Epsilon: 1,2 1,2 Lam: 1,2,3 1,2,2 Lead Term of Spoly: -y(2)(1)*y(3)(2)*x(1)(1)*x(1)(2) Divisor: Delta 1,2 1,2 Quotient: -y(1)(2)*y(3)(1) Lead Term of Product: y(1)(2)*y(3)(1)*x(1)(2)*x(2)(1) Lead term is well behaved Divisor: Delta 1,3 1,2 Quotient: y(1)(2)*y(2)(1) Lead Term of Product: -y(1)(2)*y(2)(1)*x(1)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,2 Quotient: -y(1)(1)*y(1)(2) Lead Term of Product: y(1)(1)*y(1)(2)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(1)(1)*x(3)(2) Lead Term of Product: -y(1)(1)*y(2)(2)*x(1)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(2)(1)*x(1)(2)+y(1)(1)*x(2)(2) Lead Term of Product: -y(2)(1)*y(3)(2)*x(1)(1)*x(1)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(2)*y(3)(1)*x(1)(2)+y(2)(1)*y(3)(2)*x(1)(2)+y(1)(2)*y(3)(1)*x(2)(2)-y(1)(1)*y(3)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(3)(2)+y(1)(1)*y(2)(2)*x(3)(2)) - (-y(3)(1)*x(1)(2))*(y(2)(2)*x(1)(1)-y(2)(1)*x(1)(2)-y(1)(2)*x(2)(1)+y(1)(1)*x(2)(2)) ------- Rewrite: -y(2)(1)*y(3)(2)*x(1)(1)*x(1)(2)+y(2)(1)*y(3)(1)*x(1)(2)^2+y(1)(2)*y(3)(1)*x(1)(2)*x(2)(1)-y(1)(2)*y(3)(1)*x(1)(1)*x(2)(2)+y(1)(1)*y(3)(2)*x(1)(1)*x(2)(2)-y(1)(1)*y(3)(1)*x(1)(2)*x(2)(2)+y(1)(2)*y(2)(1)*x(1)(1)*x(3)(2)-y(1)(1)*y(2)(2)*x(1)(1)*x(3)(2) ----------- TeX output: S(\eps{1}{2}{1}{2}, \lam{1}{2}{3}{1}{2}{2}) = (-y_{1, 2} y_{3, 1}) \del{1}{2}{1}{2} +(y_{1, 2} y_{2, 1}) \del{1}{3}{1}{2} +(-y_{1, 1} y_{1, 2}) \del{2}{3}{1}{2} +(-y_{1, 1} x_{3, 2}) \eps{1}{2}{1}{2} +(-y_{2, 1} x_{1, 2}+y_{1, 1} x_{2, 2}) \eps{1}{3}{1}{2} ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,3 1,2,3 Lead Term of Spoly: -y(2)(1)*y(3)(2)*x(1)(1)*x(1)(3) Divisor: Delta 1,2 1,3 Quotient: -y(1)(2)*y(3)(1) Lead Term of Product: y(1)(2)*y(3)(1)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,3 Quotient: y(1)(1)*y(3)(1) Lead Term of Product: -y(1)(1)*y(3)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 1,3 Quotient: y(1)(2)*y(2)(1) Lead Term of Product: -y(1)(2)*y(2)(1)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: -y(1)(1)*y(2)(1) Lead Term of Product: y(1)(1)*y(2)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(1)(1)*y(1)(2) Lead Term of Product: y(1)(1)*y(1)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: y(1)(1)^2 Lead Term of Product: -y(1)(1)^2*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(2)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(2)(1)*x(1)(3)+y(1)(1)*x(2)(3) Lead Term of Product: -y(2)(1)*y(3)(2)*x(1)(1)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(2)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(2)*x(1)(3)+y(1)(2)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(2)*x(3)(3)) - (-y(3)(1)*x(1)(3))*(y(2)(2)*x(1)(1)-y(2)(1)*x(1)(2)-y(1)(2)*x(2)(1)+y(1)(1)*x(2)(2)) ------- Rewrite: -y(2)(1)*y(3)(2)*x(1)(1)*x(1)(3)+y(2)(1)*y(3)(1)*x(1)(2)*x(1)(3)+y(1)(2)*y(3)(1)*x(1)(3)*x(2)(1)-y(1)(1)*y(3)(1)*x(1)(3)*x(2)(2)-y(1)(2)*y(3)(1)*x(1)(1)*x(2)(3)+y(1)(1)*y(3)(2)*x(1)(1)*x(2)(3)+y(1)(2)*y(2)(1)*x(1)(1)*x(3)(3)-y(1)(1)*y(2)(2)*x(1)(1)*x(3)(3) ----------- TeX output: S(\eps{1}{2}{1}{2}, \lam{1}{2}{3}{1}{2}{3}) = (-y_{1, 2} y_{3, 1}) \del{1}{2}{1}{3} +(y_{1, 1} y_{3, 1}) \del{1}{2}{2}{3} +(y_{1, 2} y_{2, 1}) \del{1}{3}{1}{3} +(-y_{1, 1} y_{2, 1}) \del{1}{3}{2}{3} +(-y_{1, 1} y_{1, 2}) \del{2}{3}{1}{3} +(y_{1, 1}^2) \del{2}{3}{2}{3} +(-y_{1, 1} x_{3, 3}) \eps{1}{2}{1}{2} +(-y_{2, 1} x_{1, 3}+y_{1, 1} x_{2, 3}) \eps{1}{3}{1}{2} ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,3 1,2,4 Lead Term of Spoly: -y(2)(1)*y(3)(2)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: -y(1)(2)*y(3)(1) Lead Term of Product: y(1)(2)*y(3)(1)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: y(1)(1)*y(3)(1) Lead Term of Product: -y(1)(1)*y(3)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: y(1)(2)*y(2)(1) Lead Term of Product: -y(1)(2)*y(2)(1)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(1)(1)*y(2)(1) Lead Term of Product: y(1)(1)*y(2)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(1)*y(1)(2) Lead Term of Product: y(1)(1)*y(1)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(1)^2 Lead Term of Product: -y(1)(1)^2*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(2)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(2)*x(1)(1)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(2)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(2)*x(1)(4)+y(1)(2)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(2)*x(3)(4)) - (-y(3)(1)*x(1)(4))*(y(2)(2)*x(1)(1)-y(2)(1)*x(1)(2)-y(1)(2)*x(2)(1)+y(1)(1)*x(2)(2)) ------- Rewrite: -y(2)(1)*y(3)(2)*x(1)(1)*x(1)(4)+y(2)(1)*y(3)(1)*x(1)(2)*x(1)(4)+y(1)(2)*y(3)(1)*x(1)(4)*x(2)(1)-y(1)(1)*y(3)(1)*x(1)(4)*x(2)(2)-y(1)(2)*y(3)(1)*x(1)(1)*x(2)(4)+y(1)(1)*y(3)(2)*x(1)(1)*x(2)(4)+y(1)(2)*y(2)(1)*x(1)(1)*x(3)(4)-y(1)(1)*y(2)(2)*x(1)(1)*x(3)(4) ----------- TeX output: S(\eps{1}{2}{1}{2}, \lam{1}{2}{3}{1}{2}{4}) = (-y_{1, 2} y_{3, 1}) \del{1}{2}{1}{4} +(y_{1, 1} y_{3, 1}) \del{1}{2}{2}{4} +(y_{1, 2} y_{2, 1}) \del{1}{3}{1}{4} +(-y_{1, 1} y_{2, 1}) \del{1}{3}{2}{4} +(-y_{1, 1} y_{1, 2}) \del{2}{3}{1}{4} +(y_{1, 1}^2) \del{2}{3}{2}{4} +(-y_{1, 1} x_{3, 4}) \eps{1}{2}{1}{2} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{3}{1}{2} ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,4 1,2,2 Lead Term of Spoly: -y(2)(1)*y(4)(2)*x(1)(1)*x(1)(2) Divisor: Delta 1,2 1,2 Quotient: -y(1)(2)*y(4)(1) Lead Term of Product: y(1)(2)*y(4)(1)*x(1)(2)*x(2)(1) Lead term is well behaved Divisor: Delta 1,4 1,2 Quotient: y(1)(2)*y(2)(1) Lead Term of Product: -y(1)(2)*y(2)(1)*x(1)(2)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,2 Quotient: -y(1)(1)*y(1)(2) Lead Term of Product: y(1)(1)*y(1)(2)*x(2)(2)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(1)(1)*x(4)(2) Lead Term of Product: -y(1)(1)*y(2)(2)*x(1)(1)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(2)(1)*x(1)(2)+y(1)(1)*x(2)(2) Lead Term of Product: -y(2)(1)*y(4)(2)*x(1)(1)*x(1)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(2)*y(4)(1)*x(1)(2)+y(2)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(2)(2)-y(1)(1)*y(4)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(4)(2)+y(1)(1)*y(2)(2)*x(4)(2)) - (-y(4)(1)*x(1)(2))*(y(2)(2)*x(1)(1)-y(2)(1)*x(1)(2)-y(1)(2)*x(2)(1)+y(1)(1)*x(2)(2)) ------- Rewrite: -y(2)(1)*y(4)(2)*x(1)(1)*x(1)(2)+y(2)(1)*y(4)(1)*x(1)(2)^2+y(1)(2)*y(4)(1)*x(1)(2)*x(2)(1)-y(1)(2)*y(4)(1)*x(1)(1)*x(2)(2)+y(1)(1)*y(4)(2)*x(1)(1)*x(2)(2)-y(1)(1)*y(4)(1)*x(1)(2)*x(2)(2)+y(1)(2)*y(2)(1)*x(1)(1)*x(4)(2)-y(1)(1)*y(2)(2)*x(1)(1)*x(4)(2) ----------- TeX output: S(\eps{1}{2}{1}{2}, \lam{1}{2}{4}{1}{2}{2}) = (-y_{1, 2} y_{4, 1}) \del{1}{2}{1}{2} +(y_{1, 2} y_{2, 1}) \del{1}{4}{1}{2} +(-y_{1, 1} y_{1, 2}) \del{2}{4}{1}{2} +(-y_{1, 1} x_{4, 2}) \eps{1}{2}{1}{2} +(-y_{2, 1} x_{1, 2}+y_{1, 1} x_{2, 2}) \eps{1}{4}{1}{2} ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,4 1,2,3 Lead Term of Spoly: -y(2)(1)*y(4)(2)*x(1)(1)*x(1)(3) Divisor: Delta 1,2 1,3 Quotient: -y(1)(2)*y(4)(1) Lead Term of Product: y(1)(2)*y(4)(1)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,3 Quotient: y(1)(1)*y(4)(1) Lead Term of Product: -y(1)(1)*y(4)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 1,3 Quotient: y(1)(2)*y(2)(1) Lead Term of Product: -y(1)(2)*y(2)(1)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: -y(1)(1)*y(2)(1) Lead Term of Product: y(1)(1)*y(2)(1)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(1)(1)*y(1)(2) Lead Term of Product: y(1)(1)*y(1)(2)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(1)(1)^2 Lead Term of Product: -y(1)(1)^2*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(2)(2)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(2)(1)*x(1)(3)+y(1)(1)*x(2)(3) Lead Term of Product: -y(2)(1)*y(4)(2)*x(1)(1)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(2)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(2)*x(4)(3)) - (-y(4)(1)*x(1)(3))*(y(2)(2)*x(1)(1)-y(2)(1)*x(1)(2)-y(1)(2)*x(2)(1)+y(1)(1)*x(2)(2)) ------- Rewrite: -y(2)(1)*y(4)(2)*x(1)(1)*x(1)(3)+y(2)(1)*y(4)(1)*x(1)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(1)(3)*x(2)(1)-y(1)(1)*y(4)(1)*x(1)(3)*x(2)(2)-y(1)(2)*y(4)(1)*x(1)(1)*x(2)(3)+y(1)(1)*y(4)(2)*x(1)(1)*x(2)(3)+y(1)(2)*y(2)(1)*x(1)(1)*x(4)(3)-y(1)(1)*y(2)(2)*x(1)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{2}{1}{2}, \lam{1}{2}{4}{1}{2}{3}) = (-y_{1, 2} y_{4, 1}) \del{1}{2}{1}{3} +(y_{1, 1} y_{4, 1}) \del{1}{2}{2}{3} +(y_{1, 2} y_{2, 1}) \del{1}{4}{1}{3} +(-y_{1, 1} y_{2, 1}) \del{1}{4}{2}{3} +(-y_{1, 1} y_{1, 2}) \del{2}{4}{1}{3} +(y_{1, 1}^2) \del{2}{4}{2}{3} +(-y_{1, 1} x_{4, 3}) \eps{1}{2}{1}{2} +(-y_{2, 1} x_{1, 3}+y_{1, 1} x_{2, 3}) \eps{1}{4}{1}{2} ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,4 1,2,4 Lead Term of Spoly: -y(2)(1)*y(4)(2)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: -y(1)(2)*y(4)(1) Lead Term of Product: y(1)(2)*y(4)(1)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: y(1)(1)*y(4)(1) Lead Term of Product: -y(1)(1)*y(4)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: y(1)(2)*y(2)(1) Lead Term of Product: -y(1)(2)*y(2)(1)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: -y(1)(1)*y(2)(1) Lead Term of Product: y(1)(1)*y(2)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(1)*y(1)(2) Lead Term of Product: y(1)(1)*y(1)(2)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(1)^2 Lead Term of Product: -y(1)(1)^2*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(2)(2)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(2)*x(1)(1)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(2)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(2)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(2)(2)*x(1)(1)-y(2)(1)*x(1)(2)-y(1)(2)*x(2)(1)+y(1)(1)*x(2)(2)) ------- Rewrite: -y(2)(1)*y(4)(2)*x(1)(1)*x(1)(4)+y(2)(1)*y(4)(1)*x(1)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(1)(4)*x(2)(1)-y(1)(1)*y(4)(1)*x(1)(4)*x(2)(2)-y(1)(2)*y(4)(1)*x(1)(1)*x(2)(4)+y(1)(1)*y(4)(2)*x(1)(1)*x(2)(4)+y(1)(2)*y(2)(1)*x(1)(1)*x(4)(4)-y(1)(1)*y(2)(2)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{2}{1}{2}, \lam{1}{2}{4}{1}{2}{4}) = (-y_{1, 2} y_{4, 1}) \del{1}{2}{1}{4} +(y_{1, 1} y_{4, 1}) \del{1}{2}{2}{4} +(y_{1, 2} y_{2, 1}) \del{1}{4}{1}{4} +(-y_{1, 1} y_{2, 1}) \del{1}{4}{2}{4} +(-y_{1, 1} y_{1, 2}) \del{2}{4}{1}{4} +(y_{1, 1}^2) \del{2}{4}{2}{4} +(-y_{1, 1} x_{4, 4}) \eps{1}{2}{1}{2} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{4}{1}{2} ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,3 1,3,3 Lead Term of Spoly: -y(2)(1)*y(3)(3)*x(1)(1)*x(1)(3) Divisor: Delta 1,2 1,3 Quotient: -y(1)(3)*y(3)(1) Lead Term of Product: y(1)(3)*y(3)(1)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,3 1,3 Quotient: y(1)(3)*y(2)(1) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(2)(3)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(2)(1)*x(1)(3)+y(1)(1)*x(2)(3) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(1)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(3)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(3)*x(3)(3)) - (-y(3)(1)*x(1)(3))*(y(2)(3)*x(1)(1)-y(2)(1)*x(1)(3)-y(1)(3)*x(2)(1)+y(1)(1)*x(2)(3)) ------- Rewrite: -y(2)(1)*y(3)(3)*x(1)(1)*x(1)(3)+y(2)(1)*y(3)(1)*x(1)(3)^2+y(1)(3)*y(3)(1)*x(1)(3)*x(2)(1)-y(1)(3)*y(3)(1)*x(1)(1)*x(2)(3)+y(1)(1)*y(3)(3)*x(1)(1)*x(2)(3)-y(1)(1)*y(3)(1)*x(1)(3)*x(2)(3)+y(1)(3)*y(2)(1)*x(1)(1)*x(3)(3)-y(1)(1)*y(2)(3)*x(1)(1)*x(3)(3) ----------- TeX output: S(\eps{1}{2}{1}{3}, \lam{1}{2}{3}{1}{3}{3}) = (-y_{1, 3} y_{3, 1}) \del{1}{2}{1}{3} +(y_{1, 3} y_{2, 1}) \del{1}{3}{1}{3} +(-y_{1, 1} y_{1, 3}) \del{2}{3}{1}{3} +(-y_{1, 1} x_{3, 3}) \eps{1}{2}{1}{3} +(-y_{2, 1} x_{1, 3}+y_{1, 1} x_{2, 3}) \eps{1}{3}{1}{3} ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,3 1,3,4 Lead Term of Spoly: -y(2)(1)*y(3)(3)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: -y(1)(3)*y(3)(1) Lead Term of Product: y(1)(3)*y(3)(1)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: y(1)(1)*y(3)(1) Lead Term of Product: -y(1)(1)*y(3)(1)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: y(1)(3)*y(2)(1) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(1)(1)*y(2)(1) Lead Term of Product: y(1)(1)*y(2)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(1)^2 Lead Term of Product: -y(1)(1)^2*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(2)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(1)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(3)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(3)*x(3)(4)) - (-y(3)(1)*x(1)(4))*(y(2)(3)*x(1)(1)-y(2)(1)*x(1)(3)-y(1)(3)*x(2)(1)+y(1)(1)*x(2)(3)) ------- Rewrite: -y(2)(1)*y(3)(3)*x(1)(1)*x(1)(4)+y(2)(1)*y(3)(1)*x(1)(3)*x(1)(4)+y(1)(3)*y(3)(1)*x(1)(4)*x(2)(1)-y(1)(1)*y(3)(1)*x(1)(4)*x(2)(3)-y(1)(3)*y(3)(1)*x(1)(1)*x(2)(4)+y(1)(1)*y(3)(3)*x(1)(1)*x(2)(4)+y(1)(3)*y(2)(1)*x(1)(1)*x(3)(4)-y(1)(1)*y(2)(3)*x(1)(1)*x(3)(4) ----------- TeX output: S(\eps{1}{2}{1}{3}, \lam{1}{2}{3}{1}{3}{4}) = (-y_{1, 3} y_{3, 1}) \del{1}{2}{1}{4} +(y_{1, 1} y_{3, 1}) \del{1}{2}{3}{4} +(y_{1, 3} y_{2, 1}) \del{1}{3}{1}{4} +(-y_{1, 1} y_{2, 1}) \del{1}{3}{3}{4} +(-y_{1, 1} y_{1, 3}) \del{2}{3}{1}{4} +(y_{1, 1}^2) \del{2}{3}{3}{4} +(-y_{1, 1} x_{3, 4}) \eps{1}{2}{1}{3} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{3}{1}{3} ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,3 2,3,3 Lead Term of Spoly: -y(2)(2)*y(3)(3)*x(1)(1)*x(1)(3) Divisor: Delta 1,2 1,3 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,3 Quotient: -y(1)(1)*y(3)(3) Lead Term of Product: y(1)(1)*y(3)(3)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: y(1)(3)*y(2)(1) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(3)*x(1)(3)+y(1)(3)*x(3)(3) Lead Term of Product: -y(2)(2)*y(3)(3)*x(1)(1)*x(1)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(1)(2)*x(3)(3) Lead Term of Product: -y(1)(2)*y(2)(3)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1)*x(1)(3)+y(1)(1)*x(2)(3) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(2)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(3)*y(3)(2)*x(1)(3)+y(2)(2)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(2)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(3)) - (-y(3)(2)*x(1)(3))*(y(2)(3)*x(1)(1)-y(2)(1)*x(1)(3)-y(1)(3)*x(2)(1)+y(1)(1)*x(2)(3)) ------- Rewrite: -y(2)(2)*y(3)(3)*x(1)(1)*x(1)(3)+y(2)(1)*y(3)(2)*x(1)(3)^2+y(1)(3)*y(3)(2)*x(1)(3)*x(2)(1)-y(1)(3)*y(3)(2)*x(1)(1)*x(2)(3)+y(1)(2)*y(3)(3)*x(1)(1)*x(2)(3)-y(1)(1)*y(3)(2)*x(1)(3)*x(2)(3)+y(1)(3)*y(2)(2)*x(1)(1)*x(3)(3)-y(1)(2)*y(2)(3)*x(1)(1)*x(3)(3) ----------- TeX output: S(\eps{1}{2}{1}{3}, \lam{1}{2}{3}{2}{3}{3}) = (-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{1}{2}{1}{3} +(-y_{1, 1} y_{3, 3}) \del{1}{2}{2}{3} +(y_{1, 3} y_{2, 1}) \del{1}{3}{2}{3} +(-y_{1, 1} y_{1, 3}) \del{2}{3}{2}{3} +(-y_{3, 3} x_{1, 3}+y_{1, 3} x_{3, 3}) \eps{1}{2}{1}{2} +(-y_{1, 2} x_{3, 3}) \eps{1}{2}{1}{3} +(-y_{2, 1} x_{1, 3}+y_{1, 1} x_{2, 3}) \eps{1}{3}{2}{3} ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,3 2,3,4 Lead Term of Spoly: -y(2)(2)*y(3)(3)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(1)(1)*y(3)(3) Lead Term of Product: y(1)(1)*y(3)(3)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: y(1)(1)*y(3)(2) Lead Term of Product: -y(1)(1)*y(3)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: y(1)(3)*y(2)(1) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(1)(2)*y(2)(1) Lead Term of Product: y(1)(2)*y(2)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(1)*y(1)(2) Lead Term of Product: -y(1)(1)*y(1)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(3)*x(1)(4)+y(1)(3)*x(3)(4) Lead Term of Product: -y(2)(2)*y(3)(3)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(2)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(2)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(3)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(4)) - (-y(3)(2)*x(1)(4))*(y(2)(3)*x(1)(1)-y(2)(1)*x(1)(3)-y(1)(3)*x(2)(1)+y(1)(1)*x(2)(3)) ------- Rewrite: -y(2)(2)*y(3)(3)*x(1)(1)*x(1)(4)+y(2)(1)*y(3)(2)*x(1)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(1)(4)*x(2)(1)-y(1)(1)*y(3)(2)*x(1)(4)*x(2)(3)-y(1)(3)*y(3)(2)*x(1)(1)*x(2)(4)+y(1)(2)*y(3)(3)*x(1)(1)*x(2)(4)+y(1)(3)*y(2)(2)*x(1)(1)*x(3)(4)-y(1)(2)*y(2)(3)*x(1)(1)*x(3)(4) ----------- TeX output: S(\eps{1}{2}{1}{3}, \lam{1}{2}{3}{2}{3}{4}) = (-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{1}{2}{1}{4} +(-y_{1, 1} y_{3, 3}) \del{1}{2}{2}{4} +(y_{1, 1} y_{3, 2}) \del{1}{2}{3}{4} +(y_{1, 3} y_{2, 1}) \del{1}{3}{2}{4} +(-y_{1, 2} y_{2, 1}) \del{1}{3}{3}{4} +(-y_{1, 1} y_{1, 3}) \del{2}{3}{2}{4} +(y_{1, 1} y_{1, 2}) \del{2}{3}{3}{4} +(-y_{3, 3} x_{1, 4}+y_{1, 3} x_{3, 4}) \eps{1}{2}{1}{2} +(-y_{1, 2} x_{3, 4}) \eps{1}{2}{1}{3} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{3}{2}{3} ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,4 1,3,3 Lead Term of Spoly: -y(2)(1)*y(4)(3)*x(1)(1)*x(1)(3) Divisor: Delta 1,2 1,3 Quotient: -y(1)(3)*y(4)(1) Lead Term of Product: y(1)(3)*y(4)(1)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,4 1,3 Quotient: y(1)(3)*y(2)(1) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(2)(3)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: -y(2)(1)*x(1)(3)+y(1)(1)*x(2)(3) Lead Term of Product: -y(2)(1)*y(4)(3)*x(1)(1)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(3)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(3)*x(4)(3)) - (-y(4)(1)*x(1)(3))*(y(2)(3)*x(1)(1)-y(2)(1)*x(1)(3)-y(1)(3)*x(2)(1)+y(1)(1)*x(2)(3)) ------- Rewrite: -y(2)(1)*y(4)(3)*x(1)(1)*x(1)(3)+y(2)(1)*y(4)(1)*x(1)(3)^2+y(1)(3)*y(4)(1)*x(1)(3)*x(2)(1)-y(1)(3)*y(4)(1)*x(1)(1)*x(2)(3)+y(1)(1)*y(4)(3)*x(1)(1)*x(2)(3)-y(1)(1)*y(4)(1)*x(1)(3)*x(2)(3)+y(1)(3)*y(2)(1)*x(1)(1)*x(4)(3)-y(1)(1)*y(2)(3)*x(1)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{2}{1}{3}, \lam{1}{2}{4}{1}{3}{3}) = (-y_{1, 3} y_{4, 1}) \del{1}{2}{1}{3} +(y_{1, 3} y_{2, 1}) \del{1}{4}{1}{3} +(-y_{1, 1} y_{1, 3}) \del{2}{4}{1}{3} +(-y_{1, 1} x_{4, 3}) \eps{1}{2}{1}{3} +(-y_{2, 1} x_{1, 3}+y_{1, 1} x_{2, 3}) \eps{1}{4}{1}{3} ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,4 1,3,4 Lead Term of Spoly: -y(2)(1)*y(4)(3)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: -y(1)(3)*y(4)(1) Lead Term of Product: y(1)(3)*y(4)(1)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: y(1)(1)*y(4)(1) Lead Term of Product: -y(1)(1)*y(4)(1)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: y(1)(3)*y(2)(1) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: -y(1)(1)*y(2)(1) Lead Term of Product: y(1)(1)*y(2)(1)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(1)^2 Lead Term of Product: -y(1)(1)^2*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(2)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(3)*x(1)(1)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(3)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(3)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(2)(3)*x(1)(1)-y(2)(1)*x(1)(3)-y(1)(3)*x(2)(1)+y(1)(1)*x(2)(3)) ------- Rewrite: -y(2)(1)*y(4)(3)*x(1)(1)*x(1)(4)+y(2)(1)*y(4)(1)*x(1)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(1)(4)*x(2)(1)-y(1)(1)*y(4)(1)*x(1)(4)*x(2)(3)-y(1)(3)*y(4)(1)*x(1)(1)*x(2)(4)+y(1)(1)*y(4)(3)*x(1)(1)*x(2)(4)+y(1)(3)*y(2)(1)*x(1)(1)*x(4)(4)-y(1)(1)*y(2)(3)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{2}{1}{3}, \lam{1}{2}{4}{1}{3}{4}) = (-y_{1, 3} y_{4, 1}) \del{1}{2}{1}{4} +(y_{1, 1} y_{4, 1}) \del{1}{2}{3}{4} +(y_{1, 3} y_{2, 1}) \del{1}{4}{1}{4} +(-y_{1, 1} y_{2, 1}) \del{1}{4}{3}{4} +(-y_{1, 1} y_{1, 3}) \del{2}{4}{1}{4} +(y_{1, 1}^2) \del{2}{4}{3}{4} +(-y_{1, 1} x_{4, 4}) \eps{1}{2}{1}{3} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{4}{1}{3} ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,4 2,3,3 Lead Term of Spoly: -y(2)(2)*y(4)(3)*x(1)(1)*x(1)(3) Divisor: Delta 1,2 1,3 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,3 Quotient: -y(1)(1)*y(4)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: y(1)(3)*y(2)(1) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(3)*x(1)(3)+y(1)(3)*x(4)(3) Lead Term of Product: -y(2)(2)*y(4)(3)*x(1)(1)*x(1)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(1)(2)*x(4)(3) Lead Term of Product: -y(1)(2)*y(2)(3)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(2)(1)*x(1)(3)+y(1)(1)*x(2)(3) Lead Term of Product: -y(2)(1)*y(4)(3)*x(1)(2)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(3)*y(4)(2)*x(1)(3)+y(2)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(3)) - (-y(4)(2)*x(1)(3))*(y(2)(3)*x(1)(1)-y(2)(1)*x(1)(3)-y(1)(3)*x(2)(1)+y(1)(1)*x(2)(3)) ------- Rewrite: -y(2)(2)*y(4)(3)*x(1)(1)*x(1)(3)+y(2)(1)*y(4)(2)*x(1)(3)^2+y(1)(3)*y(4)(2)*x(1)(3)*x(2)(1)-y(1)(3)*y(4)(2)*x(1)(1)*x(2)(3)+y(1)(2)*y(4)(3)*x(1)(1)*x(2)(3)-y(1)(1)*y(4)(2)*x(1)(3)*x(2)(3)+y(1)(3)*y(2)(2)*x(1)(1)*x(4)(3)-y(1)(2)*y(2)(3)*x(1)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{2}{1}{3}, \lam{1}{2}{4}{2}{3}{3}) = (-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{1}{2}{1}{3} +(-y_{1, 1} y_{4, 3}) \del{1}{2}{2}{3} +(y_{1, 3} y_{2, 1}) \del{1}{4}{2}{3} +(-y_{1, 1} y_{1, 3}) \del{2}{4}{2}{3} +(-y_{4, 3} x_{1, 3}+y_{1, 3} x_{4, 3}) \eps{1}{2}{1}{2} +(-y_{1, 2} x_{4, 3}) \eps{1}{2}{1}{3} +(-y_{2, 1} x_{1, 3}+y_{1, 1} x_{2, 3}) \eps{1}{4}{2}{3} ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,4 