TESTS

- Frequency Data
 - Chi-Square (χ^2) Analysis
 - χ^2 Goodness-of-Fit test (one variable)
 - * $\chi^2\,\text{Test}$ of Independence (2 or more variables)
- Non-normal Data (e.g., ordinal)
 - Mann-Whitney U (NP analogue of Independent Samples ttest)
 - Wilcoxon Signed Ranks Tests (NP analogue of Dependent Samples t-test)
 - Kruskal-Wallis One-Way Analysis of Variance (Between)
 - Friedman's Rank Test for K correlated samples (Within)

CHI-SQUARE

- Theχ² Goodness-of-Fit test
 - Used when we have distributions of frequencies across two or more categories on one variable.
- Test determines how well a hypothesized distribution fits an obtained distribution.
- The χ^2 test of independence.
- Used when we compare the distribution of frequencies
 across categories in two or more independent samples.
- Used in a single sample when we want to know whether two categorical variables are related.

CHI-SQUARE GOODNESS OF FIT TEST

• Quarter Tossing

- Probability of Head?
- Probability of Tails?
- How can you tell if a Quarter is unfair when tossed?
- Imagine a flipped a quarter 50 times, what would we expect?

25 25	Heads	Tails
	25	25

CHI-SQU	CHI-SQUARE GOODNESS OF FIT TEST				
• Which of th "fair" coin?	nese scenario	os se	ems probab	le with a	
Heads	Tails		Heads	Tails	
20	30		15	35	
Heads Tails Heads Tails					
10	40		5	45	

CH	CHI-SQUARE GOODNESS OF FIT TEST						
• We o coin	 We can compare it to our expectation about "fair coins 						
		Heads	Tails				
	Observed	17	33				
	Expected	25	25				
	O-E	-8	8				

CHI-SQUARE GOODNESS OF FIT TEST

- We can test to see if our observed frequencies "Fit" our expectations
- \bullet This is the $\chi^2\,Goodness\mbox{-of-Fit}$ test

$$C^{2} = \mathring{a} \frac{(O-E)^{2}}{E}; df = \# categories - 1$$

 This converts the difference between the frequencies we observe and the frequencies we expect to a distribution with known probabilities

CHI-SQUARE GOODNESS OF FIT TEST

- Hypothesis Test
- 1. H_0 : P(heads) = .5
- 2. H₁: P(heads) ≠ .5
- **3**. a = .05
- 4. Type of test = χ^2 goodness-of-fit

CHI SQUARE DISTRIBUTION

5. DF = 2 - 1 = 1;

$$df = 1$$

 $df = 5$
 $df = 10$
 x^2

See Chi-square table $\chi^2(1) = 3.841$; If χ^2 observed is larger than 3.841, reject the null hypothesis

CHI-SQUARE TEST OF INDEPENDENCE

 Used when we want to know if frequency responses of one categorical depend on another categorical variable (sounds like an interaction, right?)

	Pro Choice	Pro Life
Democrats	\uparrow	\downarrow
Republicans	\downarrow	\uparrow

CHI-SQUARE TEST OF INDEPENDENCE

• We compare observed vs. expected frequencies as in the goodness-of-fit test but the expectant frequencies aren't as easy to figure out because of the row and column totals.

	Column 1	Column 2	Column 3	
Row 1				Total R ₁
Row 2				Total R ₂
Row 3				Total R ₃
	Total C ₁	Total C ₂	Total C ₃	Total

CHI-SQUARE TEST OF INDEPENDENCE

• Expectant frequencies for each cell is found by multiplying row and column totals then dividing by the grand total.

$$E = \frac{RxC}{T}$$

CHI-SQUARE TEST OF INDEPENDENCE

• Example: Researchers stood on a corner and watched drivers come to a stop sign. They noted their gender and the type of stop they made.

	Male	Female	
Full Stop	8	15	23
Rolling Stop	17	5	22
No Stop	5	1	6
	30	21	51

CHI SOLI	ARET	EST OI	e inidepi	ENIDE	INCE
CI 11-5Q0.	ANE I.	L31 01			SINCE
	Male	Female	e		
Full Stop	8	15	23		
Rolling Stop	17	5	22		
No Stop	5	1	6		
	30	21	51		
				Male	Female
			Full Stop		
			Rolling Stop		
			No Stop	1	
				30	21