2,3,4 Lead Term of Spoly: -y(2)(2)*y(4)(3)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(1)(1)*y(4)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(3)*y(2)(1) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: -y(1)(2)*y(2)(1) Lead Term of Product: y(1)(2)*y(2)(1)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(1)*y(1)(2) Lead Term of Product: -y(1)(1)*y(1)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(3)*x(1)(4)+y(1)(3)*x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(3)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(2)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(3)*x(1)(2)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(3)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(2)(3)*x(1)(1)-y(2)(1)*x(1)(3)-y(1)(3)*x(2)(1)+y(1)(1)*x(2)(3)) ------- Rewrite: -y(2)(2)*y(4)(3)*x(1)(1)*x(1)(4)+y(2)(1)*y(4)(2)*x(1)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(1)(4)*x(2)(1)-y(1)(1)*y(4)(2)*x(1)(4)*x(2)(3)-y(1)(3)*y(4)(2)*x(1)(1)*x(2)(4)+y(1)(2)*y(4)(3)*x(1)(1)*x(2)(4)+y(1)(3)*y(2)(2)*x(1)(1)*x(4)(4)-y(1)(2)*y(2)(3)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{2}{1}{3}, \lam{1}{2}{4}{2}{3}{4}) = (-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{1}{2}{1}{4} +(-y_{1, 1} y_{4, 3}) \del{1}{2}{2}{4} +(y_{1, 1} y_{4, 2}) \del{1}{2}{3}{4} +(y_{1, 3} y_{2, 1}) \del{1}{4}{2}{4} +(-y_{1, 2} y_{2, 1}) \del{1}{4}{3}{4} +(-y_{1, 1} y_{1, 3}) \del{2}{4}{2}{4} +(y_{1, 1} y_{1, 2}) \del{2}{4}{3}{4} +(-y_{4, 3} x_{1, 4}+y_{1, 3} x_{4, 4}) \eps{1}{2}{1}{2} +(-y_{1, 2} x_{4, 4}) \eps{1}{2}{1}{3} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{4}{2}{3} ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,3 1,4,4 Lead Term of Spoly: -y(2)(1)*y(3)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: -y(1)(4)*y(3)(1) Lead Term of Product: y(1)(4)*y(3)(1)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: y(1)(4)*y(2)(1) Lead Term of Product: -y(1)(4)*y(2)(1)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(2)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(1)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(4)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(4)) - (-y(3)(1)*x(1)(4))*(y(2)(4)*x(1)(1)-y(2)(1)*x(1)(4)-y(1)(4)*x(2)(1)+y(1)(1)*x(2)(4)) ------- Rewrite: -y(2)(1)*y(3)(4)*x(1)(1)*x(1)(4)+y(2)(1)*y(3)(1)*x(1)(4)^2+y(1)(4)*y(3)(1)*x(1)(4)*x(2)(1)-y(1)(4)*y(3)(1)*x(1)(1)*x(2)(4)+y(1)(1)*y(3)(4)*x(1)(1)*x(2)(4)-y(1)(1)*y(3)(1)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(1)*x(1)(1)*x(3)(4)-y(1)(1)*y(2)(4)*x(1)(1)*x(3)(4) ----------- TeX output: S(\eps{1}{2}{1}{4}, \lam{1}{2}{3}{1}{4}{4}) = (-y_{1, 4} y_{3, 1}) \del{1}{2}{1}{4} +(y_{1, 4} y_{2, 1}) \del{1}{3}{1}{4} +(-y_{1, 1} y_{1, 4}) \del{2}{3}{1}{4} +(-y_{1, 1} x_{3, 4}) \eps{1}{2}{1}{4} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{3}{1}{4} ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,3 2,4,4 Lead Term of Spoly: -y(2)(2)*y(3)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: -y(1)(4)*y(3)(2)+y(1)(2)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(1)(1)*y(3)(4) Lead Term of Product: y(1)(1)*y(3)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: y(1)(4)*y(2)(1) Lead Term of Product: -y(1)(4)*y(2)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(4)*x(1)(4)+y(1)(4)*x(3)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(2)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(2)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(4)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(4)) - (-y(3)(2)*x(1)(4))*(y(2)(4)*x(1)(1)-y(2)(1)*x(1)(4)-y(1)(4)*x(2)(1)+y(1)(1)*x(2)(4)) ------- Rewrite: -y(2)(2)*y(3)(4)*x(1)(1)*x(1)(4)+y(2)(1)*y(3)(2)*x(1)(4)^2+y(1)(4)*y(3)(2)*x(1)(4)*x(2)(1)-y(1)(4)*y(3)(2)*x(1)(1)*x(2)(4)+y(1)(2)*y(3)(4)*x(1)(1)*x(2)(4)-y(1)(1)*y(3)(2)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(2)*x(1)(1)*x(3)(4)-y(1)(2)*y(2)(4)*x(1)(1)*x(3)(4) ----------- TeX output: S(\eps{1}{2}{1}{4}, \lam{1}{2}{3}{2}{4}{4}) = (-y_{1, 4} y_{3, 2}+y_{1, 2} y_{3, 4}) \del{1}{2}{1}{4} +(-y_{1, 1} y_{3, 4}) \del{1}{2}{2}{4} +(y_{1, 4} y_{2, 1}) \del{1}{3}{2}{4} +(-y_{1, 1} y_{1, 4}) \del{2}{3}{2}{4} +(-y_{3, 4} x_{1, 4}+y_{1, 4} x_{3, 4}) \eps{1}{2}{1}{2} +(-y_{1, 2} x_{3, 4}) \eps{1}{2}{1}{4} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{3}{2}{4} ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,3 3,4,4 Lead Term of Spoly: -y(2)(3)*y(3)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: -y(1)(4)*y(3)(3)+y(1)(3)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(1)(1)*y(3)(4) Lead Term of Product: y(1)(1)*y(3)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(1)(4)*y(2)(1) Lead Term of Product: -y(1)(4)*y(2)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(4)*x(1)(4)+y(1)(4)*x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(4)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(1)(3)*x(3)(4) Lead Term of Product: -y(1)(3)*y(2)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(3)(3)*x(1)(4))*(y(2)(4)*x(1)(1)-y(2)(1)*x(1)(4)-y(1)(4)*x(2)(1)+y(1)(1)*x(2)(4)) ------- Rewrite: -y(2)(3)*y(3)(4)*x(1)(1)*x(1)(4)+y(2)(1)*y(3)(3)*x(1)(4)^2+y(1)(4)*y(3)(3)*x(1)(4)*x(2)(1)-y(1)(4)*y(3)(3)*x(1)(1)*x(2)(4)+y(1)(3)*y(3)(4)*x(1)(1)*x(2)(4)-y(1)(1)*y(3)(3)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(3)*x(1)(1)*x(3)(4)-y(1)(3)*y(2)(4)*x(1)(1)*x(3)(4) ----------- TeX output: S(\eps{1}{2}{1}{4}, \lam{1}{2}{3}{3}{4}{4}) = (-y_{1, 4} y_{3, 3}+y_{1, 3} y_{3, 4}) \del{1}{2}{1}{4} +(-y_{1, 1} y_{3, 4}) \del{1}{2}{3}{4} +(y_{1, 4} y_{2, 1}) \del{1}{3}{3}{4} +(-y_{1, 1} y_{1, 4}) \del{2}{3}{3}{4} +(-y_{3, 4} x_{1, 4}+y_{1, 4} x_{3, 4}) \eps{1}{2}{1}{3} +(-y_{1, 3} x_{3, 4}) \eps{1}{2}{1}{4} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{3}{3}{4} ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,4 1,4,4 Lead Term of Spoly: -y(2)(1)*y(4)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: -y(1)(4)*y(4)(1) Lead Term of Product: y(1)(4)*y(4)(1)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: y(1)(4)*y(2)(1) Lead Term of Product: -y(1)(4)*y(2)(1)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(2)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,4 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(1)(1)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(4)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(2)(4)*x(1)(1)-y(2)(1)*x(1)(4)-y(1)(4)*x(2)(1)+y(1)(1)*x(2)(4)) ------- Rewrite: -y(2)(1)*y(4)(4)*x(1)(1)*x(1)(4)+y(2)(1)*y(4)(1)*x(1)(4)^2+y(1)(4)*y(4)(1)*x(1)(4)*x(2)(1)-y(1)(4)*y(4)(1)*x(1)(1)*x(2)(4)+y(1)(1)*y(4)(4)*x(1)(1)*x(2)(4)-y(1)(1)*y(4)(1)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(1)*x(1)(1)*x(4)(4)-y(1)(1)*y(2)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{2}{1}{4}, \lam{1}{2}{4}{1}{4}{4}) = (-y_{1, 4} y_{4, 1}) \del{1}{2}{1}{4} +(y_{1, 4} y_{2, 1}) \del{1}{4}{1}{4} +(-y_{1, 1} y_{1, 4}) \del{2}{4}{1}{4} +(-y_{1, 1} x_{4, 4}) \eps{1}{2}{1}{4} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{4}{1}{4} ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,4 2,4,4 Lead Term of Spoly: -y(2)(2)*y(4)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: -y(1)(4)*y(4)(2)+y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(1)(1)*y(4)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(4)*y(2)(1) Lead Term of Product: -y(1)(4)*y(2)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(4)*x(1)(4)+y(1)(4)*x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(2)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(1)(2)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(2)(4)*x(1)(1)-y(2)(1)*x(1)(4)-y(1)(4)*x(2)(1)+y(1)(1)*x(2)(4)) ------- Rewrite: -y(2)(2)*y(4)(4)*x(1)(1)*x(1)(4)+y(2)(1)*y(4)(2)*x(1)(4)^2+y(1)(4)*y(4)(2)*x(1)(4)*x(2)(1)-y(1)(4)*y(4)(2)*x(1)(1)*x(2)(4)+y(1)(2)*y(4)(4)*x(1)(1)*x(2)(4)-y(1)(1)*y(4)(2)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(2)*x(1)(1)*x(4)(4)-y(1)(2)*y(2)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{2}{1}{4}, \lam{1}{2}{4}{2}{4}{4}) = (-y_{1, 4} y_{4, 2}+y_{1, 2} y_{4, 4}) \del{1}{2}{1}{4} +(-y_{1, 1} y_{4, 4}) \del{1}{2}{2}{4} +(y_{1, 4} y_{2, 1}) \del{1}{4}{2}{4} +(-y_{1, 1} y_{1, 4}) \del{2}{4}{2}{4} +(-y_{4, 4} x_{1, 4}+y_{1, 4} x_{4, 4}) \eps{1}{2}{1}{2} +(-y_{1, 2} x_{4, 4}) \eps{1}{2}{1}{4} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{4}{2}{4} ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,2,4 3,4,4 Lead Term of Spoly: -y(2)(3)*y(4)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(1)(1)*y(4)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(1)(4)*y(2)(1) Lead Term of Product: -y(1)(4)*y(2)(1)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(4)*x(1)(4)+y(1)(4)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(2)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(4)(3)*x(1)(4))*(y(2)(4)*x(1)(1)-y(2)(1)*x(1)(4)-y(1)(4)*x(2)(1)+y(1)(1)*x(2)(4)) ------- Rewrite: -y(2)(3)*y(4)(4)*x(1)(1)*x(1)(4)+y(2)(1)*y(4)(3)*x(1)(4)^2+y(1)(4)*y(4)(3)*x(1)(4)*x(2)(1)-y(1)(4)*y(4)(3)*x(1)(1)*x(2)(4)+y(1)(3)*y(4)(4)*x(1)(1)*x(2)(4)-y(1)(1)*y(4)(3)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(3)*x(1)(1)*x(4)(4)-y(1)(3)*y(2)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{2}{1}{4}, \lam{1}{2}{4}{3}{4}{4}) = (-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{1}{2}{1}{4} +(-y_{1, 1} y_{4, 4}) \del{1}{2}{3}{4} +(y_{1, 4} y_{2, 1}) \del{1}{4}{3}{4} +(-y_{1, 1} y_{1, 4}) \del{2}{4}{3}{4} +(-y_{4, 4} x_{1, 4}+y_{1, 4} x_{4, 4}) \eps{1}{2}{1}{3} +(-y_{1, 3} x_{4, 4}) \eps{1}{2}{1}{4} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{4}{3}{4} ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 1,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,3 1,2,2 Lead Term of Spoly: -y(2)(1)*y(2)(3)*y(3)(2)*x(1)(2) Divisor: Epsilon 1,2 2,3 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(1)*y(2)(3)*y(3)(2)*x(1)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*y(3)(3)*x(2)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: -y(2)(2) Lead Term of Product: y(2)(2)^2*y(3)(1)*x(1)(3) Lead term is well behaved Divisor: Psi 1,2,3 1,2,3 Quotient: -x(2)(2) Lead Term of Product: y(1)(3)*y(2)(2)*y(3)(1)*x(2)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(3))*(-y(2)(2)*y(3)(1)*x(1)(2)+y(2)(1)*y(3)(2)*x(1)(2)+y(1)(2)*y(3)(1)*x(2)(2)-y(1)(1)*y(3)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(3)(2)+y(1)(1)*y(2)(2)*x(3)(2)) - (-y(2)(2)*y(3)(1))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) ------- Rewrite: -y(2)(1)*y(2)(3)*y(3)(2)*x(1)(2)+y(2)(2)^2*y(3)(1)*x(1)(3)+y(1)(3)*y(2)(2)*y(3)(1)*x(2)(2)-y(1)(2)*y(2)(3)*y(3)(1)*x(2)(2)+y(1)(1)*y(2)(3)*y(3)(2)*x(2)(2)-y(1)(2)*y(2)(2)*y(3)(1)*x(2)(3)+y(1)(2)*y(2)(1)*y(2)(3)*x(3)(2)-y(1)(1)*y(2)(2)*y(2)(3)*x(3)(2) ----------- TeX output: S(\eps{1}{2}{2}{3}, \lam{1}{2}{3}{1}{2}{2}) = (-y_{2, 1} y_{3, 2}) \eps{1}{2}{2}{3} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \eps{2}{3}{2}{3} +(-y_{2, 2}) \lam{1}{2}{3}{1}{2}{3} +(-x_{2, 2}) \psi{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,3 1,3,3 Lead Term of Spoly: -y(2)(1)*y(3)(3)*x(1)(2)*x(1)(3) Divisor: Delta 1,2 2,3 Quotient: -y(1)(3)*y(3)(1) Lead Term of Product: y(1)(3)*y(3)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: y(1)(3)*y(2)(1) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(2)(3)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1)*x(1)(3)+y(1)(1)*x(2)(3) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(2)*x(1)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: -x(1)(3) Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(3)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(3)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(3)*x(3)(3)) - (-y(3)(1)*x(1)(3))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) ------- Rewrite: -y(2)(1)*y(3)(3)*x(1)(2)*x(1)(3)+y(2)(2)*y(3)(1)*x(1)(3)^2+y(1)(3)*y(3)(1)*x(1)(3)*x(2)(2)-y(1)(3)*y(3)(1)*x(1)(2)*x(2)(3)+y(1)(1)*y(3)(3)*x(1)(2)*x(2)(3)-y(1)(2)*y(3)(1)*x(1)(3)*x(2)(3)+y(1)(3)*y(2)(1)*x(1)(2)*x(3)(3)-y(1)(1)*y(2)(3)*x(1)(2)*x(3)(3) ----------- TeX output: S(\eps{1}{2}{2}{3}, \lam{1}{2}{3}{1}{3}{3}) = (-y_{1, 3} y_{3, 1}) \del{1}{2}{2}{3} +(y_{1, 3} y_{2, 1}) \del{1}{3}{2}{3} +(-y_{1, 1} y_{1, 3}) \del{2}{3}{2}{3} +(-y_{1, 1} x_{3, 3}) \eps{1}{2}{2}{3} +(-y_{2, 1} x_{1, 3}+y_{1, 1} x_{2, 3}) \eps{1}{3}{2}{3} +(-x_{1, 3}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,3 1,3,4 Lead Term of Spoly: -y(2)(1)*y(3)(3)*x(1)(2)*x(1)(4) Divisor: Delta 1,2 2,4 Quotient: -y(1)(3)*y(3)(1) Lead Term of Product: y(1)(3)*y(3)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: y(1)(1)*y(3)(2) Lead Term of Product: -y(1)(1)*y(3)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: y(1)(3)*y(2)(1) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(1)(1)*y(2)(2) Lead Term of Product: y(1)(1)*y(2)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(1)*y(1)(2) Lead Term of Product: -y(1)(1)*y(1)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(2)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: -x(1)(4) Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(3)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(3)*x(3)(4)) - (-y(3)(1)*x(1)(4))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) ------- Rewrite: -y(2)(1)*y(3)(3)*x(1)(2)*x(1)(4)+y(2)(2)*y(3)(1)*x(1)(3)*x(1)(4)+y(1)(3)*y(3)(1)*x(1)(4)*x(2)(2)-y(1)(2)*y(3)(1)*x(1)(4)*x(2)(3)-y(1)(3)*y(3)(1)*x(1)(2)*x(2)(4)+y(1)(1)*y(3)(3)*x(1)(2)*x(2)(4)+y(1)(3)*y(2)(1)*x(1)(2)*x(3)(4)-y(1)(1)*y(2)(3)*x(1)(2)*x(3)(4) ----------- TeX output: S(\eps{1}{2}{2}{3}, \lam{1}{2}{3}{1}{3}{4}) = (-y_{1, 3} y_{3, 1}) \del{1}{2}{2}{4} +(y_{1, 1} y_{3, 2}) \del{1}{2}{3}{4} +(y_{1, 3} y_{2, 1}) \del{1}{3}{2}{4} +(-y_{1, 1} y_{2, 2}) \del{1}{3}{3}{4} +(-y_{1, 1} y_{1, 3}) \del{2}{3}{2}{4} +(y_{1, 1} y_{1, 2}) \del{2}{3}{3}{4} +(-y_{1, 1} x_{3, 4}) \eps{1}{2}{2}{3} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{3}{2}{3} +(-x_{1, 4}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,3 2,3,3 Lead Term of Spoly: -y(2)(2)*y(3)(3)*x(1)(2)*x(1)(3) Divisor: Delta 1,2 2,3 Quotient: -y(1)(3)*y(3)(2) Lead Term of Product: y(1)(3)*y(3)(2)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: y(1)(3)*y(2)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(2)*y(1)(3) Lead Term of Product: y(1)(2)*y(1)(3)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(1)(2)*x(3)(3) Lead Term of Product: -y(1)(2)*y(2)(3)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(2)*x(1)(3)+y(1)(2)*x(2)(3) Lead Term of Product: -y(2)(2)*y(3)(3)*x(1)(2)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(3)*y(3)(2)*x(1)(3)+y(2)(2)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(2)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(3)) - (-y(3)(2)*x(1)(3))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) ------- Rewrite: -y(2)(2)*y(3)(3)*x(1)(2)*x(1)(3)+y(2)(2)*y(3)(2)*x(1)(3)^2+y(1)(3)*y(3)(2)*x(1)(3)*x(2)(2)-y(1)(3)*y(3)(2)*x(1)(2)*x(2)(3)+y(1)(2)*y(3)(3)*x(1)(2)*x(2)(3)-y(1)(2)*y(3)(2)*x(1)(3)*x(2)(3)+y(1)(3)*y(2)(2)*x(1)(2)*x(3)(3)-y(1)(2)*y(2)(3)*x(1)(2)*x(3)(3) ----------- TeX output: S(\eps{1}{2}{2}{3}, \lam{1}{2}{3}{2}{3}{3}) = (-y_{1, 3} y_{3, 2}) \del{1}{2}{2}{3} +(y_{1, 3} y_{2, 2}) \del{1}{3}{2}{3} +(-y_{1, 2} y_{1, 3}) \del{2}{3}{2}{3} +(-y_{1, 2} x_{3, 3}) \eps{1}{2}{2}{3} +(-y_{2, 2} x_{1, 3}+y_{1, 2} x_{2, 3}) \eps{1}{3}{2}{3} ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,3 2,3,4 Lead Term of Spoly: -y(2)(2)*y(3)(3)*x(1)(2)*x(1)(4) Divisor: Delta 1,2 2,4 Quotient: -y(1)(3)*y(3)(2) Lead Term of Product: y(1)(3)*y(3)(2)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: y(1)(2)*y(3)(2) Lead Term of Product: -y(1)(2)*y(3)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: y(1)(3)*y(2)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(1)(2)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(2)*y(1)(3) Lead Term of Product: y(1)(2)*y(1)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(2)^2 Lead Term of Product: -y(1)(2)^2*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(2)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(2)*x(1)(4)+y(1)(2)*x(2)(4) Lead Term of Product: -y(2)(2)*y(3)(3)*x(1)(2)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(3)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(4)) - (-y(3)(2)*x(1)(4))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) ------- Rewrite: -y(2)(2)*y(3)(3)*x(1)(2)*x(1)(4)+y(2)(2)*y(3)(2)*x(1)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(1)(4)*x(2)(2)-y(1)(2)*y(3)(2)*x(1)(4)*x(2)(3)-y(1)(3)*y(3)(2)*x(1)(2)*x(2)(4)+y(1)(2)*y(3)(3)*x(1)(2)*x(2)(4)+y(1)(3)*y(2)(2)*x(1)(2)*x(3)(4)-y(1)(2)*y(2)(3)*x(1)(2)*x(3)(4) ----------- TeX output: S(\eps{1}{2}{2}{3}, \lam{1}{2}{3}{2}{3}{4}) = (-y_{1, 3} y_{3, 2}) \del{1}{2}{2}{4} +(y_{1, 2} y_{3, 2}) \del{1}{2}{3}{4} +(y_{1, 3} y_{2, 2}) \del{1}{3}{2}{4} +(-y_{1, 2} y_{2, 2}) \del{1}{3}{3}{4} +(-y_{1, 2} y_{1, 3}) \del{2}{3}{2}{4} +(y_{1, 2}^2) \del{2}{3}{3}{4} +(-y_{1, 2} x_{3, 4}) \eps{1}{2}{2}{3} +(-y_{2, 2} x_{1, 4}+y_{1, 2} x_{2, 4}) \eps{1}{3}{2}{3} ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,4 1,2,2 Lead Term of Spoly: -y(2)(1)*y(2)(3)*y(4)(2)*x(1)(2) Divisor: Epsilon 1,2 2,3 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(1)*y(2)(3)*y(4)(2)*x(1)(2) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*y(4)(3)*x(2)(2) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: -y(2)(2) Lead Term of Product: y(2)(2)^2*y(4)(1)*x(1)(3) Lead term is well behaved Divisor: Psi 1,2,4 1,2,3 Quotient: -x(2)(2) Lead Term of Product: y(1)(3)*y(2)(2)*y(4)(1)*x(2)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(3))*(-y(2)(2)*y(4)(1)*x(1)(2)+y(2)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(2)(2)-y(1)(1)*y(4)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(4)(2)+y(1)(1)*y(2)(2)*x(4)(2)) - (-y(2)(2)*y(4)(1))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) ------- Rewrite: -y(2)(1)*y(2)(3)*y(4)(2)*x(1)(2)+y(2)(2)^2*y(4)(1)*x(1)(3)+y(1)(3)*y(2)(2)*y(4)(1)*x(2)(2)-y(1)(2)*y(2)(3)*y(4)(1)*x(2)(2)+y(1)(1)*y(2)(3)*y(4)(2)*x(2)(2)-y(1)(2)*y(2)(2)*y(4)(1)*x(2)(3)+y(1)(2)*y(2)(1)*y(2)(3)*x(4)(2)-y(1)(1)*y(2)(2)*y(2)(3)*x(4)(2) ----------- TeX output: S(\eps{1}{2}{2}{3}, \lam{1}{2}{4}{1}{2}{2}) = (-y_{2, 1} y_{4, 2}) \eps{1}{2}{2}{3} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \eps{2}{4}{2}{3} +(-y_{2, 2}) \lam{1}{2}{4}{1}{2}{3} +(-x_{2, 2}) \psi{1}{2}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,4 1,3,3 Lead Term of Spoly: -y(2)(1)*y(4)(3)*x(1)(2)*x(1)(3) Divisor: Delta 1,2 2,3 Quotient: -y(1)(3)*y(4)(1) Lead Term of Product: y(1)(3)*y(4)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: y(1)(3)*y(2)(1) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(2)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(2)(1)*x(1)(3)+y(1)(1)*x(2)(3) Lead Term of Product: -y(2)(1)*y(4)(3)*x(1)(2)*x(1)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: -x(1)(3) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(3)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(3)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(3)*x(4)(3)) - (-y(4)(1)*x(1)(3))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) ------- Rewrite: -y(2)(1)*y(4)(3)*x(1)(2)*x(1)(3)+y(2)(2)*y(4)(1)*x(1)(3)^2+y(1)(3)*y(4)(1)*x(1)(3)*x(2)(2)-y(1)(3)*y(4)(1)*x(1)(2)*x(2)(3)+y(1)(1)*y(4)(3)*x(1)(2)*x(2)(3)-y(1)(2)*y(4)(1)*x(1)(3)*x(2)(3)+y(1)(3)*y(2)(1)*x(1)(2)*x(4)(3)-y(1)(1)*y(2)(3)*x(1)(2)*x(4)(3) ----------- TeX output: S(\eps{1}{2}{2}{3}, \lam{1}{2}{4}{1}{3}{3}) = (-y_{1, 3} y_{4, 1}) \del{1}{2}{2}{3} +(y_{1, 3} y_{2, 1}) \del{1}{4}{2}{3} +(-y_{1, 1} y_{1, 3}) \del{2}{4}{2}{3} +(-y_{1, 1} x_{4, 3}) \eps{1}{2}{2}{3} +(-y_{2, 1} x_{1, 3}+y_{1, 1} x_{2, 3}) \eps{1}{4}{2}{3} +(-x_{1, 3}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,4 1,3,4 Lead Term of Spoly: -y(2)(1)*y(4)(3)*x(1)(2)*x(1)(4) Divisor: Delta 1,2 2,4 Quotient: -y(1)(3)*y(4)(1) Lead Term of Product: y(1)(3)*y(4)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(3)*y(2)(1) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: -y(1)(1)*y(2)(2) Lead Term of Product: y(1)(1)*y(2)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(1)*y(1)(2) Lead Term of Product: -y(1)(1)*y(1)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(2)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(3)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: -x(1)(4) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(3)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(3)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) ------- Rewrite: -y(2)(1)*y(4)(3)*x(1)(2)*x(1)(4)+y(2)(2)*y(4)(1)*x(1)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(1)(4)*x(2)(2)-y(1)(2)*y(4)(1)*x(1)(4)*x(2)(3)-y(1)(3)*y(4)(1)*x(1)(2)*x(2)(4)+y(1)(1)*y(4)(3)*x(1)(2)*x(2)(4)+y(1)(3)*y(2)(1)*x(1)(2)*x(4)(4)-y(1)(1)*y(2)(3)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{2}{2}{3}, \lam{1}{2}{4}{1}{3}{4}) = (-y_{1, 3} y_{4, 1}) \del{1}{2}{2}{4} +(y_{1, 1} y_{4, 2}) \del{1}{2}{3}{4} +(y_{1, 3} y_{2, 1}) \del{1}{4}{2}{4} +(-y_{1, 1} y_{2, 2}) \del{1}{4}{3}{4} +(-y_{1, 1} y_{1, 3}) \del{2}{4}{2}{4} +(y_{1, 1} y_{1, 2}) \del{2}{4}{3}{4} +(-y_{1, 1} x_{4, 4}) \eps{1}{2}{2}{3} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{4}{2}{3} +(-x_{1, 4}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,4 2,3,3 Lead Term of Spoly: -y(2)(2)*y(4)(3)*x(1)(2)*x(1)(3) Divisor: Delta 1,2 2,3 Quotient: -y(1)(3)*y(4)(2) Lead Term of Product: y(1)(3)*y(4)(2)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: y(1)(3)*y(2)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(2)*y(1)(3) Lead Term of Product: y(1)(2)*y(1)(3)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(1)(2)*x(4)(3) Lead Term of Product: -y(1)(2)*y(2)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(2)(2)*x(1)(3)+y(1)(2)*x(2)(3) Lead Term of Product: -y(2)(2)*y(4)(3)*x(1)(2)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(3)*y(4)(2)*x(1)(3)+y(2)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(3)) - (-y(4)(2)*x(1)(3))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) ------- Rewrite: -y(2)(2)*y(4)(3)*x(1)(2)*x(1)(3)+y(2)(2)*y(4)(2)*x(1)(3)^2+y(1)(3)*y(4)(2)*x(1)(3)*x(2)(2)-y(1)(3)*y(4)(2)*x(1)(2)*x(2)(3)+y(1)(2)*y(4)(3)*x(1)(2)*x(2)(3)-y(1)(2)*y(4)(2)*x(1)(3)*x(2)(3)+y(1)(3)*y(2)(2)*x(1)(2)*x(4)(3)-y(1)(2)*y(2)(3)*x(1)(2)*x(4)(3) ----------- TeX output: S(\eps{1}{2}{2}{3}, \lam{1}{2}{4}{2}{3}{3}) = (-y_{1, 3} y_{4, 2}) \del{1}{2}{2}{3} +(y_{1, 3} y_{2, 2}) \del{1}{4}{2}{3} +(-y_{1, 2} y_{1, 3}) \del{2}{4}{2}{3} +(-y_{1, 2} x_{4, 3}) \eps{1}{2}{2}{3} +(-y_{2, 2} x_{1, 3}+y_{1, 2} x_{2, 3}) \eps{1}{4}{2}{3} ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,4 2,3,4 Lead Term of Spoly: -y(2)(2)*y(4)(3)*x(1)(2)*x(1)(4) Divisor: Delta 1,2 2,4 Quotient: -y(1)(3)*y(4)(2) Lead Term of Product: y(1)(3)*y(4)(2)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: y(1)(2)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(3)*y(2)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: -y(1)(2)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(2)*y(1)(3) Lead Term of Product: y(1)(2)*y(1)(3)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(2)^2 Lead Term of Product: -y(1)(2)^2*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(2)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(2)(2)*x(1)(4)+y(1)(2)*x(2)(4) Lead Term of Product: -y(2)(2)*y(4)(3)*x(1)(2)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(3)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) ------- Rewrite: -y(2)(2)*y(4)(3)*x(1)(2)*x(1)(4)+y(2)(2)*y(4)(2)*x(1)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(1)(4)*x(2)(2)-y(1)(2)*y(4)(2)*x(1)(4)*x(2)(3)-y(1)(3)*y(4)(2)*x(1)(2)*x(2)(4)+y(1)(2)*y(4)(3)*x(1)(2)*x(2)(4)+y(1)(3)*y(2)(2)*x(1)(2)*x(4)(4)-y(1)(2)*y(2)(3)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{2}{2}{3}, \lam{1}{2}{4}{2}{3}{4}) = (-y_{1, 3} y_{4, 2}) \del{1}{2}{2}{4} +(y_{1, 2} y_{4, 2}) \del{1}{2}{3}{4} +(y_{1, 3} y_{2, 2}) \del{1}{4}{2}{4} +(-y_{1, 2} y_{2, 2}) \del{1}{4}{3}{4} +(-y_{1, 2} y_{1, 3}) \del{2}{4}{2}{4} +(y_{1, 2}^2) \del{2}{4}{3}{4} +(-y_{1, 2} x_{4, 4}) \eps{1}{2}{2}{3} +(-y_{2, 2} x_{1, 4}+y_{1, 2} x_{2, 4}) \eps{1}{4}{2}{3} ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,3,4 1,2,2 Lead Term of Spoly: -y(2)(3)*y(3)(1)*y(4)(2)*x(1)(2) Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(2)(3)*y(3)(1)*y(4)(2)*x(1)(2) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*y(4)(3)*x(3)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: y(4)(2) Lead Term of Product: -y(2)(2)*y(3)(1)*y(4)(2)*x(1)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: -y(3)(2) Lead Term of Product: y(2)(2)*y(3)(2)*y(4)(1)*x(1)(3) Lead term is well behaved Divisor: Lam 2,3,4 1,2,2 Quotient: -y(1)(3) Lead Term of Product: y(1)(3)*y(3)(2)*y(4)(1)*x(2)(2) Lead term is well behaved Divisor: Psi 1,2,3 1,2,3 Quotient: x(4)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*y(3)(1)*x(4)(2) Lead term is well behaved Divisor: Psi 1,2,4 1,2,3 Quotient: -x(3)(2) Lead Term of Product: y(1)(3)*y(2)(2)*y(4)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(3))*(-y(3)(2)*y(4)(1)*x(1)(2)+y(3)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(3)(2)-y(1)(1)*y(4)(2)*x(3)(2)-y(1)(2)*y(3)(1)*x(4)(2)+y(1)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) ------- Rewrite: -y(2)(3)*y(3)(1)*y(4)(2)*x(1)(2)+y(2)(2)*y(3)(2)*y(4)(1)*x(1)(3)+y(1)(3)*y(3)(2)*y(4)(1)*x(2)(2)-y(1)(2)*y(3)(2)*y(4)(1)*x(2)(3)-y(1)(2)*y(2)(3)*y(4)(1)*x(3)(2)+y(1)(1)*y(2)(3)*y(4)(2)*x(3)(2)+y(1)(2)*y(2)(3)*y(3)(1)*x(4)(2)-y(1)(1)*y(2)(3)*y(3)(2)*x(4)(2) ----------- TeX output: S(\eps{1}{2}{2}{3}, \lam{1}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \eps{1}{2}{2}{3} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \eps{3}{4}{2}{3} +(y_{4, 2}) \lam{1}{2}{3}{1}{2}{3} +(-y_{3, 2}) \lam{1}{2}{4}{1}{2}{3} +(-y_{1, 3}) \lam{2}{3}{4}{1}{2}{2} +(x_{4, 2}) \psi{1}{2}{3}{1}{2}{3} +(-x_{3, 2}) \psi{1}{2}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,3 1,2,2 Lead Term of Spoly: -y(2)(1)*y(2)(4)*y(3)(2)*x(1)(2) Divisor: Epsilon 1,2 2,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(1)*y(2)(4)*y(3)(2)*x(1)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*y(3)(4)*x(2)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: -y(2)(2) Lead Term of Product: y(2)(2)^2*y(3)(1)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,3 1,2,4 Quotient: -x(2)(2) Lead Term of Product: y(1)(4)*y(2)(2)*y(3)(1)*x(2)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(4))*(-y(2)(2)*y(3)(1)*x(1)(2)+y(2)(1)*y(3)(2)*x(1)(2)+y(1)(2)*y(3)(1)*x(2)(2)-y(1)(1)*y(3)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(3)(2)+y(1)(1)*y(2)(2)*x(3)(2)) - (-y(2)(2)*y(3)(1))*(y(2)(4)*x(1)(2)-y(2)(2)*x(1)(4)-y(1)(4)*x(2)(2)+y(1)(2)*x(2)(4)) ------- Rewrite: -y(2)(1)*y(2)(4)*y(3)(2)*x(1)(2)+y(2)(2)^2*y(3)(1)*x(1)(4)+y(1)(4)*y(2)(2)*y(3)(1)*x(2)(2)-y(1)(2)*y(2)(4)*y(3)(1)*x(2)(2)+y(1)(1)*y(2)(4)*y(3)(2)*x(2)(2)-y(1)(2)*y(2)(2)*y(3)(1)*x(2)(4)+y(1)(2)*y(2)(1)*y(2)(4)*x(3)(2)-y(1)(1)*y(2)(2)*y(2)(4)*x(3)(2) ----------- TeX output: S(\eps{1}{2}{2}{4}, \lam{1}{2}{3}{1}{2}{2}) = (-y_{2, 1} y_{3, 2}) \eps{1}{2}{2}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \eps{2}{3}{2}{4} +(-y_{2, 2}) \lam{1}{2}{3}{1}{2}{4} +(-x_{2, 2}) \psi{1}{2}{3}{1}{2}{4} ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,3 1,4,4 Lead Term of Spoly: -y(2)(1)*y(3)(4)*x(1)(2)*x(1)(4) Divisor: Delta 1,2 2,4 Quotient: -y(1)(4)*y(3)(1) Lead Term of Product: y(1)(4)*y(3)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: y(1)(4)*y(2)(1) Lead Term of Product: -y(1)(4)*y(2)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(2)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: -x(1)(4) Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(4)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(4)) - (-y(3)(1)*x(1)(4))*(y(2)(4)*x(1)(2)-y(2)(2)*x(1)(4)-y(1)(4)*x(2)(2)+y(1)(2)*x(2)(4)) ------- Rewrite: -y(2)(1)*y(3)(4)*x(1)(2)*x(1)(4)+y(2)(2)*y(3)(1)*x(1)(4)^2+y(1)(4)*y(3)(1)*x(1)(4)*x(2)(2)-y(1)(4)*y(3)(1)*x(1)(2)*x(2)(4)+y(1)(1)*y(3)(4)*x(1)(2)*x(2)(4)-y(1)(2)*y(3)(1)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(1)*x(1)(2)*x(3)(4)-y(1)(1)*y(2)(4)*x(1)(2)*x(3)(4) ----------- TeX output: S(\eps{1}{2}{2}{4}, \lam{1}{2}{3}{1}{4}{4}) = (-y_{1, 4} y_{3, 1}) \del{1}{2}{2}{4} +(y_{1, 4} y_{2, 1}) \del{1}{3}{2}{4} +(-y_{1, 1} y_{1, 4}) \del{2}{3}{2}{4} +(-y_{1, 1} x_{3, 4}) \eps{1}{2}{2}{4} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{3}{2}{4} +(-x_{1, 4}) \lam{1}{2}{3}{1}{2}{4} ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,3 2,4,4 Lead Term of Spoly: -y(2)(2)*y(3)(4)*x(1)(2)*x(1)(4) Divisor: Delta 1,2 2,4 Quotient: -y(1)(4)*y(3)(2) Lead Term of Product: y(1)(4)*y(3)(2)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: y(1)(4)*y(2)(2) Lead Term of Product: -y(1)(4)*y(2)(2)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(2)*y(1)(4) Lead Term of Product: y(1)(2)*y(1)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(2)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(2)(2)*x(1)(4)+y(1)(2)*x(2)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(1)(2)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(4)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(4)) - (-y(3)(2)*x(1)(4))*(y(2)(4)*x(1)(2)-y(2)(2)*x(1)(4)-y(1)(4)*x(2)(2)+y(1)(2)*x(2)(4)) ------- Rewrite: -y(2)(2)*y(3)(4)*x(1)(2)*x(1)(4)+y(2)(2)*y(3)(2)*x(1)(4)^2+y(1)(4)*y(3)(2)*x(1)(4)*x(2)(2)-y(1)(4)*y(3)(2)*x(1)(2)*x(2)(4)+y(1)(2)*y(3)(4)*x(1)(2)*x(2)(4)-y(1)(2)*y(3)(2)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(2)*x(1)(2)*x(3)(4)-y(1)(2)*y(2)(4)*x(1)(2)*x(3)(4) ----------- TeX output: S(\eps{1}{2}{2}{4}, \lam{1}{2}{3}{2}{4}{4}) = (-y_{1, 4} y_{3, 2}) \del{1}{2}{2}{4} +(y_{1, 4} y_{2, 2}) \del{1}{3}{2}{4} +(-y_{1, 2} y_{1, 4}) \del{2}{3}{2}{4} +(-y_{1, 2} x_{3, 4}) \eps{1}{2}{2}{4} +(-y_{2, 2} x_{1, 4}+y_{1, 2} x_{2, 4}) \eps{1}{3}{2}{4} ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,3 3,4,4 Lead Term of Spoly: -y(2)(3)*y(3)(4)*x(1)(2)*x(1)(4) Divisor: Delta 1,2 2,4 Quotient: -y(1)(4)*y(3)(3)+y(1)(3)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(1)(2)*y(3)(4) Lead Term of Product: y(1)(2)*y(3)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(1)(4)*y(2)(2) Lead Term of Product: -y(1)(4)*y(2)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(2)*y(1)(4) Lead Term of Product: y(1)(2)*y(1)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(4)*x(1)(4)+y(1)(4)*x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(4)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(1)(3)*x(3)(4) Lead Term of Product: -y(1)(3)*y(2)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(2)*x(1)(4)+y(1)(2)*x(2)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(3)(3)*x(1)(4))*(y(2)(4)*x(1)(2)-y(2)(2)*x(1)(4)-y(1)(4)*x(2)(2)+y(1)(2)*x(2)(4)) ------- Rewrite: -y(2)(3)*y(3)(4)*x(1)(2)*x(1)(4)+y(2)(2)*y(3)(3)*x(1)(4)^2+y(1)(4)*y(3)(3)*x(1)(4)*x(2)(2)-y(1)(4)*y(3)(3)*x(1)(2)*x(2)(4)+y(1)(3)*y(3)(4)*x(1)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(3)*x(1)(2)*x(3)(4)-y(1)(3)*y(2)(4)*x(1)(2)*x(3)(4) ----------- TeX output: S(\eps{1}{2}{2}{4}, \lam{1}{2}{3}{3}{4}{4}) = (-y_{1, 4} y_{3, 3}+y_{1, 3} y_{3, 4}) \del{1}{2}{2}{4} +(-y_{1, 2} y_{3, 4}) \del{1}{2}{3}{4} +(y_{1, 4} y_{2, 2}) \del{1}{3}{3}{4} +(-y_{1, 2} y_{1, 4}) \del{2}{3}{3}{4} +(-y_{3, 4} x_{1, 4}+y_{1, 4} x_{3, 4}) \eps{1}{2}{2}{3} +(-y_{1, 3} x_{3, 4}) \eps{1}{2}{2}{4} +(-y_{2, 2} x_{1, 4}+y_{1, 2} x_{2, 4}) \eps{1}{3}{3}{4} ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,4 1,2,2 Lead Term of Spoly: -y(2)(1)*y(2)(4)*y(4)(2)*x(1)(2) Divisor: Epsilon 1,2 2,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(1)*y(2)(4)*y(4)(2)*x(1)(2) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*y(4)(4)*x(2)(2) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: -y(2)(2) Lead Term of Product: y(2)(2)^2*y(4)(1)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,4 1,2,4 Quotient: -x(2)(2) Lead Term of Product: y(1)(4)*y(2)(2)*y(4)(1)*x(2)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(4))*(-y(2)(2)*y(4)(1)*x(1)(2)+y(2)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(2)(2)-y(1)(1)*y(4)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(4)(2)+y(1)(1)*y(2)(2)*x(4)(2)) - (-y(2)(2)*y(4)(1))*(y(2)(4)*x(1)(2)-y(2)(2)*x(1)(4)-y(1)(4)*x(2)(2)+y(1)(2)*x(2)(4)) ------- Rewrite: -y(2)(1)*y(2)(4)*y(4)(2)*x(1)(2)+y(2)(2)^2*y(4)(1)*x(1)(4)+y(1)(4)*y(2)(2)*y(4)(1)*x(2)(2)-y(1)(2)*y(2)(4)*y(4)(1)*x(2)(2)+y(1)(1)*y(2)(4)*y(4)(2)*x(2)(2)-y(1)(2)*y(2)(2)*y(4)(1)*x(2)(4)+y(1)(2)*y(2)(1)*y(2)(4)*x(4)(2)-y(1)(1)*y(2)(2)*y(2)(4)*x(4)(2) ----------- TeX output: S(\eps{1}{2}{2}{4}, \lam{1}{2}{4}{1}{2}{2}) = (-y_{2, 1} y_{4, 2}) \eps{1}{2}{2}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \eps{2}{4}{2}{4} +(-y_{2, 2}) \lam{1}{2}{4}{1}{2}{4} +(-x_{2, 2}) \psi{1}{2}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,4 1,4,4 Lead Term of Spoly: -y(2)(1)*y(4)(4)*x(1)(2)*x(1)(4) Divisor: Delta 1,2 2,4 Quotient: -y(1)(4)*y(4)(1) Lead Term of Product: y(1)(4)*y(4)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(4)*y(2)(1) Lead Term of Product: -y(1)(4)*y(2)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(2)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: -x(1)(4) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(4)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(2)(4)*x(1)(2)-y(2)(2)*x(1)(4)-y(1)(4)*x(2)(2)+y(1)(2)*x(2)(4)) ------- Rewrite: -y(2)(1)*y(4)(4)*x(1)(2)*x(1)(4)+y(2)(2)*y(4)(1)*x(1)(4)^2+y(1)(4)*y(4)(1)*x(1)(4)*x(2)(2)-y(1)(4)*y(4)(1)*x(1)(2)*x(2)(4)+y(1)(1)*y(4)(4)*x(1)(2)*x(2)(4)-y(1)(2)*y(4)(1)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(1)*x(1)(2)*x(4)(4)-y(1)(1)*y(2)(4)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{2}{2}{4}, \lam{1}{2}{4}{1}{4}{4}) = (-y_{1, 4} y_{4, 1}) \del{1}{2}{2}{4} +(y_{1, 4} y_{2, 1}) \del{1}{4}{2}{4} +(-y_{1, 1} y_{1, 4}) \del{2}{4}{2}{4} +(-y_{1, 1} x_{4, 4}) \eps{1}{2}{2}{4} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{4}{2}{4} +(-x_{1, 4}) \lam{1}{2}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,4 2,4,4 Lead Term of Spoly: -y(2)(2)*y(4)(4)*x(1)(2)*x(1)(4) Divisor: Delta 1,2 2,4 Quotient: -y(1)(4)*y(4)(2) Lead Term of Product: y(1)(4)*y(4)(2)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(4)*y(2)(2) Lead Term of Product: -y(1)(4)*y(2)(2)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(2)*y(1)(4) Lead Term of Product: y(1)(2)*y(1)(4)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(2)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(2)(2)*x(1)(4)+y(1)(2)*x(2)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(1)(2)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(2)(4)*x(1)(2)-y(2)(2)*x(1)(4)-y(1)(4)*x(2)(2)+y(1)(2)*x(2)(4)) ------- Rewrite: -y(2)(2)*y(4)(4)*x(1)(2)*x(1)(4)+y(2)(2)*y(4)(2)*x(1)(4)^2+y(1)(4)*y(4)(2)*x(1)(4)*x(2)(2)-y(1)(4)*y(4)(2)*x(1)(2)*x(2)(4)+y(1)(2)*y(4)(4)*x(1)(2)*x(2)(4)-y(1)(2)*y(4)(2)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(2)*x(1)(2)*x(4)(4)-y(1)(2)*y(2)(4)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{2}{2}{4}, \lam{1}{2}{4}{2}{4}{4}) = (-y_{1, 4} y_{4, 2}) \del{1}{2}{2}{4} +(y_{1, 4} y_{2, 2}) \del{1}{4}{2}{4} +(-y_{1, 2} y_{1, 4}) \del{2}{4}{2}{4} +(-y_{1, 2} x_{4, 4}) \eps{1}{2}{2}{4} +(-y_{2, 2} x_{1, 4}+y_{1, 2} x_{2, 4}) \eps{1}{4}{2}{4} ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,2,4 3,4,4 Lead Term of Spoly: -y(2)(3)*y(4)(4)*x(1)(2)*x(1)(4) Divisor: Delta 1,2 2,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(1)(2)*y(4)(4) Lead Term of Product: y(1)(2)*y(4)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(1)(4)*y(2)(2) Lead Term of Product: -y(1)(4)*y(2)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(2)*y(1)(4) Lead Term of Product: y(1)(2)*y(1)(4)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(4)*x(1)(4)+y(1)(4)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(2)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(2)*x(1)(4)+y(1)(2)*x(2)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(4)(3)*x(1)(4))*(y(2)(4)*x(1)(2)-y(2)(2)*x(1)(4)-y(1)(4)*x(2)(2)+y(1)(2)*x(2)(4)) ------- Rewrite: -y(2)(3)*y(4)(4)*x(1)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)^2+y(1)(4)*y(4)(3)*x(1)(4)*x(2)(2)-y(1)(4)*y(4)(3)*x(1)(2)*x(2)(4)+y(1)(3)*y(4)(4)*x(1)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(3)*x(1)(2)*x(4)(4)-y(1)(3)*y(2)(4)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{2}{2}{4}, \lam{1}{2}{4}{3}{4}{4}) = (-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{1}{2}{2}{4} +(-y_{1, 2} y_{4, 4}) \del{1}{2}{3}{4} +(y_{1, 4} y_{2, 2}) \del{1}{4}{3}{4} +(-y_{1, 2} y_{1, 4}) \del{2}{4}{3}{4} +(-y_{4, 4} x_{1, 4}+y_{1, 4} x_{4, 4}) \eps{1}{2}{2}{3} +(-y_{1, 3} x_{4, 4}) \eps{1}{2}{2}{4} +(-y_{2, 2} x_{1, 4}+y_{1, 2} x_{2, 4}) \eps{1}{4}{3}{4} ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,3,4 1,2,2 Lead Term of Spoly: -y(2)(4)*y(3)(1)*y(4)(2)*x(1)(2) Divisor: Epsilon 1,2 2,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(2)(4)*y(3)(1)*y(4)(2)*x(1)(2) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*y(4)(4)*x(3)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: y(4)(2) Lead Term of Product: -y(2)(2)*y(3)(1)*y(4)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: -y(3)(2) Lead Term of Product: y(2)(2)*y(3)(2)*y(4)(1)*x(1)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,2,2 Quotient: -y(1)(4) Lead Term of Product: y(1)(4)*y(3)(2)*y(4)(1)*x(2)(2) Lead term is well behaved Divisor: Psi 1,2,3 1,2,4 Quotient: x(4)(2) Lead Term of Product: -y(1)(4)*y(2)(2)*y(3)(1)*x(4)(2) Lead term is well behaved Divisor: Psi 1,2,4 1,2,4 Quotient: -x(3)(2) Lead Term of Product: y(1)(4)*y(2)(2)*y(4)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(4))*(-y(3)(2)*y(4)(1)*x(1)(2)+y(3)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(3)(2)-y(1)(1)*y(4)(2)*x(3)(2)-y(1)(2)*y(3)(1)*x(4)(2)+y(1)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(y(2)(4)*x(1)(2)-y(2)(2)*x(1)(4)-y(1)(4)*x(2)(2)+y(1)(2)*x(2)(4)) ------- Rewrite: -y(2)(4)*y(3)(1)*y(4)(2)*x(1)(2)+y(2)(2)*y(3)(2)*y(4)(1)*x(1)(4)+y(1)(4)*y(3)(2)*y(4)(1)*x(2)(2)-y(1)(2)*y(3)(2)*y(4)(1)*x(2)(4)-y(1)(2)*y(2)(4)*y(4)(1)*x(3)(2)+y(1)(1)*y(2)(4)*y(4)(2)*x(3)(2)+y(1)(2)*y(2)(4)*y(3)(1)*x(4)(2)-y(1)(1)*y(2)(4)*y(3)(2)*x(4)(2) ----------- TeX output: S(\eps{1}{2}{2}{4}, \lam{1}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \eps{1}{2}{2}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \eps{3}{4}{2}{4} +(y_{4, 2}) \lam{1}{2}{3}{1}{2}{4} +(-y_{3, 2}) \lam{1}{2}{4}{1}{2}{4} +(-y_{1, 4}) \lam{2}{3}{4}{1}{2}{2} +(x_{4, 2}) \psi{1}{2}{3}{1}{2}{4} +(-x_{3, 2}) \psi{1}{2}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 2,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,3 1,2,3 Lead Term of Spoly: -y(2)(1)*y(2)(4)*y(3)(2)*x(1)(3) Divisor: Epsilon 1,2 3,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(1)*y(2)(4)*y(3)(2)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*y(3)(4)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: -y(2)(3) Lead Term of Product: y(2)(2)*y(2)(3)*y(3)(1)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,3 1,2,3 Quotient: x(2)(4) Lead Term of Product: -y(1)(3)*y(2)(2)*y(3)(1)*x(2)(4) Lead term is well behaved Divisor: Psi 1,2,3 1,2,4 Quotient: -x(2)(3) Lead Term of Product: y(1)(4)*y(2)(2)*y(3)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(4))*(-y(2)(2)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(2)*x(1)(3)+y(1)(2)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(2)*x(3)(3)) - (-y(2)(2)*y(3)(1))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(1)*y(2)(4)*y(3)(2)*x(1)(3)+y(2)(2)*y(2)(3)*y(3)(1)*x(1)(4)+y(1)(4)*y(2)(2)*y(3)(1)*x(2)(3)-y(1)(2)*y(2)(4)*y(3)(1)*x(2)(3)+y(1)(1)*y(2)(4)*y(3)(2)*x(2)(3)-y(1)(3)*y(2)(2)*y(3)(1)*x(2)(4)+y(1)(2)*y(2)(1)*y(2)(4)*x(3)(3)-y(1)(1)*y(2)(2)*y(2)(4)*x(3)(3) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{2}{3}{1}{2}{3}) = (-y_{2, 1} y_{3, 2}) \eps{1}{2}{3}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \eps{2}{3}{3}{4} +(-y_{2, 3}) \lam{1}{2}{3}{1}{2}{4} +(x_{2, 4}) \psi{1}{2}{3}{1}{2}{3} +(-x_{2, 3}) \psi{1}{2}{3}{1}{2}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,3 1,3,3 Lead Term of Spoly: -y(2)(1)*y(2)(4)*y(3)(3)*x(1)(3) Divisor: Epsilon 1,2 3,4 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: -y(2)(1)*y(2)(4)*y(3)(3)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(1)*y(3)(4)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,3,4 Quotient: -y(2)(3) Lead Term of Product: y(2)(3)^2*y(3)(1)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,3 1,3,4 Quotient: -x(2)(3) Lead Term of Product: y(1)(4)*y(2)(3)*y(3)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(4))*(-y(2)(3)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(1))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(1)*y(2)(4)*y(3)(3)*x(1)(3)+y(2)(3)^2*y(3)(1)*x(1)(4)+y(1)(4)*y(2)(3)*y(3)(1)*x(2)(3)-y(1)(3)*y(2)(4)*y(3)(1)*x(2)(3)+y(1)(1)*y(2)(4)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(3)*y(3)(1)*x(2)(4)+y(1)(3)*y(2)(1)*y(2)(4)*x(3)(3)-y(1)(1)*y(2)(3)*y(2)(4)*x(3)(3) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{2}{3}{1}{3}{3}) = (-y_{2, 1} y_{3, 3}) \eps{1}{2}{3}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \eps{2}{3}{3}{4} +(-y_{2, 3}) \lam{1}{2}{3}{1}{3}{4} +(-x_{2, 3}) \psi{1}{2}{3}{1}{3}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,3 1,4,4 Lead Term of Spoly: -y(2)(1)*y(3)(4)*x(1)(3)*x(1)(4) Divisor: Delta 1,2 3,4 Quotient: -y(1)(4)*y(3)(1) Lead Term of Product: y(1)(4)*y(3)(1)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(1)(4)*y(2)(1) Lead Term of Product: -y(1)(4)*y(2)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(2)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,3,4 Quotient: -x(1)(4) Lead Term of Product: y(2)(3)*y(3)(1)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(3))*(-y(2)(4)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(4)) - (-y(3)(1)*x(1)(4))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(1)*y(3)(4)*x(1)(3)*x(1)(4)+y(2)(3)*y(3)(1)*x(1)(4)^2+y(1)(4)*y(3)(1)*x(1)(4)*x(2)(3)-y(1)(4)*y(3)(1)*x(1)(3)*x(2)(4)+y(1)(1)*y(3)(4)*x(1)(3)*x(2)(4)-y(1)(3)*y(3)(1)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(1)*x(1)(3)*x(3)(4)-y(1)(1)*y(2)(4)*x(1)(3)*x(3)(4) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{2}{3}{1}{4}{4}) = (-y_{1, 4} y_{3, 1}) \del{1}{2}{3}{4} +(y_{1, 4} y_{2, 1}) \del{1}{3}{3}{4} +(-y_{1, 1} y_{1, 4}) \del{2}{3}{3}{4} +(-y_{1, 1} x_{3, 4}) \eps{1}{2}{3}{4} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{3}{3}{4} +(-x_{1, 4}) \lam{1}{2}{3}{1}{3}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,3 2,3,3 Lead Term of Spoly: -y(2)(2)*y(2)(4)*y(3)(3)*x(1)(3) Divisor: Epsilon 1,2 3,4 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: -y(2)(2)*y(2)(4)*y(3)(3)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(3)*y(2)(2)+y(1)(2)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*y(3)(4)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,3 2,3,4 Quotient: -y(2)(3) Lead Term of Product: y(2)(3)^2*y(3)(2)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,3 2,3,4 Quotient: -x(2)(3) Lead Term of Product: y(1)(4)*y(2)(3)*y(3)(2)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(4))*(-y(2)(3)*y(3)(2)*x(1)(3)+y(2)(2)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(2)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(2))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(2)*y(2)(4)*y(3)(3)*x(1)(3)+y(2)(3)^2*y(3)(2)*x(1)(4)+y(1)(4)*y(2)(3)*y(3)(2)*x(2)(3)-y(1)(3)*y(2)(4)*y(3)(2)*x(2)(3)+y(1)(2)*y(2)(4)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(3)*y(3)(2)*x(2)(4)+y(1)(3)*y(2)(2)*y(2)(4)*x(3)(3)-y(1)(2)*y(2)(3)*y(2)(4)*x(3)(3) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{2}{3}{2}{3}{3}) = (-y_{2, 2} y_{3, 3}) \eps{1}{2}{3}{4} +(-y_{1, 3} y_{2, 2}+y_{1, 2} y_{2, 3}) \eps{2}{3}{3}{4} +(-y_{2, 3}) \lam{1}{2}{3}{2}{3}{4} +(-x_{2, 3}) \psi{1}{2}{3}{2}{3}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,3 2,4,4 Lead Term of Spoly: -y(2)(2)*y(3)(4)*x(1)(3)*x(1)(4) Divisor: Delta 1,2 3,4 Quotient: -y(1)(4)*y(3)(2) Lead Term of Product: y(1)(4)*y(3)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(1)(4)*y(2)(2) Lead Term of Product: -y(1)(4)*y(2)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(2)*y(1)(4) Lead Term of Product: y(1)(2)*y(1)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(2)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(2)*x(1)(4)+y(1)(2)*x(2)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,3 2,3,4 Quotient: -x(1)(4) Lead Term of Product: y(2)(3)*y(3)(2)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(3))*(-y(2)(4)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(4)) - (-y(3)(2)*x(1)(4))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(2)*y(3)(4)*x(1)(3)*x(1)(4)+y(2)(3)*y(3)(2)*x(1)(4)^2+y(1)(4)*y(3)(2)*x(1)(4)*x(2)(3)-y(1)(4)*y(3)(2)*x(1)(3)*x(2)(4)+y(1)(2)*y(3)(4)*x(1)(3)*x(2)(4)-y(1)(3)*y(3)(2)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(2)*x(1)(3)*x(3)(4)-y(1)(2)*y(2)(4)*x(1)(3)*x(3)(4) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{2}{3}{2}{4}{4}) = (-y_{1, 4} y_{3, 2}) \del{1}{2}{3}{4} +(y_{1, 4} y_{2, 2}) \del{1}{3}{3}{4} +(-y_{1, 2} y_{1, 4}) \del{2}{3}{3}{4} +(-y_{1, 2} x_{3, 4}) \eps{1}{2}{3}{4} +(-y_{2, 2} x_{1, 4}+y_{1, 2} x_{2, 4}) \eps{1}{3}{3}{4} +(-x_{1, 4}) \lam{1}{2}{3}{2}{3}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,3 3,4,4 Lead Term of Spoly: -y(2)(3)*y(3)(4)*x(1)(3)*x(1)(4) Divisor: Delta 1,2 3,4 Quotient: -y(1)(4)*y(3)(3) Lead Term of Product: y(1)(4)*y(3)(3)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(1)(4)*y(2)(3) Lead Term of Product: -y(1)(4)*y(2)(3)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(3)*y(1)(4) Lead Term of Product: y(1)(3)*y(1)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(1)(3)*x(3)(4) Lead Term of Product: -y(1)(3)*y(2)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(3)*x(1)(4)+y(1)(3)*x(2)(4) Lead Term of Product: -y(2)(3)*y(3)(4)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(3))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(3)(3)*x(1)(4))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(3)*y(3)(4)*x(1)(3)*x(1)(4)+y(2)(3)*y(3)(3)*x(1)(4)^2+y(1)(4)*y(3)(3)*x(1)(4)*x(2)(3)-y(1)(4)*y(3)(3)*x(1)(3)*x(2)(4)+y(1)(3)*y(3)(4)*x(1)(3)*x(2)(4)-y(1)(3)*y(3)(3)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(3)*x(1)(3)*x(3)(4)-y(1)(3)*y(2)(4)*x(1)(3)*x(3)(4) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{2}{3}{3}{4}{4}) = (-y_{1, 4} y_{3, 3}) \del{1}{2}{3}{4} +(y_{1, 4} y_{2, 3}) \del{1}{3}{3}{4} +(-y_{1, 3} y_{1, 4}) \del{2}{3}{3}{4} +(-y_{1, 3} x_{3, 4}) \eps{1}{2}{3}{4} +(-y_{2, 3} x_{1, 4}+y_{1, 3} x_{2, 4}) \eps{1}{3}{3}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,4 1,2,3 Lead Term of Spoly: -y(2)(1)*y(2)(4)*y(4)(2)*x(1)(3) Divisor: Epsilon 1,2 3,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(1)*y(2)(4)*y(4)(2)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*y(4)(4)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: -y(2)(3) Lead Term of Product: y(2)(2)*y(2)(3)*y(4)(1)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,4 1,2,3 Quotient: x(2)(4) Lead Term of Product: -y(1)(3)*y(2)(2)*y(4)(1)*x(2)(4) Lead term is well behaved Divisor: Psi 1,2,4 1,2,4 Quotient: -x(2)(3) Lead Term of Product: y(1)(4)*y(2)(2)*y(4)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(4))*(-y(2)(2)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(2)*x(4)(3)) - (-y(2)(2)*y(4)(1))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(1)*y(2)(4)*y(4)(2)*x(1)(3)+y(2)(2)*y(2)(3)*y(4)(1)*x(1)(4)+y(1)(4)*y(2)(2)*y(4)(1)*x(2)(3)-y(1)(2)*y(2)(4)*y(4)(1)*x(2)(3)+y(1)(1)*y(2)(4)*y(4)(2)*x(2)(3)-y(1)(3)*y(2)(2)*y(4)(1)*x(2)(4)+y(1)(2)*y(2)(1)*y(2)(4)*x(4)(3)-y(1)(1)*y(2)(2)*y(2)(4)*x(4)(3) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{2}{4}{1}{2}{3}) = (-y_{2, 1} y_{4, 2}) \eps{1}{2}{3}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \eps{2}{4}{3}{4} +(-y_{2, 3}) \lam{1}{2}{4}{1}{2}{4} +(x_{2, 4}) \psi{1}{2}{4}{1}{2}{3} +(-x_{2, 3}) \psi{1}{2}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,4 1,3,3 Lead Term of Spoly: -y(2)(1)*y(2)(4)*y(4)(3)*x(1)(3) Divisor: Epsilon 1,2 3,4 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: -y(2)(1)*y(2)(4)*y(4)(3)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(1)*y(4)(4)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,3,4 Quotient: -y(2)(3) Lead Term of Product: y(2)(3)^2*y(4)(1)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,4 1,3,4 Quotient: -x(2)(3) Lead Term of Product: y(1)(4)*y(2)(3)*y(4)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(4))*(-y(2)(3)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(1))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(1)*y(2)(4)*y(4)(3)*x(1)(3)+y(2)(3)^2*y(4)(1)*x(1)(4)+y(1)(4)*y(2)(3)*y(4)(1)*x(2)(3)-y(1)(3)*y(2)(4)*y(4)(1)*x(2)(3)+y(1)(1)*y(2)(4)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(3)*y(4)(1)*x(2)(4)+y(1)(3)*y(2)(1)*y(2)(4)*x(4)(3)-y(1)(1)*y(2)(3)*y(2)(4)*x(4)(3) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{2}{4}{1}{3}{3}) = (-y_{2, 1} y_{4, 3}) \eps{1}{2}{3}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \eps{2}{4}{3}{4} +(-y_{2, 3}) \lam{1}{2}{4}{1}{3}{4} +(-x_{2, 3}) \psi{1}{2}{4}{1}{3}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,4 1,4,4 Lead Term of Spoly: -y(2)(1)*y(4)(4)*x(1)(3)*x(1)(4) Divisor: Delta 1,2 3,4 Quotient: -y(1)(4)*y(4)(1) Lead Term of Product: y(1)(4)*y(4)(1)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(1)(4)*y(2)(1) Lead Term of Product: -y(1)(4)*y(2)(1)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(2)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,3,4 Quotient: -x(1)(4) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(3))*(-y(2)(4)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(1)*y(4)(4)*x(1)(3)*x(1)(4)+y(2)(3)*y(4)(1)*x(1)(4)^2+y(1)(4)*y(4)(1)*x(1)(4)*x(2)(3)-y(1)(4)*y(4)(1)*x(1)(3)*x(2)(4)+y(1)(1)*y(4)(4)*x(1)(3)*x(2)(4)-y(1)(3)*y(4)(1)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(1)*x(1)(3)*x(4)(4)-y(1)(1)*y(2)(4)*x(1)(3)*x(4)(4) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{2}{4}{1}{4}{4}) = (-y_{1, 4} y_{4, 1}) \del{1}{2}{3}{4} +(y_{1, 4} y_{2, 1}) \del{1}{4}{3}{4} +(-y_{1, 1} y_{1, 4}) \del{2}{4}{3}{4} +(-y_{1, 1} x_{4, 4}) \eps{1}{2}{3}{4} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{4}{3}{4} +(-x_{1, 4}) \lam{1}{2}{4}{1}{3}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,4 2,3,3 Lead Term of Spoly: -y(2)(2)*y(2)(4)*y(4)(3)*x(1)(3) Divisor: Epsilon 1,2 3,4 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: -y(2)(2)*y(2)(4)*y(4)(3)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(3)*y(2)(2)+y(1)(2)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*y(4)(4)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,4 2,3,4 Quotient: -y(2)(3) Lead Term of Product: y(2)(3)^2*y(4)(2)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,4 2,3,4 Quotient: -x(2)(3) Lead Term of Product: y(1)(4)*y(2)(3)*y(4)(2)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(4))*(-y(2)(3)*y(4)(2)*x(1)(3)+y(2)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(2))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(2)*y(2)(4)*y(4)(3)*x(1)(3)+y(2)(3)^2*y(4)(2)*x(1)(4)+y(1)(4)*y(2)(3)*y(4)(2)*x(2)(3)-y(1)(3)*y(2)(4)*y(4)(2)*x(2)(3)+y(1)(2)*y(2)(4)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(3)*y(4)(2)*x(2)(4)+y(1)(3)*y(2)(2)*y(2)(4)*x(4)(3)-y(1)(2)*y(2)(3)*y(2)(4)*x(4)(3) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{2}{4}{2}{3}{3}) = (-y_{2, 2} y_{4, 3}) \eps{1}{2}{3}{4} +(-y_{1, 3} y_{2, 2}+y_{1, 2} y_{2, 3}) \eps{2}{4}{3}{4} +(-y_{2, 3}) \lam{1}{2}{4}{2}{3}{4} +(-x_{2, 3}) \psi{1}{2}{4}{2}{3}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,4 2,4,4 Lead Term of Spoly: -y(2)(2)*y(4)(4)*x(1)(3)*x(1)(4) Divisor: Delta 1,2 3,4 Quotient: -y(1)(4)*y(4)(2) Lead Term of Product: y(1)(4)*y(4)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(1)(4)*y(2)(2) Lead Term of Product: -y(1)(4)*y(2)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(2)*y(1)(4) Lead Term of Product: y(1)(2)*y(1)(4)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(2)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(2)*x(1)(4)+y(1)(2)*x(2)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,4 2,3,4 Quotient: -x(1)(4) Lead Term of Product: y(2)(3)*y(4)(2)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(3))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(2)*y(4)(4)*x(1)(3)*x(1)(4)+y(2)(3)*y(4)(2)*x(1)(4)^2+y(1)(4)*y(4)(2)*x(1)(4)*x(2)(3)-y(1)(4)*y(4)(2)*x(1)(3)*x(2)(4)+y(1)(2)*y(4)(4)*x(1)(3)*x(2)(4)-y(1)(3)*y(4)(2)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(2)*x(1)(3)*x(4)(4)-y(1)(2)*y(2)(4)*x(1)(3)*x(4)(4) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{2}{4}{2}{4}{4}) = (-y_{1, 4} y_{4, 2}) \del{1}{2}{3}{4} +(y_{1, 4} y_{2, 2}) \del{1}{4}{3}{4} +(-y_{1, 2} y_{1, 4}) \del{2}{4}{3}{4} +(-y_{1, 2} x_{4, 4}) \eps{1}{2}{3}{4} +(-y_{2, 2} x_{1, 4}+y_{1, 2} x_{2, 4}) \eps{1}{4}{3}{4} +(-x_{1, 4}) \lam{1}{2}{4}{2}{3}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,2,4 3,4,4 Lead Term of Spoly: -y(2)(3)*y(4)(4)*x(1)(3)*x(1)(4) Divisor: Delta 1,2 3,4 Quotient: -y(1)(4)*y(4)(3) Lead Term of Product: y(1)(4)*y(4)(3)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(1)(4)*y(2)(3) Lead Term of Product: -y(1)(4)*y(2)(3)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(3)*y(1)(4) Lead Term of Product: y(1)(3)*y(1)(4)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(2)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(3)*x(1)(4)+y(1)(3)*x(2)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(3))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(4)(3)*x(1)(4))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(3)*y(4)(4)*x(1)(3)*x(1)(4)+y(2)(3)*y(4)(3)*x(1)(4)^2+y(1)(4)*y(4)(3)*x(1)(4)*x(2)(3)-y(1)(4)*y(4)(3)*x(1)(3)*x(2)(4)+y(1)(3)*y(4)(4)*x(1)(3)*x(2)(4)-y(1)(3)*y(4)(3)*x(1)(4)*x(2)(4)+y(1)(4)*y(2)(3)*x(1)(3)*x(4)(4)-y(1)(3)*y(2)(4)*x(1)(3)*x(4)(4) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{2}{4}{3}{4}{4}) = (-y_{1, 4} y_{4, 3}) \del{1}{2}{3}{4} +(y_{1, 4} y_{2, 3}) \del{1}{4}{3}{4} +(-y_{1, 3} y_{1, 4}) \del{2}{4}{3}{4} +(-y_{1, 3} x_{4, 4}) \eps{1}{2}{3}{4} +(-y_{2, 3} x_{1, 4}+y_{1, 3} x_{2, 4}) \eps{1}{4}{3}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,3,4 1,2,3 Lead Term of Spoly: -y(2)(4)*y(3)(1)*y(4)(2)*x(1)(3) Divisor: Epsilon 1,2 3,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(2)(4)*y(3)(1)*y(4)(2)*x(1)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,3,4 Quotient: y(4)(2) Lead Term of Product: -y(2)(3)*y(3)(1)*y(4)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,3 2,3,4 Quotient: -y(4)(1) Lead Term of Product: y(2)(3)*y(3)(2)*y(4)(1)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: -y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*y(4)(1)*x(1)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: -y(1)(4) Lead Term of Product: y(1)(4)*y(3)(2)*y(4)(1)*x(2)(3) Lead term is well behaved Divisor: Psi 1,2,3 1,2,4 Quotient: x(4)(3) Lead Term of Product: -y(1)(4)*y(2)(2)*y(3)(1)*x(4)(3) Lead term is well behaved Divisor: Psi 1,2,4 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(1)(3)*y(2)(2)*y(4)(1)*x(3)(4) Lead term is well behaved Divisor: Psi 1,2,4 1,2,4 Quotient: -x(3)(3) Lead Term of Product: y(1)(4)*y(2)(2)*y(4)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(4))*(-y(3)(2)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(3)(3)-y(1)(2)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(4)*y(3)(1)*y(4)(2)*x(1)(3)+y(2)(3)*y(3)(2)*y(4)(1)*x(1)(4)+y(1)(4)*y(3)(2)*y(4)(1)*x(2)(3)-y(1)(3)*y(3)(2)*y(4)(1)*x(2)(4)-y(1)(2)*y(2)(4)*y(4)(1)*x(3)(3)+y(1)(1)*y(2)(4)*y(4)(2)*x(3)(3)+y(1)(2)*y(2)(4)*y(3)(1)*x(4)(3)-y(1)(1)*y(2)(4)*y(3)(2)*x(4)(3) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \eps{1}{2}{3}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \eps{3}{4}{3}{4} +(y_{4, 2}) \lam{1}{2}{3}{1}{3}{4} +(-y_{4, 1}) \lam{1}{2}{3}{2}{3}{4} +(-y_{3, 3}) \lam{1}{2}{4}{1}{2}{4} +(-y_{1, 4}) \lam{2}{3}{4}{1}{2}{3} +(x_{4, 3}) \psi{1}{2}{3}{1}{2}{4} +(x_{3, 4}) \psi{1}{2}{4}{1}{2}{3} +(-x_{3, 3}) \psi{1}{2}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,3,4 1,3,3 Lead Term of Spoly: -y(2)(4)*y(3)(1)*y(4)(3)*x(1)(3) Divisor: Epsilon 1,2 3,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: -y(2)(4)*y(3)(1)*y(4)(3)*x(1)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(1)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,3,4 Quotient: y(4)(3) Lead Term of Product: -y(2)(3)*y(3)(1)*y(4)(3)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,3,4 Quotient: -y(3)(3) Lead Term of Product: y(2)(3)*y(3)(3)*y(4)(1)*x(1)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,3,3 Quotient: -y(1)(4) Lead Term of Product: y(1)(4)*y(3)(3)*y(4)(1)*x(2)(3) Lead term is well behaved Divisor: Psi 1,2,3 1,3,4 Quotient: x(4)(3) Lead Term of Product: -y(1)(4)*y(2)(3)*y(3)(1)*x(4)(3) Lead term is well behaved Divisor: Psi 1,2,4 1,3,4 Quotient: -x(3)(3) Lead Term of Product: y(1)(4)*y(2)(3)*y(4)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(4))*(-y(3)(3)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(4)*y(3)(1)*y(4)(3)*x(1)(3)+y(2)(3)*y(3)(3)*y(4)(1)*x(1)(4)+y(1)(4)*y(3)(3)*y(4)(1)*x(2)(3)-y(1)(3)*y(3)(3)*y(4)(1)*x(2)(4)-y(1)(3)*y(2)(4)*y(4)(1)*x(3)(3)+y(1)(1)*y(2)(4)*y(4)(3)*x(3)(3)+y(1)(3)*y(2)(4)*y(3)(1)*x(4)(3)-y(1)(1)*y(2)(4)*y(3)(3)*x(4)(3) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \eps{1}{2}{3}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \eps{3}{4}{3}{4} +(y_{4, 3}) \lam{1}{2}{3}{1}{3}{4} +(-y_{3, 3}) \lam{1}{2}{4}{1}{3}{4} +(-y_{1, 4}) \lam{2}{3}{4}{1}{3}{3} +(x_{4, 3}) \psi{1}{2}{3}{1}{3}{4} +(-x_{3, 3}) \psi{1}{2}{4}{1}{3}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,3,4 2,3,3 Lead Term of Spoly: -y(2)(4)*y(3)(2)*y(4)(3)*x(1)(3) Divisor: Epsilon 1,2 3,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: -y(2)(4)*y(3)(2)*y(4)(3)*x(1)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(3)*y(2)(2)+y(1)(2)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,3 2,3,4 Quotient: y(4)(3) Lead Term of Product: -y(2)(3)*y(3)(2)*y(4)(3)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,4 2,3,4 Quotient: -y(3)(3) Lead Term of Product: y(2)(3)*y(3)(3)*y(4)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 2,3,4 2,3,3 Quotient: -y(1)(4) Lead Term of Product: y(1)(4)*y(3)(3)*y(4)(2)*x(2)(3) Lead term is well behaved Divisor: Psi 1,2,3 2,3,4 Quotient: x(4)(3) Lead Term of Product: -y(1)(4)*y(2)(3)*y(3)(2)*x(4)(3) Lead term is well behaved Divisor: Psi 1,2,4 2,3,4 Quotient: -x(3)(3) Lead Term of Product: y(1)(4)*y(2)(3)*y(4)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(4))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(y(2)(4)*x(1)(3)-y(2)(3)*x(1)(4)-y(1)(4)*x(2)(3)+y(1)(3)*x(2)(4)) ------- Rewrite: -y(2)(4)*y(3)(2)*y(4)(3)*x(1)(3)+y(2)(3)*y(3)(3)*y(4)(2)*x(1)(4)+y(1)(4)*y(3)(3)*y(4)(2)*x(2)(3)-y(1)(3)*y(3)(3)*y(4)(2)*x(2)(4)-y(1)(3)*y(2)(4)*y(4)(2)*x(3)(3)+y(1)(2)*y(2)(4)*y(4)(3)*x(3)(3)+y(1)(3)*y(2)(4)*y(3)(2)*x(4)(3)-y(1)(2)*y(2)(4)*y(3)(3)*x(4)(3) ----------- TeX output: S(\eps{1}{2}{3}{4}, \lam{1}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \eps{1}{2}{3}{4} +(-y_{1, 3} y_{2, 2}+y_{1, 2} y_{2, 3}) \eps{3}{4}{3}{4} +(y_{4, 3}) \lam{1}{2}{3}{2}{3}{4} +(-y_{3, 3}) \lam{1}{2}{4}{2}{3}{4} +(-y_{1, 4}) \lam{2}{3}{4}{2}{3}{3} +(x_{4, 3}) \psi{1}{2}{3}{2}{3}{4} +(-x_{3, 3}) \psi{1}{2}{4}{2}{3}{4} ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,2 3,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,3 2,3,3 Lead Term of Spoly: -y(2)(2)*y(3)(3)*x(1)(1)*x(1)(3) Divisor: Delta 1,2 1,3 Quotient: y(1)(2)*y(3)(3) Lead Term of Product: -y(1)(2)*y(3)(3)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,3 Quotient: -y(1)(3)*y(3)(1)-y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 1,3 Quotient: -y(1)(2)*y(2)(3) Lead Term of Product: y(1)(2)*y(2)(3)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: y(1)(2)*y(1)(3) Lead Term of Product: -y(1)(2)*y(1)(3)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -2*y(1)(1)*y(1)(3) Lead Term of Product: 2*y(1)(1)*y(1)(3)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(3)*x(1)(3)+y(1)(3)*x(3)(3) Lead Term of Product: -y(2)(2)*y(3)(3)*x(1)(1)*x(1)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(3)(1)*x(1)(3)-y(1)(1)*x(3)(3) Lead Term of Product: y(2)(3)*y(3)(1)*x(1)(2)*x(1)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(1)(3)*x(2)(3) Lead Term of Product: -y(1)(3)*y(3)(2)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1)*x(1)(3)+y(1)(1)*x(2)(3) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(2)*x(1)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: -x(1)(3) Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(3)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(3)*y(3)(2)*x(1)(3)+y(2)(2)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(2)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(3)) - (-y(2)(3)*x(1)(3))*(y(3)(2)*x(1)(1)-y(3)(1)*x(1)(2)-y(1)(2)*x(3)(1)+y(1)(1)*x(3)(2)) ------- Rewrite: -y(2)(2)*y(3)(3)*x(1)(1)*x(1)(3)+y(2)(3)*y(3)(1)*x(1)(2)*x(1)(3)-y(1)(3)*y(3)(2)*x(1)(1)*x(2)(3)+y(1)(2)*y(3)(3)*x(1)(1)*x(2)(3)+y(1)(2)*y(2)(3)*x(1)(3)*x(3)(1)-y(1)(1)*y(2)(3)*x(1)(3)*x(3)(2)+y(1)(3)*y(2)(2)*x(1)(1)*x(3)(3)-y(1)(2)*y(2)(3)*x(1)(1)*x(3)(3) ----------- TeX output: S(\eps{1}{3}{1}{2}, \lam{1}{2}{3}{2}{3}{3}) = (y_{1, 2} y_{3, 3}) \del{1}{2}{1}{3} +(-y_{1, 3} y_{3, 1}-y_{1, 1} y_{3, 3}) \del{1}{2}{2}{3} +(-y_{1, 2} y_{2, 3}) \del{1}{3}{1}{3} +(y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{1}{3}{2}{3} +(y_{1, 2} y_{1, 3}) \del{2}{3}{1}{3} +(-2 y_{1, 1} y_{1, 3}) \del{2}{3}{2}{3} +(-y_{3, 3} x_{1, 3}+y_{1, 3} x_{3, 3}) \eps{1}{2}{1}{2} +(y_{3, 1} x_{1, 3}-y_{1, 1} x_{3, 3}) \eps{1}{2}{2}{3} +(-y_{1, 3} x_{2, 3}) \eps{1}{3}{1}{2} +(-y_{2, 1} x_{1, 3}+y_{1, 1} x_{2, 3}) \eps{1}{3}{2}{3} +(-x_{1, 3}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,3 2,3,4 Lead Term of Spoly: -y(2)(2)*y(3)(3)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: y(1)(2)*y(3)(3) Lead Term of Product: -y(1)(2)*y(3)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(1)(3)*y(3)(1)-y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: y(1)(1)*y(3)(2) Lead Term of Product: -y(1)(1)*y(3)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: -y(1)(2)*y(2)(3) Lead Term of Product: y(1)(2)*y(2)(3)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(1)(1)*y(2)(2) Lead Term of Product: y(1)(1)*y(2)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(2)*y(1)(3) Lead Term of Product: -y(1)(2)*y(1)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -2*y(1)(1)*y(1)(3) Lead Term of Product: 2*y(1)(1)*y(1)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(1)*y(1)(2) Lead Term of Product: -y(1)(1)*y(1)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(3)*x(1)(4)+y(1)(3)*x(3)(4) Lead Term of Product: -y(2)(2)*y(3)(3)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(3)(1)*x(1)(4)-y(1)(1)*x(3)(4) Lead Term of Product: y(2)(3)*y(3)(1)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(1)(3)*x(2)(4) Lead Term of Product: -y(1)(3)*y(3)(2)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: -x(1)(4) Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(3)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(4)) - (-y(2)(3)*x(1)(4))*(y(3)(2)*x(1)(1)-y(3)(1)*x(1)(2)-y(1)(2)*x(3)(1)+y(1)(1)*x(3)(2)) ------- Rewrite: -y(2)(2)*y(3)(3)*x(1)(1)*x(1)(4)+y(2)(3)*y(3)(1)*x(1)(2)*x(1)(4)-y(1)(3)*y(3)(2)*x(1)(1)*x(2)(4)+y(1)(2)*y(3)(3)*x(1)(1)*x(2)(4)+y(1)(2)*y(2)(3)*x(1)(4)*x(3)(1)-y(1)(1)*y(2)(3)*x(1)(4)*x(3)(2)+y(1)(3)*y(2)(2)*x(1)(1)*x(3)(4)-y(1)(2)*y(2)(3)*x(1)(1)*x(3)(4) ----------- TeX output: S(\eps{1}{3}{1}{2}, \lam{1}{2}{3}{2}{3}{4}) = (y_{1, 2} y_{3, 3}) \del{1}{2}{1}{4} +(-y_{1, 3} y_{3, 1}-y_{1, 1} y_{3, 3}) \del{1}{2}{2}{4} +(y_{1, 1} y_{3, 2}) \del{1}{2}{3}{4} +(-y_{1, 2} y_{2, 3}) \del{1}{3}{1}{4} +(y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{1}{3}{2}{4} +(-y_{1, 1} y_{2, 2}) \del{1}{3}{3}{4} +(y_{1, 2} y_{1, 3}) \del{2}{3}{1}{4} +(-2 y_{1, 1} y_{1, 3}) \del{2}{3}{2}{4} +(y_{1, 1} y_{1, 2}) \del{2}{3}{3}{4} +(-y_{3, 3} x_{1, 4}+y_{1, 3} x_{3, 4}) \eps{1}{2}{1}{2} +(y_{3, 1} x_{1, 4}-y_{1, 1} x_{3, 4}) \eps{1}{2}{2}{3} +(-y_{1, 3} x_{2, 4}) \eps{1}{3}{1}{2} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{3}{2}{3} +(-x_{1, 4}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,3 2,4,4 Lead Term of Spoly: -y(2)(2)*y(3)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: y(1)(2)*y(3)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(1)(4)*y(3)(1)-y(1)(1)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: -y(1)(2)*y(2)(4) Lead Term of Product: y(1)(2)*y(2)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(2)*y(1)(4) Lead Term of Product: -y(1)(2)*y(1)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -2*y(1)(1)*y(1)(4) Lead Term of Product: 2*y(1)(1)*y(1)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(4)*x(1)(4)+y(1)(4)*x(3)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: y(3)(1)*x(1)(4)-y(1)(1)*x(3)(4) Lead Term of Product: y(2)(4)*y(3)(1)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(1)(4)*x(2)(4) Lead Term of Product: -y(1)(4)*y(3)(2)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: -x(1)(4) Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(4)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(4)) - (-y(2)(4)*x(1)(4))*(y(3)(2)*x(1)(1)-y(3)(1)*x(1)(2)-y(1)(2)*x(3)(1)+y(1)(1)*x(3)(2)) ------- Rewrite: -y(2)(2)*y(3)(4)*x(1)(1)*x(1)(4)+y(2)(4)*y(3)(1)*x(1)(2)*x(1)(4)-y(1)(4)*y(3)(2)*x(1)(1)*x(2)(4)+y(1)(2)*y(3)(4)*x(1)(1)*x(2)(4)+y(1)(2)*y(2)(4)*x(1)(4)*x(3)(1)-y(1)(1)*y(2)(4)*x(1)(4)*x(3)(2)+y(1)(4)*y(2)(2)*x(1)(1)*x(3)(4)-y(1)(2)*y(2)(4)*x(1)(1)*x(3)(4) ----------- TeX output: S(\eps{1}{3}{1}{2}, \lam{1}{2}{3}{2}{4}{4}) = (y_{1, 2} y_{3, 4}) \del{1}{2}{1}{4} +(-y_{1, 4} y_{3, 1}-y_{1, 1} y_{3, 4}) \del{1}{2}{2}{4} +(-y_{1, 2} y_{2, 4}) \del{1}{3}{1}{4} +(y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{1}{3}{2}{4} +(y_{1, 2} y_{1, 4}) \del{2}{3}{1}{4} +(-2 y_{1, 1} y_{1, 4}) \del{2}{3}{2}{4} +(-y_{3, 4} x_{1, 4}+y_{1, 4} x_{3, 4}) \eps{1}{2}{1}{2} +(y_{3, 1} x_{1, 4}-y_{1, 1} x_{3, 4}) \eps{1}{2}{2}{4} +(-y_{1, 4} x_{2, 4}) \eps{1}{3}{1}{2} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{3}{2}{4} +(-x_{1, 4}) \lam{1}{2}{3}{1}{2}{4} ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,3,4 1,2,2 Lead Term of Spoly: -y(3)(1)*y(4)(2)*x(1)(1)*x(1)(2) Divisor: Delta 1,3 1,2 Quotient: -y(1)(2)*y(4)(1) Lead Term of Product: y(1)(2)*y(4)(1)*x(1)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 1,4 1,2 Quotient: y(1)(2)*y(3)(1) Lead Term of Product: -y(1)(2)*y(3)(1)*x(1)(2)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,2 Quotient: -y(1)(1)*y(1)(2) Lead Term of Product: y(1)(1)*y(1)(2)*x(3)(2)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(1)(1)*x(4)(2) Lead Term of Product: -y(1)(1)*y(3)(2)*x(1)(1)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(3)(1)*x(1)(2)+y(1)(1)*x(3)(2) Lead Term of Product: -y(3)(1)*y(4)(2)*x(1)(1)*x(1)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(2)*y(4)(1)*x(1)(2)+y(3)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(3)(2)-y(1)(1)*y(4)(2)*x(3)(2)-y(1)(2)*y(3)(1)*x(4)(2)+y(1)(1)*y(3)(2)*x(4)(2)) - (-y(4)(1)*x(1)(2))*(y(3)(2)*x(1)(1)-y(3)(1)*x(1)(2)-y(1)(2)*x(3)(1)+y(1)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*y(4)(2)*x(1)(1)*x(1)(2)+y(3)(1)*y(4)(1)*x(1)(2)^2+y(1)(2)*y(4)(1)*x(1)(2)*x(3)(1)-y(1)(2)*y(4)(1)*x(1)(1)*x(3)(2)+y(1)(1)*y(4)(2)*x(1)(1)*x(3)(2)-y(1)(1)*y(4)(1)*x(1)(2)*x(3)(2)+y(1)(2)*y(3)(1)*x(1)(1)*x(4)(2)-y(1)(1)*y(3)(2)*x(1)(1)*x(4)(2) ----------- TeX output: S(\eps{1}{3}{1}{2}, \lam{1}{3}{4}{1}{2}{2}) = (-y_{1, 2} y_{4, 1}) \del{1}{3}{1}{2} +(y_{1, 2} y_{3, 1}) \del{1}{4}{1}{2} +(-y_{1, 1} y_{1, 2}) \del{3}{4}{1}{2} +(-y_{1, 1} x_{4, 2}) \eps{1}{3}{1}{2} +(-y_{3, 1} x_{1, 2}+y_{1, 1} x_{3, 2}) \eps{1}{4}{1}{2} ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,3,4 1,2,3 Lead Term of Spoly: -y(3)(1)*y(4)(2)*x(1)(1)*x(1)(3) Divisor: Delta 1,3 1,3 Quotient: -y(1)(2)*y(4)(1) Lead Term of Product: y(1)(2)*y(4)(1)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: y(1)(1)*y(4)(1) Lead Term of Product: -y(1)(1)*y(4)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 1,3 Quotient: y(1)(2)*y(3)(1) Lead Term of Product: -y(1)(2)*y(3)(1)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: -y(1)(1)*y(3)(1) Lead Term of Product: y(1)(1)*y(3)(1)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(1)(1)*y(1)(2) Lead Term of Product: y(1)(1)*y(1)(2)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: y(1)(1)^2 Lead Term of Product: -y(1)(1)^2*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(3)(2)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(3)(1)*x(1)(3)+y(1)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(2)*x(1)(1)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(2)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(3)(3)-y(1)(2)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(2)*x(4)(3)) - (-y(4)(1)*x(1)(3))*(y(3)(2)*x(1)(1)-y(3)(1)*x(1)(2)-y(1)(2)*x(3)(1)+y(1)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*y(4)(2)*x(1)(1)*x(1)(3)+y(3)(1)*y(4)(1)*x(1)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(1)(3)*x(3)(1)-y(1)(1)*y(4)(1)*x(1)(3)*x(3)(2)-y(1)(2)*y(4)(1)*x(1)(1)*x(3)(3)+y(1)(1)*y(4)(2)*x(1)(1)*x(3)(3)+y(1)(2)*y(3)(1)*x(1)(1)*x(4)(3)-y(1)(1)*y(3)(2)*x(1)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{1}{2}, \lam{1}{3}{4}{1}{2}{3}) = (-y_{1, 2} y_{4, 1}) \del{1}{3}{1}{3} +(y_{1, 1} y_{4, 1}) \del{1}{3}{2}{3} +(y_{1, 2} y_{3, 1}) \del{1}{4}{1}{3} +(-y_{1, 1} y_{3, 1}) \del{1}{4}{2}{3} +(-y_{1, 1} y_{1, 2}) \del{3}{4}{1}{3} +(y_{1, 1}^2) \del{3}{4}{2}{3} +(-y_{1, 1} x_{4, 3}) \eps{1}{3}{1}{2} +(-y_{3, 1} x_{1, 3}+y_{1, 1} x_{3, 3}) \eps{1}{4}{1}{2} ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,3,4 1,2,4 Lead Term of Spoly: -y(3)(1)*y(4)(2)*x(1)(1)*x(1)(4) Divisor: Delta 1,3 1,4 Quotient: -y(1)(2)*y(4)(1) Lead Term of Product: y(1)(2)*y(4)(1)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: y(1)(1)*y(4)(1) Lead Term of Product: -y(1)(1)*y(4)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: y(1)(2)*y(3)(1) Lead Term of Product: -y(1)(2)*y(3)(1)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: -y(1)(1)*y(3)(1) Lead Term of Product: y(1)(1)*y(3)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(1)*y(1)(2) Lead Term of Product: y(1)(1)*y(1)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(1)^2 Lead Term of Product: -y(1)(1)^2*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(2)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(3)(1)*x(1)(4)+y(1)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(2)*x(1)(1)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(2)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(3)(4)-y(1)(2)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(2)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(3)(2)*x(1)(1)-y(3)(1)*x(1)(2)-y(1)(2)*x(3)(1)+y(1)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*y(4)(2)*x(1)(1)*x(1)(4)+y(3)(1)*y(4)(1)*x(1)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(1)(4)*x(3)(1)-y(1)(1)*y(4)(1)*x(1)(4)*x(3)(2)-y(1)(2)*y(4)(1)*x(1)(1)*x(3)(4)+y(1)(1)*y(4)(2)*x(1)(1)*x(3)(4)+y(1)(2)*y(3)(1)*x(1)(1)*x(4)(4)-y(1)(1)*y(3)(2)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{1}{2}, \lam{1}{3}{4}{1}{2}{4}) = (-y_{1, 2} y_{4, 1}) \del{1}{3}{1}{4} +(y_{1, 1} y_{4, 1}) \del{1}{3}{2}{4} +(y_{1, 2} y_{3, 1}) \del{1}{4}{1}{4} +(-y_{1, 1} y_{3, 1}) \del{1}{4}{2}{4} +(-y_{1, 1} y_{1, 2}) \del{3}{4}{1}{4} +(y_{1, 1}^2) \del{3}{4}{2}{4} +(-y_{1, 1} x_{4, 4}) \eps{1}{3}{1}{2} +(-y_{3, 1} x_{1, 4}+y_{1, 1} x_{3, 4}) \eps{1}{4}{1}{2} ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 2,3,4 1,2,2 Lead Term of Spoly: -y(3)(1)*y(4)(2)*x(1)(1)*x(2)(2) Divisor: Delta 2,3 1,2 Quotient: -y(1)(2)*y(4)(1) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 2,4 1,2 Quotient: y(1)(2)*y(3)(1) Lead Term of Product: -y(1)(2)*y(3)(1)*x(2)(2)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,2 Quotient: -y(1)(2)*y(2)(1) Lead Term of Product: y(1)(2)*y(2)(1)*x(3)(2)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(1)*x(3)(2)+y(3)(1)*x(4)(2) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(2)(1)*x(4)(2) Lead Term of Product: -y(2)(1)*y(3)(2)*x(1)(1)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(3)(1)*x(2)(2)+y(2)(1)*x(3)(2) Lead Term of Product: -y(3)(1)*y(4)(2)*x(1)(1)*x(2)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(2)*y(4)(1)*x(2)(2)+y(3)(1)*y(4)(2)*x(2)(2)+y(2)(2)*y(4)(1)*x(3)(2)-y(2)(1)*y(4)(2)*x(3)(2)-y(2)(2)*y(3)(1)*x(4)(2)+y(2)(1)*y(3)(2)*x(4)(2)) - (-y(4)(1)*x(2)(2))*(y(3)(2)*x(1)(1)-y(3)(1)*x(1)(2)-y(1)(2)*x(3)(1)+y(1)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*y(4)(2)*x(1)(1)*x(2)(2)+y(3)(1)*y(4)(1)*x(1)(2)*x(2)(2)+y(1)(2)*y(4)(1)*x(2)(2)*x(3)(1)-y(2)(2)*y(4)(1)*x(1)(1)*x(3)(2)+y(2)(1)*y(4)(2)*x(1)(1)*x(3)(2)-y(1)(1)*y(4)(1)*x(2)(2)*x(3)(2)+y(2)(2)*y(3)(1)*x(1)(1)*x(4)(2)-y(2)(1)*y(3)(2)*x(1)(1)*x(4)(2) ----------- TeX output: S(\eps{1}{3}{1}{2}, \lam{2}{3}{4}{1}{2}{2}) = (-y_{1, 2} y_{4, 1}) \del{2}{3}{1}{2} +(y_{1, 2} y_{3, 1}) \del{2}{4}{1}{2} +(-y_{1, 2} y_{2, 1}) \del{3}{4}{1}{2} +(-y_{4, 1} x_{3, 2}+y_{3, 1} x_{4, 2}) \eps{1}{2}{1}{2} +(-y_{2, 1} x_{4, 2}) \eps{1}{3}{1}{2} +(-y_{3, 1} x_{2, 2}+y_{2, 1} x_{3, 2}) \eps{1}{4}{1}{2} ---------------------------------- Epsilon: 1,3 1,2 Lam: 2,3,4 1,2,3 Lead Term of Spoly: -y(3)(1)*y(4)(2)*x(1)(1)*x(2)(3) Divisor: Delta 2,3 1,3 Quotient: -y(1)(2)*y(4)(1) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: y(1)(1)*y(4)(1) Lead Term of Product: -y(1)(1)*y(4)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: y(1)(2)*y(3)(1) Lead Term of Product: -y(1)(2)*y(3)(1)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(1)*y(3)(1) Lead Term of Product: y(1)(1)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(1)(2)*y(2)(1) Lead Term of Product: y(1)(2)*y(2)(1)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: y(1)(1)*y(2)(1) Lead Term of Product: -y(1)(1)*y(2)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(1)*x(3)(3)+y(3)(1)*x(4)(3) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(2)(1)*x(4)(3) Lead Term of Product: -y(2)(1)*y(3)(2)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(3)(1)*x(2)(3)+y(2)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(2)*x(1)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(2)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(2)*x(2)(3)+y(2)(2)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(2)*x(3)(3)-y(2)(2)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(2)*x(4)(3)) - (-y(4)(1)*x(2)(3))*(y(3)(2)*x(1)(1)-y(3)(1)*x(1)(2)-y(1)(2)*x(3)(1)+y(1)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*y(4)(2)*x(1)(1)*x(2)(3)+y(3)(1)*y(4)(1)*x(1)(2)*x(2)(3)+y(1)(2)*y(4)(1)*x(2)(3)*x(3)(1)-y(1)(1)*y(4)(1)*x(2)(3)*x(3)(2)-y(2)(2)*y(4)(1)*x(1)(1)*x(3)(3)+y(2)(1)*y(4)(2)*x(1)(1)*x(3)(3)+y(2)(2)*y(3)(1)*x(1)(1)*x(4)(3)-y(2)(1)*y(3)(2)*x(1)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{1}{2}, \lam{2}{3}{4}{1}{2}{3}) = (-y_{1, 2} y_{4, 1}) \del{2}{3}{1}{3} +(y_{1, 1} y_{4, 1}) \del{2}{3}{2}{3} +(y_{1, 2} y_{3, 1}) \del{2}{4}{1}{3} +(-y_{1, 1} y_{3, 1}) \del{2}{4}{2}{3} +(-y_{1, 2} y_{2, 1}) \del{3}{4}{1}{3} +(y_{1, 1} y_{2, 1}) \del{3}{4}{2}{3} +(-y_{4, 1} x_{3, 3}+y_{3, 1} x_{4, 3}) \eps{1}{2}{1}{2} +(-y_{2, 1} x_{4, 3}) \eps{1}{3}{1}{2} +(-y_{3, 1} x_{2, 3}+y_{2, 1} x_{3, 3}) \eps{1}{4}{1}{2} ---------------------------------- Epsilon: 1,3 1,2 Lam: 2,3,4 1,2,4 Lead Term of Spoly: -y(3)(1)*y(4)(2)*x(1)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: -y(1)(2)*y(4)(1) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(1)*y(4)(1) Lead Term of Product: -y(1)(1)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(1)(2)*y(3)(1) Lead Term of Product: -y(1)(2)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(1)*y(3)(1) Lead Term of Product: y(1)(1)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(2)*y(2)(1) Lead Term of Product: y(1)(2)*y(2)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(1)*y(2)(1) Lead Term of Product: -y(1)(1)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(1)*x(3)(4)+y(3)(1)*x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(2)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(2)*x(1)(1)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(2)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(2)*x(2)(4)+y(2)(2)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(2)*x(3)(4)-y(2)(2)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(2)*x(4)(4)) - (-y(4)(1)*x(2)(4))*(y(3)(2)*x(1)(1)-y(3)(1)*x(1)(2)-y(1)(2)*x(3)(1)+y(1)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*y(4)(2)*x(1)(1)*x(2)(4)+y(3)(1)*y(4)(1)*x(1)(2)*x(2)(4)+y(1)(2)*y(4)(1)*x(2)(4)*x(3)(1)-y(1)(1)*y(4)(1)*x(2)(4)*x(3)(2)-y(2)(2)*y(4)(1)*x(1)(1)*x(3)(4)+y(2)(1)*y(4)(2)*x(1)(1)*x(3)(4)+y(2)(2)*y(3)(1)*x(1)(1)*x(4)(4)-y(2)(1)*y(3)(2)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{1}{2}, \lam{2}{3}{4}{1}{2}{4}) = (-y_{1, 2} y_{4, 1}) \del{2}{3}{1}{4} +(y_{1, 1} y_{4, 1}) \del{2}{3}{2}{4} +(y_{1, 2} y_{3, 1}) \del{2}{4}{1}{4} +(-y_{1, 1} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{1, 2} y_{2, 1}) \del{3}{4}{1}{4} +(y_{1, 1} y_{2, 1}) \del{3}{4}{2}{4} +(-y_{4, 1} x_{3, 4}+y_{3, 1} x_{4, 4}) \eps{1}{2}{1}{2} +(-y_{2, 1} x_{4, 4}) \eps{1}{3}{1}{2} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{1}{4}{1}{2} ---------------------------------- Epsilon: 1,3 1,2 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,3 3,4,4 Lead Term of Spoly: -y(2)(3)*y(3)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: y(1)(3)*y(3)(4) Lead Term of Product: -y(1)(3)*y(3)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(1)(4)*y(3)(1)-y(1)(1)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(1)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: -y(1)(3)*y(2)(4) Lead Term of Product: y(1)(3)*y(2)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(3)*y(1)(4) Lead Term of Product: -y(1)(3)*y(1)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -2*y(1)(1)*y(1)(4) Lead Term of Product: 2*y(1)(1)*y(1)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(4)*x(1)(4)+y(1)(4)*x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(4)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: y(3)(1)*x(1)(4)-y(1)(1)*x(3)(4) Lead Term of Product: y(2)(4)*y(3)(1)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(1)(4)*x(2)(4) Lead Term of Product: -y(1)(4)*y(3)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,3,4 Quotient: -x(1)(4) Lead Term of Product: y(2)(3)*y(3)(1)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(2)(4)*x(1)(4))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) ------- Rewrite: -y(2)(3)*y(3)(4)*x(1)(1)*x(1)(4)+y(2)(4)*y(3)(1)*x(1)(3)*x(1)(4)-y(1)(4)*y(3)(3)*x(1)(1)*x(2)(4)+y(1)(3)*y(3)(4)*x(1)(1)*x(2)(4)+y(1)(3)*y(2)(4)*x(1)(4)*x(3)(1)-y(1)(1)*y(2)(4)*x(1)(4)*x(3)(3)+y(1)(4)*y(2)(3)*x(1)(1)*x(3)(4)-y(1)(3)*y(2)(4)*x(1)(1)*x(3)(4) ----------- TeX output: S(\eps{1}{3}{1}{3}, \lam{1}{2}{3}{3}{4}{4}) = (y_{1, 3} y_{3, 4}) \del{1}{2}{1}{4} +(-y_{1, 4} y_{3, 1}-y_{1, 1} y_{3, 4}) \del{1}{2}{3}{4} +(-y_{1, 3} y_{2, 4}) \del{1}{3}{1}{4} +(y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{1}{3}{3}{4} +(y_{1, 3} y_{1, 4}) \del{2}{3}{1}{4} +(-2 y_{1, 1} y_{1, 4}) \del{2}{3}{3}{4} +(-y_{3, 4} x_{1, 4}+y_{1, 4} x_{3, 4}) \eps{1}{2}{1}{3} +(y_{3, 1} x_{1, 4}-y_{1, 1} x_{3, 4}) \eps{1}{2}{3}{4} +(-y_{1, 4} x_{2, 4}) \eps{1}{3}{1}{3} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{3}{3}{4} +(-x_{1, 4}) \lam{1}{2}{3}{1}{3}{4} ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,3,4 1,3,3 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(1)(1)*x(1)(3) Divisor: Delta 1,3 1,3 Quotient: -y(1)(3)*y(4)(1) Lead Term of Product: y(1)(3)*y(4)(1)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 1,4 1,3 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(3)(3)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: -y(3)(1)*x(1)(3)+y(1)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(1)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(3)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(3)) - (-y(4)(1)*x(1)(3))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(1)(1)*x(1)(3)+y(3)(1)*y(4)(1)*x(1)(3)^2+y(1)(3)*y(4)(1)*x(1)(3)*x(3)(1)-y(1)(3)*y(4)(1)*x(1)(1)*x(3)(3)+y(1)(1)*y(4)(3)*x(1)(1)*x(3)(3)-y(1)(1)*y(4)(1)*x(1)(3)*x(3)(3)+y(1)(3)*y(3)(1)*x(1)(1)*x(4)(3)-y(1)(1)*y(3)(3)*x(1)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{1}{3}, \lam{1}{3}{4}{1}{3}{3}) = (-y_{1, 3} y_{4, 1}) \del{1}{3}{1}{3} +(y_{1, 3} y_{3, 1}) \del{1}{4}{1}{3} +(-y_{1, 1} y_{1, 3}) \del{3}{4}{1}{3} +(-y_{1, 1} x_{4, 3}) \eps{1}{3}{1}{3} +(-y_{3, 1} x_{1, 3}+y_{1, 1} x_{3, 3}) \eps{1}{4}{1}{3} ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,3,4 1,3,4 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(1)(1)*x(1)(4) Divisor: Delta 1,3 1,4 Quotient: -y(1)(3)*y(4)(1) Lead Term of Product: y(1)(3)*y(4)(1)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(1)(1)*y(4)(1) Lead Term of Product: -y(1)(1)*y(4)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: -y(1)(1)*y(3)(1) Lead Term of Product: y(1)(1)*y(3)(1)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(1)^2 Lead Term of Product: -y(1)(1)^2*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: -y(3)(1)*x(1)(4)+y(1)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(1)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(3)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(1)(1)*x(1)(4)+y(3)(1)*y(4)(1)*x(1)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(1)(4)*x(3)(1)-y(1)(1)*y(4)(1)*x(1)(4)*x(3)(3)-y(1)(3)*y(4)(1)*x(1)(1)*x(3)(4)+y(1)(1)*y(4)(3)*x(1)(1)*x(3)(4)+y(1)(3)*y(3)(1)*x(1)(1)*x(4)(4)-y(1)(1)*y(3)(3)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{1}{3}, \lam{1}{3}{4}{1}{3}{4}) = (-y_{1, 3} y_{4, 1}) \del{1}{3}{1}{4} +(y_{1, 1} y_{4, 1}) \del{1}{3}{3}{4} +(y_{1, 3} y_{3, 1}) \del{1}{4}{1}{4} +(-y_{1, 1} y_{3, 1}) \del{1}{4}{3}{4} +(-y_{1, 1} y_{1, 3}) \del{3}{4}{1}{4} +(y_{1, 1}^2) \del{3}{4}{3}{4} +(-y_{1, 1} x_{4, 4}) \eps{1}{3}{1}{3} +(-y_{3, 1} x_{1, 4}+y_{1, 1} x_{3, 4}) \eps{1}{4}{1}{3} ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(1)*x(1)(3) Divisor: Delta 1,3 1,3 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: -y(1)(1)*y(4)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(3)*x(1)(3)+y(1)(3)*x(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(1)*x(1)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(1)(2)*x(4)(3) Lead Term of Product: -y(1)(2)*y(3)(3)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(1)(3)+y(1)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(4)(2)*x(1)(3))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(1)*x(1)(3)+y(3)(1)*y(4)(2)*x(1)(3)^2+y(1)(3)*y(4)(2)*x(1)(3)*x(3)(1)-y(1)(3)*y(4)(2)*x(1)(1)*x(3)(3)+y(1)(2)*y(4)(3)*x(1)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(1)(3)*x(3)(3)+y(1)(3)*y(3)(2)*x(1)(1)*x(4)(3)-y(1)(2)*y(3)(3)*x(1)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{1}{3}, \lam{1}{3}{4}{2}{3}{3}) = (-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{1}{3}{1}{3} +(-y_{1, 1} y_{4, 3}) \del{1}{3}{2}{3} +(y_{1, 3} y_{3, 1}) \del{1}{4}{2}{3} +(-y_{1, 1} y_{1, 3}) \del{3}{4}{2}{3} +(-y_{4, 3} x_{1, 3}+y_{1, 3} x_{4, 3}) \eps{1}{3}{1}{2} +(-y_{1, 2} x_{4, 3}) \eps{1}{3}{1}{3} +(-y_{3, 1} x_{1, 3}+y_{1, 1} x_{3, 3}) \eps{1}{4}{2}{3} ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,3,4 2,3,4 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(1)*x(1)(4) Divisor: Delta 1,3 1,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(1)(1)*y(4)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: -y(1)(2)*y(3)(1) Lead Term of Product: y(1)(2)*y(3)(1)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(1)*y(1)(2) Lead Term of Product: -y(1)(1)*y(1)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(3)*x(1)(4)+y(1)(3)*x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(1)(4)+y(1)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(1)*x(1)(4)+y(3)(1)*y(4)(2)*x(1)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(1)(4)*x(3)(1)-y(1)(1)*y(4)(2)*x(1)(4)*x(3)(3)-y(1)(3)*y(4)(2)*x(1)(1)*x(3)(4)+y(1)(2)*y(4)(3)*x(1)(1)*x(3)(4)+y(1)(3)*y(3)(2)*x(1)(1)*x(4)(4)-y(1)(2)*y(3)(3)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{1}{3}, \lam{1}{3}{4}{2}{3}{4}) = (-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{1}{3}{1}{4} +(-y_{1, 1} y_{4, 3}) \del{1}{3}{2}{4} +(y_{1, 1} y_{4, 2}) \del{1}{3}{3}{4} +(y_{1, 3} y_{3, 1}) \del{1}{4}{2}{4} +(-y_{1, 2} y_{3, 1}) \del{1}{4}{3}{4} +(-y_{1, 1} y_{1, 3}) \del{3}{4}{2}{4} +(y_{1, 1} y_{1, 2}) \del{3}{4}{3}{4} +(-y_{4, 3} x_{1, 4}+y_{1, 3} x_{4, 4}) \eps{1}{3}{1}{2} +(-y_{1, 2} x_{4, 4}) \eps{1}{3}{1}{3} +(-y_{3, 1} x_{1, 4}+y_{1, 1} x_{3, 4}) \eps{1}{4}{2}{3} ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 2,3,4 1,3,3 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(1)(1)*x(2)(3) Divisor: Delta 2,3 1,3 Quotient: -y(1)(3)*y(4)(1) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(1)(3)*y(2)(1) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(1)*x(3)(3)+y(3)(1)*x(4)(3) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(2)(1)*x(4)(3) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: -y(3)(1)*x(2)(3)+y(2)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(3)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(3)*x(4)(3)) - (-y(4)(1)*x(2)(3))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(1)(1)*x(2)(3)+y(3)(1)*y(4)(1)*x(1)(3)*x(2)(3)+y(1)(3)*y(4)(1)*x(2)(3)*x(3)(1)-y(2)(3)*y(4)(1)*x(1)(1)*x(3)(3)+y(2)(1)*y(4)(3)*x(1)(1)*x(3)(3)-y(1)(1)*y(4)(1)*x(2)(3)*x(3)(3)+y(2)(3)*y(3)(1)*x(1)(1)*x(4)(3)-y(2)(1)*y(3)(3)*x(1)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{1}{3}, \lam{2}{3}{4}{1}{3}{3}) = (-y_{1, 3} y_{4, 1}) \del{2}{3}{1}{3} +(y_{1, 3} y_{3, 1}) \del{2}{4}{1}{3} +(-y_{1, 3} y_{2, 1}) \del{3}{4}{1}{3} +(-y_{4, 1} x_{3, 3}+y_{3, 1} x_{4, 3}) \eps{1}{2}{1}{3} +(-y_{2, 1} x_{4, 3}) \eps{1}{3}{1}{3} +(-y_{3, 1} x_{2, 3}+y_{2, 1} x_{3, 3}) \eps{1}{4}{1}{3} ---------------------------------- Epsilon: 1,3 1,3 Lam: 2,3,4 1,3,4 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(1)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: -y(1)(3)*y(4)(1) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(1)*y(4)(1) Lead Term of Product: -y(1)(1)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(1)*y(3)(1) Lead Term of Product: y(1)(1)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(3)*y(2)(1) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(1)*y(2)(1) Lead Term of Product: -y(1)(1)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(1)*x(3)(4)+y(3)(1)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(1)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(3)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(3)*x(4)(4)) - (-y(4)(1)*x(2)(4))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(1)(1)*x(2)(4)+y(3)(1)*y(4)(1)*x(1)(3)*x(2)(4)+y(1)(3)*y(4)(1)*x(2)(4)*x(3)(1)-y(1)(1)*y(4)(1)*x(2)(4)*x(3)(3)-y(2)(3)*y(4)(1)*x(1)(1)*x(3)(4)+y(2)(1)*y(4)(3)*x(1)(1)*x(3)(4)+y(2)(3)*y(3)(1)*x(1)(1)*x(4)(4)-y(2)(1)*y(3)(3)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{1}{3}, \lam{2}{3}{4}{1}{3}{4}) = (-y_{1, 3} y_{4, 1}) \del{2}{3}{1}{4} +(y_{1, 1} y_{4, 1}) \del{2}{3}{3}{4} +(y_{1, 3} y_{3, 1}) \del{2}{4}{1}{4} +(-y_{1, 1} y_{3, 1}) \del{2}{4}{3}{4} +(-y_{1, 3} y_{2, 1}) \del{3}{4}{1}{4} +(y_{1, 1} y_{2, 1}) \del{3}{4}{3}{4} +(-y_{4, 1} x_{3, 4}+y_{3, 1} x_{4, 4}) \eps{1}{2}{1}{3} +(-y_{2, 1} x_{4, 4}) \eps{1}{3}{1}{3} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{1}{4}{1}{3} ---------------------------------- Epsilon: 1,3 1,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 2,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(3) Divisor: Delta 2,3 1,3 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(1)*y(4)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(3)*y(2)(1) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(3)*x(3)(3)-y(3)(3)*x(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(2)*x(3)(3)+y(3)(2)*x(4)(3) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(3)*x(2)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1)*x(4)(3) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(2)(3)+y(2)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(3)*x(4)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(2)*x(4)(3) Lead Term of Product: -y(1)(2)*y(3)(3)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(1)(1)*x(4)(3) Lead Term of Product: y(1)(1)*y(3)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: -x(4)(3) Lead Term of Product: y(1)(3)*y(2)(2)*x(3)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(3)*y(4)(2)*x(2)(3)+y(3)(2)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(3)) - (-y(4)(2)*x(2)(3))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(3)+y(3)(1)*y(4)(2)*x(1)(3)*x(2)(3)+y(1)(3)*y(4)(2)*x(2)(3)*x(3)(1)-y(2)(3)*y(4)(2)*x(1)(1)*x(3)(3)+y(2)(2)*y(4)(3)*x(1)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(2)(3)*x(3)(3)+y(2)(3)*y(3)(2)*x(1)(1)*x(4)(3)-y(2)(2)*y(3)(3)*x(1)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{1}{3}, \lam{2}{3}{4}{2}{3}{3}) = (-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{2}{3}{1}{3} +(-y_{1, 1} y_{4, 3}) \del{2}{3}{2}{3} +(y_{1, 3} y_{3, 1}) \del{2}{4}{2}{3} +(-y_{1, 3} y_{2, 1}) \del{3}{4}{2}{3} +(y_{4, 3} x_{3, 3}-y_{3, 3} x_{4, 3}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{3, 3}+y_{3, 2} x_{4, 3}) \eps{1}{2}{1}{3} +(-y_{4, 3} x_{2, 3}) \eps{1}{3}{1}{2} +(-y_{2, 1} x_{4, 3}) \eps{1}{3}{2}{3} +(-y_{3, 1} x_{2, 3}+y_{2, 1} x_{3, 3}) \eps{1}{4}{2}{3} +(y_{1, 3} x_{4, 3}) \eps{2}{3}{1}{2} +(-y_{1, 2} x_{4, 3}) \eps{2}{3}{1}{3} +(y_{1, 1} x_{4, 3}) \eps{2}{3}{2}{3} +(-x_{4, 3}) \pho{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 1,3 1,3 Lam: 2,3,4 2,3,4 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(1)*y(4)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(2)*y(3)(1) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(3)*y(2)(1) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(2)*y(2)(1) Lead Term of Product: -y(1)(2)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(3)*x(3)(4)-y(3)(3)*x(4)(4) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(2)*x(3)(4)+y(3)(2)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(3)*x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(3)*x(4)(4) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(1)(1)*x(4)(4) Lead Term of Product: y(1)(1)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: -x(4)(4) Lead Term of Product: y(1)(3)*y(2)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(3)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(4)) - (-y(4)(2)*x(2)(4))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(4)+y(3)(1)*y(4)(2)*x(1)(3)*x(2)(4)+y(1)(3)*y(4)(2)*x(2)(4)*x(3)(1)-y(1)(1)*y(4)(2)*x(2)(4)*x(3)(3)-y(2)(3)*y(4)(2)*x(1)(1)*x(3)(4)+y(2)(2)*y(4)(3)*x(1)(1)*x(3)(4)+y(2)(3)*y(3)(2)*x(1)(1)*x(4)(4)-y(2)(2)*y(3)(3)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{1}{3}, \lam{2}{3}{4}{2}{3}{4}) = (-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{2}{3}{1}{4} +(-y_{1, 1} y_{4, 3}) \del{2}{3}{2}{4} +(y_{1, 1} y_{4, 2}) \del{2}{3}{3}{4} +(y_{1, 3} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{1, 2} y_{3, 1}) \del{2}{4}{3}{4} +(-y_{1, 3} y_{2, 1}) \del{3}{4}{2}{4} +(y_{1, 2} y_{2, 1}) \del{3}{4}{3}{4} +(y_{4, 3} x_{3, 4}-y_{3, 3} x_{4, 4}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{3, 4}+y_{3, 2} x_{4, 4}) \eps{1}{2}{1}{3} +(-y_{4, 3} x_{2, 4}) \eps{1}{3}{1}{2} +(-y_{2, 1} x_{4, 4}) \eps{1}{3}{2}{3} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{1}{4}{2}{3} +(y_{1, 3} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{1, 2} x_{4, 4}) \eps{2}{3}{1}{3} +(y_{1, 1} x_{4, 4}) \eps{2}{3}{2}{3} +(-x_{4, 4}) \pho{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 1,3 1,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: -y(3)(1)*y(4)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,3 1,4 Quotient: -y(1)(4)*y(4)(1) Lead Term of Product: y(1)(4)*y(4)(1)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,4 Quotient: -y(3)(1)*x(1)(4)+y(1)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(1)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(3)(4)*x(1)(1)-y(3)(1)*x(1)(4)-y(1)(4)*x(3)(1)+y(1)(1)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(4)(4)*x(1)(1)*x(1)(4)+y(3)(1)*y(4)(1)*x(1)(4)^2+y(1)(4)*y(4)(1)*x(1)(4)*x(3)(1)-y(1)(4)*y(4)(1)*x(1)(1)*x(3)(4)+y(1)(1)*y(4)(4)*x(1)(1)*x(3)(4)-y(1)(1)*y(4)(1)*x(1)(4)*x(3)(4)+y(1)(4)*y(3)(1)*x(1)(1)*x(4)(4)-y(1)(1)*y(3)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{1}{4}, \lam{1}{3}{4}{1}{4}{4}) = (-y_{1, 4} y_{4, 1}) \del{1}{3}{1}{4} +(y_{1, 4} y_{3, 1}) \del{1}{4}{1}{4} +(-y_{1, 1} y_{1, 4}) \del{3}{4}{1}{4} +(-y_{1, 1} x_{4, 4}) \eps{1}{3}{1}{4} +(-y_{3, 1} x_{1, 4}+y_{1, 1} x_{3, 4}) \eps{1}{4}{1}{4} ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,3 1,4 Quotient: -y(1)(4)*y(4)(2)+y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(1)(1)*y(4)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(4)*x(1)(4)+y(1)(4)*x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(3)(1)*x(1)(4)+y(1)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(2)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(3)(4)*x(1)(1)-y(3)(1)*x(1)(4)-y(1)(4)*x(3)(1)+y(1)(1)*x(3)(4)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(1)(1)*x(1)(4)+y(3)(1)*y(4)(2)*x(1)(4)^2+y(1)(4)*y(4)(2)*x(1)(4)*x(3)(1)-y(1)(4)*y(4)(2)*x(1)(1)*x(3)(4)+y(1)(2)*y(4)(4)*x(1)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(1)(4)*x(3)(4)+y(1)(4)*y(3)(2)*x(1)(1)*x(4)(4)-y(1)(2)*y(3)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{1}{4}, \lam{1}{3}{4}{2}{4}{4}) = (-y_{1, 4} y_{4, 2}+y_{1, 2} y_{4, 4}) \del{1}{3}{1}{4} +(-y_{1, 1} y_{4, 4}) \del{1}{3}{2}{4} +(y_{1, 4} y_{3, 1}) \del{1}{4}{2}{4} +(-y_{1, 1} y_{1, 4}) \del{3}{4}{2}{4} +(-y_{4, 4} x_{1, 4}+y_{1, 4} x_{4, 4}) \eps{1}{3}{1}{2} +(-y_{1, 2} x_{4, 4}) \eps{1}{3}{1}{4} +(-y_{3, 1} x_{1, 4}+y_{1, 1} x_{3, 4}) \eps{1}{4}{2}{4} ---------------------------------- Epsilon: 1,3 1,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,3 1,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(1)(1)*y(4)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(4)*x(1)(4)+y(1)(4)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(3)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(1)*x(1)(4)+y(1)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(4)(3)*x(1)(4))*(y(3)(4)*x(1)(1)-y(3)(1)*x(1)(4)-y(1)(4)*x(3)(1)+y(1)(1)*x(3)(4)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(1)*x(1)(4)+y(3)(1)*y(4)(3)*x(1)(4)^2+y(1)(4)*y(4)(3)*x(1)(4)*x(3)(1)-y(1)(4)*y(4)(3)*x(1)(1)*x(3)(4)+y(1)(3)*y(4)(4)*x(1)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(1)(4)*x(3)(4)+y(1)(4)*y(3)(3)*x(1)(1)*x(4)(4)-y(1)(3)*y(3)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{1}{4}, \lam{1}{3}{4}{3}{4}{4}) = (-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{1}{3}{1}{4} +(-y_{1, 1} y_{4, 4}) \del{1}{3}{3}{4} +(y_{1, 4} y_{3, 1}) \del{1}{4}{3}{4} +(-y_{1, 1} y_{1, 4}) \del{3}{4}{3}{4} +(-y_{4, 4} x_{1, 4}+y_{1, 4} x_{4, 4}) \eps{1}{3}{1}{3} +(-y_{1, 3} x_{4, 4}) \eps{1}{3}{1}{4} +(-y_{3, 1} x_{1, 4}+y_{1, 1} x_{3, 4}) \eps{1}{4}{3}{4} ---------------------------------- Epsilon: 1,3 1,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 2,3,4 1,4,4 Lead Term of Spoly: -y(3)(1)*y(4)(4)*x(1)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: -y(1)(4)*y(4)(1) Lead Term of Product: y(1)(4)*y(4)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(4)*y(2)(1) Lead Term of Product: y(1)(4)*y(2)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(4)(1)*x(3)(4)+y(3)(1)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,4 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(4)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(4)) - (-y(4)(1)*x(2)(4))*(y(3)(4)*x(1)(1)-y(3)(1)*x(1)(4)-y(1)(4)*x(3)(1)+y(1)(1)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(4)(4)*x(1)(1)*x(2)(4)+y(3)(1)*y(4)(1)*x(1)(4)*x(2)(4)+y(1)(4)*y(4)(1)*x(2)(4)*x(3)(1)-y(2)(4)*y(4)(1)*x(1)(1)*x(3)(4)+y(2)(1)*y(4)(4)*x(1)(1)*x(3)(4)-y(1)(1)*y(4)(1)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(1)*x(1)(1)*x(4)(4)-y(2)(1)*y(3)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{1}{4}, \lam{2}{3}{4}{1}{4}{4}) = (-y_{1, 4} y_{4, 1}) \del{2}{3}{1}{4} +(y_{1, 4} y_{3, 1}) \del{2}{4}{1}{4} +(-y_{1, 4} y_{2, 1}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{3, 4}+y_{3, 1} x_{4, 4}) \eps{1}{2}{1}{4} +(-y_{2, 1} x_{4, 4}) \eps{1}{3}{1}{4} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{1}{4}{1}{4} ---------------------------------- Epsilon: 1,3 1,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 1,4 Lam: 2,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(1)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: -y(1)(4)*y(4)(2)+y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(1)*y(4)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(4)*y(2)(1) Lead Term of Product: y(1)(4)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(4)*x(3)(4)-y(3)(4)*x(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(4)(2)*x(3)(4)+y(3)(2)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(4)*x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: y(1)(1)*x(4)(4) Lead Term of Product: y(1)(1)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,2,4 Quotient: -x(4)(4) Lead Term of Product: y(1)(4)*y(2)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(4)(2)*x(2)(4))*(y(3)(4)*x(1)(1)-y(3)(1)*x(1)(4)-y(1)(4)*x(3)(1)+y(1)(1)*x(3)(4)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(1)(1)*x(2)(4)+y(3)(1)*y(4)(2)*x(1)(4)*x(2)(4)+y(1)(4)*y(4)(2)*x(2)(4)*x(3)(1)-y(2)(4)*y(4)(2)*x(1)(1)*x(3)(4)+y(2)(2)*y(4)(4)*x(1)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(2)*x(1)(1)*x(4)(4)-y(2)(2)*y(3)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{1}{4}, \lam{2}{3}{4}{2}{4}{4}) = (-y_{1, 4} y_{4, 2}+y_{1, 2} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{1, 1} y_{4, 4}) \del{2}{3}{2}{4} +(y_{1, 4} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{1, 4} y_{2, 1}) \del{3}{4}{2}{4} +(y_{4, 4} x_{3, 4}-y_{3, 4} x_{4, 4}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{3, 4}+y_{3, 2} x_{4, 4}) \eps{1}{2}{1}{4} +(-y_{4, 4} x_{2, 4}) \eps{1}{3}{1}{2} +(-y_{2, 1} x_{4, 4}) \eps{1}{3}{2}{4} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{1}{4}{2}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{1, 2} x_{4, 4}) \eps{2}{3}{1}{4} +(y_{1, 1} x_{4, 4}) \eps{2}{3}{2}{4} +(-x_{4, 4}) \pho{1}{2}{3}{1}{2}{4} ---------------------------------- Epsilon: 1,3 1,4 Lam: 2,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(1)*y(4)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(2)(1) Lead Term of Product: y(1)(4)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(4)(4)*x(3)(4)-y(3)(4)*x(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(4)(3)*x(3)(4)+y(3)(3)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(4)*x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(3)(4)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: y(1)(1)*x(4)(4) Lead Term of Product: y(1)(1)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,3,4 Quotient: -x(4)(4) Lead Term of Product: y(1)(4)*y(2)(3)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(4)(3)*x(2)(4))*(y(3)(4)*x(1)(1)-y(3)(1)*x(1)(4)-y(1)(4)*x(3)(1)+y(1)(1)*x(3)(4)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(1)*x(2)(4)+y(3)(1)*y(4)(3)*x(1)(4)*x(2)(4)+y(1)(4)*y(4)(3)*x(2)(4)*x(3)(1)-y(2)(4)*y(4)(3)*x(1)(1)*x(3)(4)+y(2)(3)*y(4)(4)*x(1)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(3)*x(1)(1)*x(4)(4)-y(2)(3)*y(3)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{1}{4}, \lam{2}{3}{4}{3}{4}{4}) = (-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{1, 1} y_{4, 4}) \del{2}{3}{3}{4} +(y_{1, 4} y_{3, 1}) \del{2}{4}{3}{4} +(-y_{1, 4} y_{2, 1}) \del{3}{4}{3}{4} +(y_{4, 4} x_{3, 4}-y_{3, 4} x_{4, 4}) \eps{1}{2}{1}{3} +(-y_{4, 3} x_{3, 4}+y_{3, 3} x_{4, 4}) \eps{1}{2}{1}{4} +(-y_{4, 4} x_{2, 4}) \eps{1}{3}{1}{3} +(-y_{2, 1} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{1}{4}{3}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{1}{3} +(-y_{1, 3} x_{4, 4}) \eps{2}{3}{1}{4} +(y_{1, 1} x_{4, 4}) \eps{2}{3}{3}{4} +(-x_{4, 4}) \pho{1}{2}{3}{1}{3}{4} ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,3 1,2,2 Lead Term of Spoly: -y(2)(1)*y(3)(2)*y(3)(3)*x(1)(2) Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(1)*y(3)(2)*y(3)(3)*x(1)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: -y(1)(2)*y(3)(1)*y(3)(3)*x(2)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: -y(3)(2) Lead Term of Product: y(2)(2)*y(3)(1)*y(3)(2)*x(1)(3) Lead term is well behaved Divisor: Psi 1,2,3 1,2,3 Quotient: -x(3)(2) Lead Term of Product: y(1)(3)*y(2)(2)*y(3)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(3))*(-y(2)(2)*y(3)(1)*x(1)(2)+y(2)(1)*y(3)(2)*x(1)(2)+y(1)(2)*y(3)(1)*x(2)(2)-y(1)(1)*y(3)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(3)(2)+y(1)(1)*y(2)(2)*x(3)(2)) - (-y(2)(2)*y(3)(1))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) ------- Rewrite: -y(2)(1)*y(3)(2)*y(3)(3)*x(1)(2)+y(2)(2)*y(3)(1)*y(3)(2)*x(1)(3)-y(1)(2)*y(3)(1)*y(3)(3)*x(2)(2)+y(1)(1)*y(3)(2)*y(3)(3)*x(2)(2)+y(1)(3)*y(2)(2)*y(3)(1)*x(3)(2)+y(1)(2)*y(2)(1)*y(3)(3)*x(3)(2)-y(1)(1)*y(2)(2)*y(3)(3)*x(3)(2)-y(1)(2)*y(2)(2)*y(3)(1)*x(3)(3) ----------- TeX output: S(\eps{1}{3}{2}{3}, \lam{1}{2}{3}{1}{2}{2}) = (-y_{2, 1} y_{3, 2}) \eps{1}{3}{2}{3} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \eps{2}{3}{2}{3} +(-y_{3, 2}) \lam{1}{2}{3}{1}{2}{3} +(-x_{3, 2}) \psi{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,3 3,4,4 Lead Term of Spoly: -y(2)(3)*y(3)(4)*x(1)(2)*x(1)(4) Divisor: Delta 1,2 2,4 Quotient: y(1)(3)*y(3)(4) Lead Term of Product: -y(1)(3)*y(3)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(1)(4)*y(3)(2)-y(1)(2)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(1)(3)*y(2)(4) Lead Term of Product: y(1)(3)*y(2)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(1)(4)*y(2)(2)+y(1)(2)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(3)*y(1)(4) Lead Term of Product: -y(1)(3)*y(1)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -2*y(1)(2)*y(1)(4) Lead Term of Product: 2*y(1)(2)*y(1)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(4)*x(1)(4)+y(1)(4)*x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(4)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: y(3)(2)*x(1)(4)-y(1)(2)*x(3)(4) Lead Term of Product: y(2)(4)*y(3)(2)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(1)(4)*x(2)(4) Lead Term of Product: -y(1)(4)*y(3)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(2)*x(1)(4)+y(1)(2)*x(2)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,3 2,3,4 Quotient: -x(1)(4) Lead Term of Product: y(2)(3)*y(3)(2)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(2)(4)*x(1)(4))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) ------- Rewrite: -y(2)(3)*y(3)(4)*x(1)(2)*x(1)(4)+y(2)(4)*y(3)(2)*x(1)(3)*x(1)(4)-y(1)(4)*y(3)(3)*x(1)(2)*x(2)(4)+y(1)(3)*y(3)(4)*x(1)(2)*x(2)(4)+y(1)(3)*y(2)(4)*x(1)(4)*x(3)(2)-y(1)(2)*y(2)(4)*x(1)(4)*x(3)(3)+y(1)(4)*y(2)(3)*x(1)(2)*x(3)(4)-y(1)(3)*y(2)(4)*x(1)(2)*x(3)(4) ----------- TeX output: S(\eps{1}{3}{2}{3}, \lam{1}{2}{3}{3}{4}{4}) = (y_{1, 3} y_{3, 4}) \del{1}{2}{2}{4} +(-y_{1, 4} y_{3, 2}-y_{1, 2} y_{3, 4}) \del{1}{2}{3}{4} +(-y_{1, 3} y_{2, 4}) \del{1}{3}{2}{4} +(y_{1, 4} y_{2, 2}+y_{1, 2} y_{2, 4}) \del{1}{3}{3}{4} +(y_{1, 3} y_{1, 4}) \del{2}{3}{2}{4} +(-2 y_{1, 2} y_{1, 4}) \del{2}{3}{3}{4} +(-y_{3, 4} x_{1, 4}+y_{1, 4} x_{3, 4}) \eps{1}{2}{2}{3} +(y_{3, 2} x_{1, 4}-y_{1, 2} x_{3, 4}) \eps{1}{2}{3}{4} +(-y_{1, 4} x_{2, 4}) \eps{1}{3}{2}{3} +(-y_{2, 2} x_{1, 4}+y_{1, 2} x_{2, 4}) \eps{1}{3}{3}{4} +(-x_{1, 4}) \lam{1}{2}{3}{2}{3}{4} ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,4 1,2,2 Lead Term of Spoly: -y(2)(1)*y(3)(3)*y(4)(2)*x(1)(2) Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(1)*y(3)(3)*y(4)(2)*x(1)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(3)(3)*y(4)(1)*x(2)(2) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*y(4)(3)*x(3)(2) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: -y(3)(2) Lead Term of Product: y(2)(2)*y(3)(2)*y(4)(1)*x(1)(3) Lead term is well behaved Divisor: Psi 1,2,4 1,2,3 Quotient: -x(3)(2) Lead Term of Product: y(1)(3)*y(2)(2)*y(4)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(3))*(-y(2)(2)*y(4)(1)*x(1)(2)+y(2)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(2)(2)-y(1)(1)*y(4)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(4)(2)+y(1)(1)*y(2)(2)*x(4)(2)) - (-y(2)(2)*y(4)(1))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) ------- Rewrite: -y(2)(1)*y(3)(3)*y(4)(2)*x(1)(2)+y(2)(2)*y(3)(2)*y(4)(1)*x(1)(3)-y(1)(2)*y(3)(3)*y(4)(1)*x(2)(2)+y(1)(1)*y(3)(3)*y(4)(2)*x(2)(2)+y(1)(3)*y(2)(2)*y(4)(1)*x(3)(2)-y(1)(2)*y(2)(2)*y(4)(1)*x(3)(3)+y(1)(2)*y(2)(1)*y(3)(3)*x(4)(2)-y(1)(1)*y(2)(2)*y(3)(3)*x(4)(2) ----------- TeX output: S(\eps{1}{3}{2}{3}, \lam{1}{2}{4}{1}{2}{2}) = (-y_{2, 1} y_{4, 2}) \eps{1}{3}{2}{3} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \eps{2}{3}{2}{3} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \eps{3}{4}{2}{3} +(-y_{3, 2}) \lam{1}{2}{4}{1}{2}{3} +(-x_{3, 2}) \psi{1}{2}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,3,4 1,2,2 Lead Term of Spoly: -y(3)(1)*y(3)(3)*y(4)(2)*x(1)(2) Divisor: Epsilon 1,3 2,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(3)(3)*y(4)(2)*x(1)(2) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: -y(1)(2)*y(3)(1)*y(4)(3)*x(3)(2) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -y(3)(2) Lead Term of Product: y(3)(2)^2*y(4)(1)*x(1)(3) Lead term is well behaved Divisor: Psi 1,3,4 1,2,3 Quotient: -x(3)(2) Lead Term of Product: y(1)(3)*y(3)(2)*y(4)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(3))*(-y(3)(2)*y(4)(1)*x(1)(2)+y(3)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(3)(2)-y(1)(1)*y(4)(2)*x(3)(2)-y(1)(2)*y(3)(1)*x(4)(2)+y(1)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(3)(3)*y(4)(2)*x(1)(2)+y(3)(2)^2*y(4)(1)*x(1)(3)+y(1)(3)*y(3)(2)*y(4)(1)*x(3)(2)-y(1)(2)*y(3)(3)*y(4)(1)*x(3)(2)+y(1)(1)*y(3)(3)*y(4)(2)*x(3)(2)-y(1)(2)*y(3)(2)*y(4)(1)*x(3)(3)+y(1)(2)*y(3)(1)*y(3)(3)*x(4)(2)-y(1)(1)*y(3)(2)*y(3)(3)*x(4)(2) ----------- TeX output: S(\eps{1}{3}{2}{3}, \lam{1}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \eps{1}{3}{2}{3} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \eps{3}{4}{2}{3} +(-y_{3, 2}) \lam{1}{3}{4}{1}{2}{3} +(-x_{3, 2}) \psi{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,3,4 1,3,3 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(1)(2)*x(1)(3) Divisor: Delta 1,3 2,3 Quotient: -y(1)(3)*y(4)(1) Lead Term of Product: y(1)(3)*y(4)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(3)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(1)(3)+y(1)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(1)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -x(1)(3) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(3)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(3)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(3)) - (-y(4)(1)*x(1)(3))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(1)(2)*x(1)(3)+y(3)(2)*y(4)(1)*x(1)(3)^2+y(1)(3)*y(4)(1)*x(1)(3)*x(3)(2)-y(1)(3)*y(4)(1)*x(1)(2)*x(3)(3)+y(1)(1)*y(4)(3)*x(1)(2)*x(3)(3)-y(1)(2)*y(4)(1)*x(1)(3)*x(3)(3)+y(1)(3)*y(3)(1)*x(1)(2)*x(4)(3)-y(1)(1)*y(3)(3)*x(1)(2)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{2}{3}, \lam{1}{3}{4}{1}{3}{3}) = (-y_{1, 3} y_{4, 1}) \del{1}{3}{2}{3} +(y_{1, 3} y_{3, 1}) \del{1}{4}{2}{3} +(-y_{1, 1} y_{1, 3}) \del{3}{4}{2}{3} +(-y_{1, 1} x_{4, 3}) \eps{1}{3}{2}{3} +(-y_{3, 1} x_{1, 3}+y_{1, 1} x_{3, 3}) \eps{1}{4}{2}{3} +(-x_{1, 3}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,3,4 1,3,4 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(1)(2)*x(1)(4) Divisor: Delta 1,3 2,4 Quotient: -y(1)(3)*y(4)(1) Lead Term of Product: y(1)(3)*y(4)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: -y(1)(1)*y(3)(2) Lead Term of Product: y(1)(1)*y(3)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(1)*y(1)(3) Lead Term of Product: y(1)(1)*y(1)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(1)*y(1)(2) Lead Term of Product: -y(1)(1)*y(1)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(1)(4)+y(1)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -x(1)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(3)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(1)(2)*x(1)(4)+y(3)(2)*y(4)(1)*x(1)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(1)(4)*x(3)(2)-y(1)(2)*y(4)(1)*x(1)(4)*x(3)(3)-y(1)(3)*y(4)(1)*x(1)(2)*x(3)(4)+y(1)(1)*y(4)(3)*x(1)(2)*x(3)(4)+y(1)(3)*y(3)(1)*x(1)(2)*x(4)(4)-y(1)(1)*y(3)(3)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{2}{3}, \lam{1}{3}{4}{1}{3}{4}) = (-y_{1, 3} y_{4, 1}) \del{1}{3}{2}{4} +(y_{1, 1} y_{4, 2}) \del{1}{3}{3}{4} +(y_{1, 3} y_{3, 1}) \del{1}{4}{2}{4} +(-y_{1, 1} y_{3, 2}) \del{1}{4}{3}{4} +(-y_{1, 1} y_{1, 3}) \del{3}{4}{2}{4} +(y_{1, 1} y_{1, 2}) \del{3}{4}{3}{4} +(-y_{1, 1} x_{4, 4}) \eps{1}{3}{2}{3} +(-y_{3, 1} x_{1, 4}+y_{1, 1} x_{3, 4}) \eps{1}{4}{2}{3} +(-x_{1, 4}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(2)*x(1)(3) Divisor: Delta 1,3 2,3 Quotient: -y(1)(3)*y(4)(2) Lead Term of Product: y(1)(3)*y(4)(2)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: y(1)(3)*y(3)(2) Lead Term of Product: -y(1)(3)*y(3)(2)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(2)*y(1)(3) Lead Term of Product: y(1)(2)*y(1)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(1)(2)*x(4)(3) Lead Term of Product: -y(1)(2)*y(3)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(2)*x(1)(3)+y(1)(2)*x(3)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(2)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(4)(2)*x(1)(3))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(2)*x(1)(3)+y(3)(2)*y(4)(2)*x(1)(3)^2+y(1)(3)*y(4)(2)*x(1)(3)*x(3)(2)-y(1)(3)*y(4)(2)*x(1)(2)*x(3)(3)+y(1)(2)*y(4)(3)*x(1)(2)*x(3)(3)-y(1)(2)*y(4)(2)*x(1)(3)*x(3)(3)+y(1)(3)*y(3)(2)*x(1)(2)*x(4)(3)-y(1)(2)*y(3)(3)*x(1)(2)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{2}{3}, \lam{1}{3}{4}{2}{3}{3}) = (-y_{1, 3} y_{4, 2}) \del{1}{3}{2}{3} +(y_{1, 3} y_{3, 2}) \del{1}{4}{2}{3} +(-y_{1, 2} y_{1, 3}) \del{3}{4}{2}{3} +(-y_{1, 2} x_{4, 3}) \eps{1}{3}{2}{3} +(-y_{3, 2} x_{1, 3}+y_{1, 2} x_{3, 3}) \eps{1}{4}{2}{3} ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,3,4 2,3,4 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(2)*x(1)(4) Divisor: Delta 1,3 2,4 Quotient: -y(1)(3)*y(4)(2) Lead Term of Product: y(1)(3)*y(4)(2)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(1)(2)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(3)*y(3)(2) Lead Term of Product: -y(1)(3)*y(3)(2)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: -y(1)(2)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(2)*y(1)(3) Lead Term of Product: y(1)(2)*y(1)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(2)^2 Lead Term of Product: -y(1)(2)^2*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(2)*x(1)(4)+y(1)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(2)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(2)*x(1)(4)+y(3)(2)*y(4)(2)*x(1)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(1)(4)*x(3)(2)-y(1)(2)*y(4)(2)*x(1)(4)*x(3)(3)-y(1)(3)*y(4)(2)*x(1)(2)*x(3)(4)+y(1)(2)*y(4)(3)*x(1)(2)*x(3)(4)+y(1)(3)*y(3)(2)*x(1)(2)*x(4)(4)-y(1)(2)*y(3)(3)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{2}{3}, \lam{1}{3}{4}{2}{3}{4}) = (-y_{1, 3} y_{4, 2}) \del{1}{3}{2}{4} +(y_{1, 2} y_{4, 2}) \del{1}{3}{3}{4} +(y_{1, 3} y_{3, 2}) \del{1}{4}{2}{4} +(-y_{1, 2} y_{3, 2}) \del{1}{4}{3}{4} +(-y_{1, 2} y_{1, 3}) \del{3}{4}{2}{4} +(y_{1, 2}^2) \del{3}{4}{3}{4} +(-y_{1, 2} x_{4, 4}) \eps{1}{3}{2}{3} +(-y_{3, 2} x_{1, 4}+y_{1, 2} x_{3, 4}) \eps{1}{4}{2}{3} ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 2,3,4 1,3,3 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(3) Divisor: Delta 2,3 2,3 Quotient: -y(1)(3)*y(4)(1) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(3)*y(2)(1) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(1)*x(3)(3)+y(3)(1)*x(4)(3) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1)*x(4)(3) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(2)(3)+y(2)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: -x(4)(3) Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(3)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: x(3)(3) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(3)*x(3)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -x(2)(3) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(3)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(3)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(3)*x(4)(3)) - (-y(4)(1)*x(2)(3))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(3)+y(3)(2)*y(4)(1)*x(1)(3)*x(2)(3)+y(1)(3)*y(4)(1)*x(2)(3)*x(3)(2)-y(2)(3)*y(4)(1)*x(1)(2)*x(3)(3)+y(2)(1)*y(4)(3)*x(1)(2)*x(3)(3)-y(1)(2)*y(4)(1)*x(2)(3)*x(3)(3)+y(2)(3)*y(3)(1)*x(1)(2)*x(4)(3)-y(2)(1)*y(3)(3)*x(1)(2)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{2}{3}, \lam{2}{3}{4}{1}{3}{3}) = (-y_{1, 3} y_{4, 1}) \del{2}{3}{2}{3} +(y_{1, 3} y_{3, 1}) \del{2}{4}{2}{3} +(-y_{1, 3} y_{2, 1}) \del{3}{4}{2}{3} +(-y_{4, 1} x_{3, 3}+y_{3, 1} x_{4, 3}) \eps{1}{2}{2}{3} +(-y_{2, 1} x_{4, 3}) \eps{1}{3}{2}{3} +(-y_{3, 1} x_{2, 3}+y_{2, 1} x_{3, 3}) \eps{1}{4}{2}{3} +(-x_{4, 3}) \lam{1}{2}{3}{1}{2}{3} +(x_{3, 3}) \lam{1}{2}{4}{1}{2}{3} +(-x_{2, 3}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,3 2,3 Lam: 2,3,4 1,3,4 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(4) Divisor: Delta 2,3 2,4 Quotient: -y(1)(3)*y(4)(1) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(1)*y(3)(2) Lead Term of Product: y(1)(1)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(3)*y(2)(1) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(1)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(1)*x(3)(4)+y(3)(1)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: -x(4)(4) Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -x(2)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(3)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(3)*x(4)(4)) - (-y(4)(1)*x(2)(4))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(4)+y(3)(2)*y(4)(1)*x(1)(3)*x(2)(4)+y(1)(3)*y(4)(1)*x(2)(4)*x(3)(2)-y(1)(2)*y(4)(1)*x(2)(4)*x(3)(3)-y(2)(3)*y(4)(1)*x(1)(2)*x(3)(4)+y(2)(1)*y(4)(3)*x(1)(2)*x(3)(4)+y(2)(3)*y(3)(1)*x(1)(2)*x(4)(4)-y(2)(1)*y(3)(3)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{2}{3}, \lam{2}{3}{4}{1}{3}{4}) = (-y_{1, 3} y_{4, 1}) \del{2}{3}{2}{4} +(y_{1, 1} y_{4, 2}) \del{2}{3}{3}{4} +(y_{1, 3} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{1, 1} y_{3, 2}) \del{2}{4}{3}{4} +(-y_{1, 3} y_{2, 1}) \del{3}{4}{2}{4} +(y_{1, 1} y_{2, 2}) \del{3}{4}{3}{4} +(-y_{4, 1} x_{3, 4}+y_{3, 1} x_{4, 4}) \eps{1}{2}{2}{3} +(-y_{2, 1} x_{4, 4}) \eps{1}{3}{2}{3} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{1}{4}{2}{3} +(-x_{4, 4}) \lam{1}{2}{3}{1}{2}{3} +(x_{3, 4}) \lam{1}{2}{4}{1}{2}{3} +(-x_{2, 4}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,3 2,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 2,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(2)*x(2)(3) Divisor: Delta 2,3 2,3 Quotient: -y(1)(3)*y(4)(2) Lead Term of Product: y(1)(3)*y(4)(2)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(1)(3)*y(3)(2) Lead Term of Product: -y(1)(3)*y(3)(2)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(3)*y(2)(2) Lead Term of Product: y(1)(3)*y(2)(2)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(2)*x(3)(3)+y(3)(2)*x(4)(3) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(2)*x(4)(3) Lead Term of Product: -y(2)(2)*y(3)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(2)*x(2)(3)+y(2)(2)*x(3)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(3)*y(4)(2)*x(2)(3)+y(3)(2)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(3)) - (-y(4)(2)*x(2)(3))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(2)*x(2)(3)+y(3)(2)*y(4)(2)*x(1)(3)*x(2)(3)+y(1)(3)*y(4)(2)*x(2)(3)*x(3)(2)-y(2)(3)*y(4)(2)*x(1)(2)*x(3)(3)+y(2)(2)*y(4)(3)*x(1)(2)*x(3)(3)-y(1)(2)*y(4)(2)*x(2)(3)*x(3)(3)+y(2)(3)*y(3)(2)*x(1)(2)*x(4)(3)-y(2)(2)*y(3)(3)*x(1)(2)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{2}{3}, \lam{2}{3}{4}{2}{3}{3}) = (-y_{1, 3} y_{4, 2}) \del{2}{3}{2}{3} +(y_{1, 3} y_{3, 2}) \del{2}{4}{2}{3} +(-y_{1, 3} y_{2, 2}) \del{3}{4}{2}{3} +(-y_{4, 2} x_{3, 3}+y_{3, 2} x_{4, 3}) \eps{1}{2}{2}{3} +(-y_{2, 2} x_{4, 3}) \eps{1}{3}{2}{3} +(-y_{3, 2} x_{2, 3}+y_{2, 2} x_{3, 3}) \eps{1}{4}{2}{3} ---------------------------------- Epsilon: 1,3 2,3 Lam: 2,3,4 2,3,4 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(2)*x(2)(4) Divisor: Delta 2,3 2,4 Quotient: -y(1)(3)*y(4)(2) Lead Term of Product: y(1)(3)*y(4)(2)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(2)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(3)*y(3)(2) Lead Term of Product: -y(1)(3)*y(3)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(2)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(3)*y(2)(2) Lead Term of Product: y(1)(3)*y(2)(2)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(2)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(2)*x(3)(4)+y(3)(2)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(2)*x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(2)*x(2)(4)+y(2)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(3)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(4)) - (-y(4)(2)*x(2)(4))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(2)*x(2)(4)+y(3)(2)*y(4)(2)*x(1)(3)*x(2)(4)+y(1)(3)*y(4)(2)*x(2)(4)*x(3)(2)-y(1)(2)*y(4)(2)*x(2)(4)*x(3)(3)-y(2)(3)*y(4)(2)*x(1)(2)*x(3)(4)+y(2)(2)*y(4)(3)*x(1)(2)*x(3)(4)+y(2)(3)*y(3)(2)*x(1)(2)*x(4)(4)-y(2)(2)*y(3)(3)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{2}{3}, \lam{2}{3}{4}{2}{3}{4}) = (-y_{1, 3} y_{4, 2}) \del{2}{3}{2}{4} +(y_{1, 2} y_{4, 2}) \del{2}{3}{3}{4} +(y_{1, 3} y_{3, 2}) \del{2}{4}{2}{4} +(-y_{1, 2} y_{3, 2}) \del{2}{4}{3}{4} +(-y_{1, 3} y_{2, 2}) \del{3}{4}{2}{4} +(y_{1, 2} y_{2, 2}) \del{3}{4}{3}{4} +(-y_{4, 2} x_{3, 4}+y_{3, 2} x_{4, 4}) \eps{1}{2}{2}{3} +(-y_{2, 2} x_{4, 4}) \eps{1}{3}{2}{3} +(-y_{3, 2} x_{2, 4}+y_{2, 2} x_{3, 4}) \eps{1}{4}{2}{3} ---------------------------------- Epsilon: 1,3 2,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,3 1,2,2 Lead Term of Spoly: -y(2)(1)*y(3)(2)*y(3)(4)*x(1)(2) Divisor: Epsilon 1,3 2,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(1)*y(3)(2)*y(3)(4)*x(1)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: -y(1)(2)*y(3)(1)*y(3)(4)*x(2)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: -y(3)(2) Lead Term of Product: y(2)(2)*y(3)(1)*y(3)(2)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,3 1,2,4 Quotient: -x(3)(2) Lead Term of Product: y(1)(4)*y(2)(2)*y(3)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(2)(2)*y(3)(1)*x(1)(2)+y(2)(1)*y(3)(2)*x(1)(2)+y(1)(2)*y(3)(1)*x(2)(2)-y(1)(1)*y(3)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(3)(2)+y(1)(1)*y(2)(2)*x(3)(2)) - (-y(2)(2)*y(3)(1))*(y(3)(4)*x(1)(2)-y(3)(2)*x(1)(4)-y(1)(4)*x(3)(2)+y(1)(2)*x(3)(4)) ------- Rewrite: -y(2)(1)*y(3)(2)*y(3)(4)*x(1)(2)+y(2)(2)*y(3)(1)*y(3)(2)*x(1)(4)-y(1)(2)*y(3)(1)*y(3)(4)*x(2)(2)+y(1)(1)*y(3)(2)*y(3)(4)*x(2)(2)+y(1)(4)*y(2)(2)*y(3)(1)*x(3)(2)+y(1)(2)*y(2)(1)*y(3)(4)*x(3)(2)-y(1)(1)*y(2)(2)*y(3)(4)*x(3)(2)-y(1)(2)*y(2)(2)*y(3)(1)*x(3)(4) ----------- TeX output: S(\eps{1}{3}{2}{4}, \lam{1}{2}{3}{1}{2}{2}) = (-y_{2, 1} y_{3, 2}) \eps{1}{3}{2}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \eps{2}{3}{2}{4} +(-y_{3, 2}) \lam{1}{2}{3}{1}{2}{4} +(-x_{3, 2}) \psi{1}{2}{3}{1}{2}{4} ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,4 1,2,2 Lead Term of Spoly: -y(2)(1)*y(3)(4)*y(4)(2)*x(1)(2) Divisor: Epsilon 1,3 2,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(1)*y(3)(4)*y(4)(2)*x(1)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(3)(4)*y(4)(1)*x(2)(2) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*y(4)(4)*x(3)(2) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: -y(3)(2) Lead Term of Product: y(2)(2)*y(3)(2)*y(4)(1)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,4 1,2,4 Quotient: -x(3)(2) Lead Term of Product: y(1)(4)*y(2)(2)*y(4)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(2)(2)*y(4)(1)*x(1)(2)+y(2)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(2)(2)-y(1)(1)*y(4)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(4)(2)+y(1)(1)*y(2)(2)*x(4)(2)) - (-y(2)(2)*y(4)(1))*(y(3)(4)*x(1)(2)-y(3)(2)*x(1)(4)-y(1)(4)*x(3)(2)+y(1)(2)*x(3)(4)) ------- Rewrite: -y(2)(1)*y(3)(4)*y(4)(2)*x(1)(2)+y(2)(2)*y(3)(2)*y(4)(1)*x(1)(4)-y(1)(2)*y(3)(4)*y(4)(1)*x(2)(2)+y(1)(1)*y(3)(4)*y(4)(2)*x(2)(2)+y(1)(4)*y(2)(2)*y(4)(1)*x(3)(2)-y(1)(2)*y(2)(2)*y(4)(1)*x(3)(4)+y(1)(2)*y(2)(1)*y(3)(4)*x(4)(2)-y(1)(1)*y(2)(2)*y(3)(4)*x(4)(2) ----------- TeX output: S(\eps{1}{3}{2}{4}, \lam{1}{2}{4}{1}{2}{2}) = (-y_{2, 1} y_{4, 2}) \eps{1}{3}{2}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \eps{2}{3}{2}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \eps{3}{4}{2}{4} +(-y_{3, 2}) \lam{1}{2}{4}{1}{2}{4} +(-x_{3, 2}) \psi{1}{2}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,3,4 1,2,2 Lead Term of Spoly: -y(3)(1)*y(3)(4)*y(4)(2)*x(1)(2) Divisor: Epsilon 1,3 2,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(3)(4)*y(4)(2)*x(1)(2) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: -y(1)(2)*y(3)(1)*y(4)(4)*x(3)(2) Lead term is well behaved Divisor: Lam 1,3,4 1,2,4 Quotient: -y(3)(2) Lead Term of Product: y(3)(2)^2*y(4)(1)*x(1)(4) Lead term is well behaved Divisor: Psi 1,3,4 1,2,4 Quotient: -x(3)(2) Lead Term of Product: y(1)(4)*y(3)(2)*y(4)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(3)(2)*y(4)(1)*x(1)(2)+y(3)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(3)(2)-y(1)(1)*y(4)(2)*x(3)(2)-y(1)(2)*y(3)(1)*x(4)(2)+y(1)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(y(3)(4)*x(1)(2)-y(3)(2)*x(1)(4)-y(1)(4)*x(3)(2)+y(1)(2)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(3)(4)*y(4)(2)*x(1)(2)+y(3)(2)^2*y(4)(1)*x(1)(4)+y(1)(4)*y(3)(2)*y(4)(1)*x(3)(2)-y(1)(2)*y(3)(4)*y(4)(1)*x(3)(2)+y(1)(1)*y(3)(4)*y(4)(2)*x(3)(2)-y(1)(2)*y(3)(2)*y(4)(1)*x(3)(4)+y(1)(2)*y(3)(1)*y(3)(4)*x(4)(2)-y(1)(1)*y(3)(2)*y(3)(4)*x(4)(2) ----------- TeX output: S(\eps{1}{3}{2}{4}, \lam{1}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \eps{1}{3}{2}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \eps{3}{4}{2}{4} +(-y_{3, 2}) \lam{1}{3}{4}{1}{2}{4} +(-x_{3, 2}) \psi{1}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: -y(3)(1)*y(4)(4)*x(1)(2)*x(1)(4) Divisor: Delta 1,3 2,4 Quotient: -y(1)(4)*y(4)(1) Lead Term of Product: y(1)(4)*y(4)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(3)(1)*x(1)(4)+y(1)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,4 Quotient: -x(1)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(3)(4)*x(1)(2)-y(3)(2)*x(1)(4)-y(1)(4)*x(3)(2)+y(1)(2)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(4)(4)*x(1)(2)*x(1)(4)+y(3)(2)*y(4)(1)*x(1)(4)^2+y(1)(4)*y(4)(1)*x(1)(4)*x(3)(2)-y(1)(4)*y(4)(1)*x(1)(2)*x(3)(4)+y(1)(1)*y(4)(4)*x(1)(2)*x(3)(4)-y(1)(2)*y(4)(1)*x(1)(4)*x(3)(4)+y(1)(4)*y(3)(1)*x(1)(2)*x(4)(4)-y(1)(1)*y(3)(4)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{2}{4}, \lam{1}{3}{4}{1}{4}{4}) = (-y_{1, 4} y_{4, 1}) \del{1}{3}{2}{4} +(y_{1, 4} y_{3, 1}) \del{1}{4}{2}{4} +(-y_{1, 1} y_{1, 4}) \del{3}{4}{2}{4} +(-y_{1, 1} x_{4, 4}) \eps{1}{3}{2}{4} +(-y_{3, 1} x_{1, 4}+y_{1, 1} x_{3, 4}) \eps{1}{4}{2}{4} +(-x_{1, 4}) \lam{1}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(1)(2)*x(1)(4) Divisor: Delta 1,3 2,4 Quotient: -y(1)(4)*y(4)(2) Lead Term of Product: y(1)(4)*y(4)(2)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(4)*y(3)(2) Lead Term of Product: -y(1)(4)*y(3)(2)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(2)*y(1)(4) Lead Term of Product: y(1)(2)*y(1)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(3)(2)*x(1)(4)+y(1)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(2)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(3)(4)*x(1)(2)-y(3)(2)*x(1)(4)-y(1)(4)*x(3)(2)+y(1)(2)*x(3)(4)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(1)(2)*x(1)(4)+y(3)(2)*y(4)(2)*x(1)(4)^2+y(1)(4)*y(4)(2)*x(1)(4)*x(3)(2)-y(1)(4)*y(4)(2)*x(1)(2)*x(3)(4)+y(1)(2)*y(4)(4)*x(1)(2)*x(3)(4)-y(1)(2)*y(4)(2)*x(1)(4)*x(3)(4)+y(1)(4)*y(3)(2)*x(1)(2)*x(4)(4)-y(1)(2)*y(3)(4)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{2}{4}, \lam{1}{3}{4}{2}{4}{4}) = (-y_{1, 4} y_{4, 2}) \del{1}{3}{2}{4} +(y_{1, 4} y_{3, 2}) \del{1}{4}{2}{4} +(-y_{1, 2} y_{1, 4}) \del{3}{4}{2}{4} +(-y_{1, 2} x_{4, 4}) \eps{1}{3}{2}{4} +(-y_{3, 2} x_{1, 4}+y_{1, 2} x_{3, 4}) \eps{1}{4}{2}{4} ---------------------------------- Epsilon: 1,3 2,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(2)*x(1)(4) Divisor: Delta 1,3 2,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(1)(2)*y(4)(4) Lead Term of Product: y(1)(2)*y(4)(4)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(1)(4)*y(3)(2) Lead Term of Product: -y(1)(4)*y(3)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(2)*y(1)(4) Lead Term of Product: y(1)(2)*y(1)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(4)*x(1)(4)+y(1)(4)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(3)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(2)*x(1)(4)+y(1)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(4)(3)*x(1)(4))*(y(3)(4)*x(1)(2)-y(3)(2)*x(1)(4)-y(1)(4)*x(3)(2)+y(1)(2)*x(3)(4)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)^2+y(1)(4)*y(4)(3)*x(1)(4)*x(3)(2)-y(1)(4)*y(4)(3)*x(1)(2)*x(3)(4)+y(1)(3)*y(4)(4)*x(1)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(1)(4)*x(3)(4)+y(1)(4)*y(3)(3)*x(1)(2)*x(4)(4)-y(1)(3)*y(3)(4)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{2}{4}, \lam{1}{3}{4}{3}{4}{4}) = (-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{1}{3}{2}{4} +(-y_{1, 2} y_{4, 4}) \del{1}{3}{3}{4} +(y_{1, 4} y_{3, 2}) \del{1}{4}{3}{4} +(-y_{1, 2} y_{1, 4}) \del{3}{4}{3}{4} +(-y_{4, 4} x_{1, 4}+y_{1, 4} x_{4, 4}) \eps{1}{3}{2}{3} +(-y_{1, 3} x_{4, 4}) \eps{1}{3}{2}{4} +(-y_{3, 2} x_{1, 4}+y_{1, 2} x_{3, 4}) \eps{1}{4}{3}{4} ---------------------------------- Epsilon: 1,3 2,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 2,3,4 1,4,4 Lead Term of Spoly: -y(3)(1)*y(4)(4)*x(1)(2)*x(2)(4) Divisor: Delta 2,3 2,4 Quotient: -y(1)(4)*y(4)(1) Lead Term of Product: y(1)(4)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(4)*y(2)(1) Lead Term of Product: y(1)(4)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(4)(1)*x(3)(4)+y(3)(1)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: -x(4)(4) Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(4)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: x(3)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(4)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(4)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(4)) - (-y(4)(1)*x(2)(4))*(y(3)(4)*x(1)(2)-y(3)(2)*x(1)(4)-y(1)(4)*x(3)(2)+y(1)(2)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(4)(4)*x(1)(2)*x(2)(4)+y(3)(2)*y(4)(1)*x(1)(4)*x(2)(4)+y(1)(4)*y(4)(1)*x(2)(4)*x(3)(2)-y(2)(4)*y(4)(1)*x(1)(2)*x(3)(4)+y(2)(1)*y(4)(4)*x(1)(2)*x(3)(4)-y(1)(2)*y(4)(1)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(1)*x(1)(2)*x(4)(4)-y(2)(1)*y(3)(4)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{2}{4}, \lam{2}{3}{4}{1}{4}{4}) = (-y_{1, 4} y_{4, 1}) \del{2}{3}{2}{4} +(y_{1, 4} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{1, 4} y_{2, 1}) \del{3}{4}{2}{4} +(-y_{4, 1} x_{3, 4}+y_{3, 1} x_{4, 4}) \eps{1}{2}{2}{4} +(-y_{2, 1} x_{4, 4}) \eps{1}{3}{2}{4} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{1}{4}{2}{4} +(-x_{4, 4}) \lam{1}{2}{3}{1}{2}{4} +(x_{3, 4}) \lam{1}{2}{4}{1}{2}{4} +(-x_{2, 4}) \lam{1}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,3 2,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 2,4 Lam: 2,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(1)(2)*x(2)(4) Divisor: Delta 2,3 2,4 Quotient: -y(1)(4)*y(4)(2) Lead Term of Product: y(1)(4)*y(4)(2)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(4)*y(3)(2) Lead Term of Product: -y(1)(4)*y(3)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(4)*y(2)(2) Lead Term of Product: y(1)(4)*y(2)(2)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(4)(2)*x(3)(4)+y(3)(2)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(2)(2)*x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(3)(2)*x(2)(4)+y(2)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(4)(2)*x(2)(4))*(y(3)(4)*x(1)(2)-y(3)(2)*x(1)(4)-y(1)(4)*x(3)(2)+y(1)(2)*x(3)(4)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(1)(2)*x(2)(4)+y(3)(2)*y(4)(2)*x(1)(4)*x(2)(4)+y(1)(4)*y(4)(2)*x(2)(4)*x(3)(2)-y(2)(4)*y(4)(2)*x(1)(2)*x(3)(4)+y(2)(2)*y(4)(4)*x(1)(2)*x(3)(4)-y(1)(2)*y(4)(2)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(2)*x(1)(2)*x(4)(4)-y(2)(2)*y(3)(4)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{2}{4}, \lam{2}{3}{4}{2}{4}{4}) = (-y_{1, 4} y_{4, 2}) \del{2}{3}{2}{4} +(y_{1, 4} y_{3, 2}) \del{2}{4}{2}{4} +(-y_{1, 4} y_{2, 2}) \del{3}{4}{2}{4} +(-y_{4, 2} x_{3, 4}+y_{3, 2} x_{4, 4}) \eps{1}{2}{2}{4} +(-y_{2, 2} x_{4, 4}) \eps{1}{3}{2}{4} +(-y_{3, 2} x_{2, 4}+y_{2, 2} x_{3, 4}) \eps{1}{4}{2}{4} ---------------------------------- Epsilon: 1,3 2,4 Lam: 2,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(2)*x(2)(4) Divisor: Delta 2,3 2,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(2)*y(4)(4) Lead Term of Product: y(1)(2)*y(4)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(4)*y(3)(2) Lead Term of Product: -y(1)(4)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(2)(2) Lead Term of Product: y(1)(4)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(4)*x(3)(4)-y(3)(4)*x(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(4)(3)*x(3)(4)+y(3)(3)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(4)*x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(2)*x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(2)*x(2)(4)+y(2)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: y(1)(2)*x(4)(4) Lead Term of Product: y(1)(2)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Rho 1,2,3 2,3,4 Quotient: -x(4)(4) Lead Term of Product: y(1)(4)*y(2)(3)*x(3)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(4)(3)*x(2)(4))*(y(3)(4)*x(1)(2)-y(3)(2)*x(1)(4)-y(1)(4)*x(3)(2)+y(1)(2)*x(3)(4)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(1)(4)*x(2)(4)+y(1)(4)*y(4)(3)*x(2)(4)*x(3)(2)-y(2)(4)*y(4)(3)*x(1)(2)*x(3)(4)+y(2)(3)*y(4)(4)*x(1)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(3)*x(1)(2)*x(4)(4)-y(2)(3)*y(3)(4)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{2}{4}, \lam{2}{3}{4}{3}{4}{4}) = (-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{1, 2} y_{4, 4}) \del{2}{3}{3}{4} +(y_{1, 4} y_{3, 2}) \del{2}{4}{3}{4} +(-y_{1, 4} y_{2, 2}) \del{3}{4}{3}{4} +(y_{4, 4} x_{3, 4}-y_{3, 4} x_{4, 4}) \eps{1}{2}{2}{3} +(-y_{4, 3} x_{3, 4}+y_{3, 3} x_{4, 4}) \eps{1}{2}{2}{4} +(-y_{4, 4} x_{2, 4}) \eps{1}{3}{2}{3} +(-y_{2, 2} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{3, 2} x_{2, 4}+y_{2, 2} x_{3, 4}) \eps{1}{4}{3}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{2}{3} +(-y_{1, 3} x_{4, 4}) \eps{2}{3}{2}{4} +(y_{1, 2} x_{4, 4}) \eps{2}{3}{3}{4} +(-x_{4, 4}) \pho{1}{2}{3}{2}{3}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,3 1,2,3 Lead Term of Spoly: -y(2)(1)*y(3)(2)*y(3)(4)*x(1)(3) Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(1)*y(3)(2)*y(3)(4)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: -y(1)(2)*y(3)(1)*y(3)(4)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: -y(3)(3) Lead Term of Product: y(2)(2)*y(3)(1)*y(3)(3)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,3 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(1)(3)*y(2)(2)*y(3)(1)*x(3)(4) Lead term is well behaved Divisor: Psi 1,2,3 1,2,4 Quotient: -x(3)(3) Lead Term of Product: y(1)(4)*y(2)(2)*y(3)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(2)(2)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(2)*x(1)(3)+y(1)(2)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(2)*x(3)(3)) - (-y(2)(2)*y(3)(1))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(2)(1)*y(3)(2)*y(3)(4)*x(1)(3)+y(2)(2)*y(3)(1)*y(3)(3)*x(1)(4)-y(1)(2)*y(3)(1)*y(3)(4)*x(2)(3)+y(1)(1)*y(3)(2)*y(3)(4)*x(2)(3)+y(1)(4)*y(2)(2)*y(3)(1)*x(3)(3)+y(1)(2)*y(2)(1)*y(3)(4)*x(3)(3)-y(1)(1)*y(2)(2)*y(3)(4)*x(3)(3)-y(1)(3)*y(2)(2)*y(3)(1)*x(3)(4) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{1}{2}{3}{1}{2}{3}) = (-y_{2, 1} y_{3, 2}) \eps{1}{3}{3}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \eps{2}{3}{3}{4} +(-y_{3, 3}) \lam{1}{2}{3}{1}{2}{4} +(x_{3, 4}) \psi{1}{2}{3}{1}{2}{3} +(-x_{3, 3}) \psi{1}{2}{3}{1}{2}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,3 1,3,3 Lead Term of Spoly: -y(2)(1)*y(3)(3)*y(3)(4)*x(1)(3) Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: -y(2)(1)*y(3)(3)*y(3)(4)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: -y(1)(3)*y(3)(1)*y(3)(4)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,3,4 Quotient: -y(3)(3) Lead Term of Product: y(2)(3)*y(3)(1)*y(3)(3)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,3 1,3,4 Quotient: -x(3)(3) Lead Term of Product: y(1)(4)*y(2)(3)*y(3)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(2)(3)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(1))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(2)(1)*y(3)(3)*y(3)(4)*x(1)(3)+y(2)(3)*y(3)(1)*y(3)(3)*x(1)(4)-y(1)(3)*y(3)(1)*y(3)(4)*x(2)(3)+y(1)(1)*y(3)(3)*y(3)(4)*x(2)(3)+y(1)(4)*y(2)(3)*y(3)(1)*x(3)(3)+y(1)(3)*y(2)(1)*y(3)(4)*x(3)(3)-y(1)(1)*y(2)(3)*y(3)(4)*x(3)(3)-y(1)(3)*y(2)(3)*y(3)(1)*x(3)(4) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{1}{2}{3}{1}{3}{3}) = (-y_{2, 1} y_{3, 3}) \eps{1}{3}{3}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \eps{2}{3}{3}{4} +(-y_{3, 3}) \lam{1}{2}{3}{1}{3}{4} +(-x_{3, 3}) \psi{1}{2}{3}{1}{3}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,3 2,3,3 Lead Term of Spoly: -y(2)(2)*y(3)(3)*y(3)(4)*x(1)(3) Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: -y(2)(2)*y(3)(3)*y(3)(4)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: -y(1)(3)*y(3)(2)*y(3)(4)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,3 2,3,4 Quotient: -y(3)(3) Lead Term of Product: y(2)(3)*y(3)(2)*y(3)(3)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,3 2,3,4 Quotient: -x(3)(3) Lead Term of Product: y(1)(4)*y(2)(3)*y(3)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(2)(3)*y(3)(2)*x(1)(3)+y(2)(2)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(2)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(2))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(2)(2)*y(3)(3)*y(3)(4)*x(1)(3)+y(2)(3)*y(3)(2)*y(3)(3)*x(1)(4)-y(1)(3)*y(3)(2)*y(3)(4)*x(2)(3)+y(1)(2)*y(3)(3)*y(3)(4)*x(2)(3)+y(1)(4)*y(2)(3)*y(3)(2)*x(3)(3)+y(1)(3)*y(2)(2)*y(3)(4)*x(3)(3)-y(1)(2)*y(2)(3)*y(3)(4)*x(3)(3)-y(1)(3)*y(2)(3)*y(3)(2)*x(3)(4) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{1}{2}{3}{2}{3}{3}) = (-y_{2, 2} y_{3, 3}) \eps{1}{3}{3}{4} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \eps{2}{3}{3}{4} +(-y_{3, 3}) \lam{1}{2}{3}{2}{3}{4} +(-x_{3, 3}) \psi{1}{2}{3}{2}{3}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,4 1,2,3 Lead Term of Spoly: -y(2)(1)*y(3)(4)*y(4)(2)*x(1)(3) Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(1)*y(3)(4)*y(4)(2)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(3)(4)*y(4)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: -y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*y(4)(1)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,4 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(1)(3)*y(2)(2)*y(4)(1)*x(3)(4) Lead term is well behaved Divisor: Psi 1,2,4 1,2,4 Quotient: -x(3)(3) Lead Term of Product: y(1)(4)*y(2)(2)*y(4)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(2)(2)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(2)*x(4)(3)) - (-y(2)(2)*y(4)(1))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(2)(1)*y(3)(4)*y(4)(2)*x(1)(3)+y(2)(2)*y(3)(3)*y(4)(1)*x(1)(4)-y(1)(2)*y(3)(4)*y(4)(1)*x(2)(3)+y(1)(1)*y(3)(4)*y(4)(2)*x(2)(3)+y(1)(4)*y(2)(2)*y(4)(1)*x(3)(3)-y(1)(3)*y(2)(2)*y(4)(1)*x(3)(4)+y(1)(2)*y(2)(1)*y(3)(4)*x(4)(3)-y(1)(1)*y(2)(2)*y(3)(4)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{1}{2}{4}{1}{2}{3}) = (-y_{2, 1} y_{4, 2}) \eps{1}{3}{3}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \eps{2}{3}{3}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \eps{3}{4}{3}{4} +(-y_{3, 3}) \lam{1}{2}{4}{1}{2}{4} +(x_{3, 4}) \psi{1}{2}{4}{1}{2}{3} +(-x_{3, 3}) \psi{1}{2}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,4 1,3,3 Lead Term of Spoly: -y(2)(1)*y(3)(4)*y(4)(3)*x(1)(3) Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: -y(2)(1)*y(3)(4)*y(4)(3)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: -y(1)(3)*y(3)(4)*y(4)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(1)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,3,4 Quotient: -y(3)(3) Lead Term of Product: y(2)(3)*y(3)(3)*y(4)(1)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,4 1,3,4 Quotient: -x(3)(3) Lead Term of Product: y(1)(4)*y(2)(3)*y(4)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(2)(3)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(1))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(2)(1)*y(3)(4)*y(4)(3)*x(1)(3)+y(2)(3)*y(3)(3)*y(4)(1)*x(1)(4)-y(1)(3)*y(3)(4)*y(4)(1)*x(2)(3)+y(1)(1)*y(3)(4)*y(4)(3)*x(2)(3)+y(1)(4)*y(2)(3)*y(4)(1)*x(3)(3)-y(1)(3)*y(2)(3)*y(4)(1)*x(3)(4)+y(1)(3)*y(2)(1)*y(3)(4)*x(4)(3)-y(1)(1)*y(2)(3)*y(3)(4)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{1}{2}{4}{1}{3}{3}) = (-y_{2, 1} y_{4, 3}) \eps{1}{3}{3}{4} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \eps{2}{3}{3}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \eps{3}{4}{3}{4} +(-y_{3, 3}) \lam{1}{2}{4}{1}{3}{4} +(-x_{3, 3}) \psi{1}{2}{4}{1}{3}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,4 2,3,3 Lead Term of Spoly: -y(2)(2)*y(3)(4)*y(4)(3)*x(1)(3) Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: -y(2)(2)*y(3)(4)*y(4)(3)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(3)*y(3)(4)*y(4)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(3)*y(2)(2)+y(1)(2)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,4 2,3,4 Quotient: -y(3)(3) Lead Term of Product: y(2)(3)*y(3)(3)*y(4)(2)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,4 2,3,4 Quotient: -x(3)(3) Lead Term of Product: y(1)(4)*y(2)(3)*y(4)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(2)(3)*y(4)(2)*x(1)(3)+y(2)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(2))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(2)(2)*y(3)(4)*y(4)(3)*x(1)(3)+y(2)(3)*y(3)(3)*y(4)(2)*x(1)(4)-y(1)(3)*y(3)(4)*y(4)(2)*x(2)(3)+y(1)(2)*y(3)(4)*y(4)(3)*x(2)(3)+y(1)(4)*y(2)(3)*y(4)(2)*x(3)(3)-y(1)(3)*y(2)(3)*y(4)(2)*x(3)(4)+y(1)(3)*y(2)(2)*y(3)(4)*x(4)(3)-y(1)(2)*y(2)(3)*y(3)(4)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{1}{2}{4}{2}{3}{3}) = (-y_{2, 2} y_{4, 3}) \eps{1}{3}{3}{4} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \eps{2}{3}{3}{4} +(-y_{1, 3} y_{2, 2}+y_{1, 2} y_{2, 3}) \eps{3}{4}{3}{4} +(-y_{3, 3}) \lam{1}{2}{4}{2}{3}{4} +(-x_{3, 3}) \psi{1}{2}{4}{2}{3}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,3,4 1,2,3 Lead Term of Spoly: -y(3)(1)*y(3)(4)*y(4)(2)*x(1)(3) Divisor: Epsilon 1,3 3,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(3)(4)*y(4)(2)*x(1)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: -y(1)(2)*y(3)(1)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,4 Quotient: -y(3)(3) Lead Term of Product: y(3)(2)*y(3)(3)*y(4)(1)*x(1)(4) Lead term is well behaved Divisor: Psi 1,3,4 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(1)(3)*y(3)(2)*y(4)(1)*x(3)(4) Lead term is well behaved Divisor: Psi 1,3,4 1,2,4 Quotient: -x(3)(3) Lead Term of Product: y(1)(4)*y(3)(2)*y(4)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(3)(2)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(3)(3)-y(1)(2)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(3)(4)*y(4)(2)*x(1)(3)+y(3)(2)*y(3)(3)*y(4)(1)*x(1)(4)+y(1)(4)*y(3)(2)*y(4)(1)*x(3)(3)-y(1)(2)*y(3)(4)*y(4)(1)*x(3)(3)+y(1)(1)*y(3)(4)*y(4)(2)*x(3)(3)-y(1)(3)*y(3)(2)*y(4)(1)*x(3)(4)+y(1)(2)*y(3)(1)*y(3)(4)*x(4)(3)-y(1)(1)*y(3)(2)*y(3)(4)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{1}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \eps{1}{3}{3}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \eps{3}{4}{3}{4} +(-y_{3, 3}) \lam{1}{3}{4}{1}{2}{4} +(x_{3, 4}) \psi{1}{3}{4}{1}{2}{3} +(-x_{3, 3}) \psi{1}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,3,4 1,3,3 Lead Term of Spoly: -y(3)(1)*y(3)(4)*y(4)(3)*x(1)(3) Divisor: Epsilon 1,3 3,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: -y(3)(1)*y(3)(4)*y(4)(3)*x(1)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: -y(1)(3)*y(3)(1)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,3,4 Quotient: -y(3)(3) Lead Term of Product: y(3)(3)^2*y(4)(1)*x(1)(4) Lead term is well behaved Divisor: Psi 1,3,4 1,3,4 Quotient: -x(3)(3) Lead Term of Product: y(1)(4)*y(3)(3)*y(4)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(3)(3)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(3)(4)*y(4)(3)*x(1)(3)+y(3)(3)^2*y(4)(1)*x(1)(4)+y(1)(4)*y(3)(3)*y(4)(1)*x(3)(3)-y(1)(3)*y(3)(4)*y(4)(1)*x(3)(3)+y(1)(1)*y(3)(4)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(3)*y(4)(1)*x(3)(4)+y(1)(3)*y(3)(1)*y(3)(4)*x(4)(3)-y(1)(1)*y(3)(3)*y(3)(4)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{1}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \eps{1}{3}{3}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \eps{3}{4}{3}{4} +(-y_{3, 3}) \lam{1}{3}{4}{1}{3}{4} +(-x_{3, 3}) \psi{1}{3}{4}{1}{3}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: -y(3)(1)*y(4)(4)*x(1)(3)*x(1)(4) Divisor: Delta 1,3 3,4 Quotient: -y(1)(4)*y(4)(1) Lead Term of Product: y(1)(4)*y(4)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(1)*y(1)(4) Lead Term of Product: y(1)(1)*y(1)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(1)*x(1)(4)+y(1)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,3,4 Quotient: -x(1)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(3))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(4)(4)*x(1)(3)*x(1)(4)+y(3)(3)*y(4)(1)*x(1)(4)^2+y(1)(4)*y(4)(1)*x(1)(4)*x(3)(3)-y(1)(4)*y(4)(1)*x(1)(3)*x(3)(4)+y(1)(1)*y(4)(4)*x(1)(3)*x(3)(4)-y(1)(3)*y(4)(1)*x(1)(4)*x(3)(4)+y(1)(4)*y(3)(1)*x(1)(3)*x(4)(4)-y(1)(1)*y(3)(4)*x(1)(3)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{1}{3}{4}{1}{4}{4}) = (-y_{1, 4} y_{4, 1}) \del{1}{3}{3}{4} +(y_{1, 4} y_{3, 1}) \del{1}{4}{3}{4} +(-y_{1, 1} y_{1, 4}) \del{3}{4}{3}{4} +(-y_{1, 1} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{3, 1} x_{1, 4}+y_{1, 1} x_{3, 4}) \eps{1}{4}{3}{4} +(-x_{1, 4}) \lam{1}{3}{4}{1}{3}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(3)(4)*y(4)(3)*x(1)(3) Divisor: Epsilon 1,3 3,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: -y(3)(2)*y(3)(4)*y(4)(3)*x(1)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: -y(1)(3)*y(3)(2)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,3,4 2,3,4 Quotient: -y(3)(3) Lead Term of Product: y(3)(3)^2*y(4)(2)*x(1)(4) Lead term is well behaved Divisor: Psi 1,3,4 2,3,4 Quotient: -x(3)(3) Lead Term of Product: y(1)(4)*y(3)(3)*y(4)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(3)(2)*y(3)(4)*y(4)(3)*x(1)(3)+y(3)(3)^2*y(4)(2)*x(1)(4)+y(1)(4)*y(3)(3)*y(4)(2)*x(3)(3)-y(1)(3)*y(3)(4)*y(4)(2)*x(3)(3)+y(1)(2)*y(3)(4)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(3)*y(4)(2)*x(3)(4)+y(1)(3)*y(3)(2)*y(3)(4)*x(4)(3)-y(1)(2)*y(3)(3)*y(3)(4)*x(4)(3) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{1}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \eps{1}{3}{3}{4} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \eps{3}{4}{3}{4} +(-y_{3, 3}) \lam{1}{3}{4}{2}{3}{4} +(-x_{3, 3}) \psi{1}{3}{4}{2}{3}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(1)(3)*x(1)(4) Divisor: Delta 1,3 3,4 Quotient: -y(1)(4)*y(4)(2) Lead Term of Product: y(1)(4)*y(4)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(1)(4)*y(3)(2) Lead Term of Product: -y(1)(4)*y(3)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(2)*y(1)(4) Lead Term of Product: y(1)(2)*y(1)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(2)*x(1)(4)+y(1)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Lam 1,3,4 2,3,4 Quotient: -x(1)(4) Lead Term of Product: y(3)(3)*y(4)(2)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(3))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(1)(3)*x(1)(4)+y(3)(3)*y(4)(2)*x(1)(4)^2+y(1)(4)*y(4)(2)*x(1)(4)*x(3)(3)-y(1)(4)*y(4)(2)*x(1)(3)*x(3)(4)+y(1)(2)*y(4)(4)*x(1)(3)*x(3)(4)-y(1)(3)*y(4)(2)*x(1)(4)*x(3)(4)+y(1)(4)*y(3)(2)*x(1)(3)*x(4)(4)-y(1)(2)*y(3)(4)*x(1)(3)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{1}{3}{4}{2}{4}{4}) = (-y_{1, 4} y_{4, 2}) \del{1}{3}{3}{4} +(y_{1, 4} y_{3, 2}) \del{1}{4}{3}{4} +(-y_{1, 2} y_{1, 4}) \del{3}{4}{3}{4} +(-y_{1, 2} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{3, 2} x_{1, 4}+y_{1, 2} x_{3, 4}) \eps{1}{4}{3}{4} +(-x_{1, 4}) \lam{1}{3}{4}{2}{3}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(3)*x(1)(4) Divisor: Delta 1,3 3,4 Quotient: -y(1)(4)*y(4)(3) Lead Term of Product: y(1)(4)*y(4)(3)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(1)(4)*y(3)(3) Lead Term of Product: -y(1)(4)*y(3)(3)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(3)*y(1)(4) Lead Term of Product: y(1)(3)*y(1)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(3)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(3)*x(1)(4)+y(1)(3)*x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(3))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(4)(3)*x(1)(4))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(3)*x(1)(4)+y(3)(3)*y(4)(3)*x(1)(4)^2+y(1)(4)*y(4)(3)*x(1)(4)*x(3)(3)-y(1)(4)*y(4)(3)*x(1)(3)*x(3)(4)+y(1)(3)*y(4)(4)*x(1)(3)*x(3)(4)-y(1)(3)*y(4)(3)*x(1)(4)*x(3)(4)+y(1)(4)*y(3)(3)*x(1)(3)*x(4)(4)-y(1)(3)*y(3)(4)*x(1)(3)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{1}{3}{4}{3}{4}{4}) = (-y_{1, 4} y_{4, 3}) \del{1}{3}{3}{4} +(y_{1, 4} y_{3, 3}) \del{1}{4}{3}{4} +(-y_{1, 3} y_{1, 4}) \del{3}{4}{3}{4} +(-y_{1, 3} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{3, 3} x_{1, 4}+y_{1, 3} x_{3, 4}) \eps{1}{4}{3}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 2,3,4 1,4,4 Lead Term of Spoly: -y(3)(1)*y(4)(4)*x(1)(3)*x(2)(4) Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(4)(1) Lead Term of Product: y(1)(4)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(2)(1) Lead Term of Product: y(1)(4)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(4)(1)*x(3)(4)+y(3)(1)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,3,4 Quotient: -x(4)(4) Lead Term of Product: y(2)(3)*y(3)(1)*x(1)(4)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,3,4 Quotient: x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(4)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,3,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(3))*(-y(3)(4)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(4)) - (-y(4)(1)*x(2)(4))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(4)(4)*x(1)(3)*x(2)(4)+y(3)(3)*y(4)(1)*x(1)(4)*x(2)(4)+y(1)(4)*y(4)(1)*x(2)(4)*x(3)(3)-y(2)(4)*y(4)(1)*x(1)(3)*x(3)(4)+y(2)(1)*y(4)(4)*x(1)(3)*x(3)(4)-y(1)(3)*y(4)(1)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(1)*x(1)(3)*x(4)(4)-y(2)(1)*y(3)(4)*x(1)(3)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{2}{3}{4}{1}{4}{4}) = (-y_{1, 4} y_{4, 1}) \del{2}{3}{3}{4} +(y_{1, 4} y_{3, 1}) \del{2}{4}{3}{4} +(-y_{1, 4} y_{2, 1}) \del{3}{4}{3}{4} +(-y_{4, 1} x_{3, 4}+y_{3, 1} x_{4, 4}) \eps{1}{2}{3}{4} +(-y_{2, 1} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{1}{4}{3}{4} +(-x_{4, 4}) \lam{1}{2}{3}{1}{3}{4} +(x_{3, 4}) \lam{1}{2}{4}{1}{3}{4} +(-x_{2, 4}) \lam{1}{3}{4}{1}{3}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,3 3,4 Lam: 2,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(1)(3)*x(2)(4) Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(4)(2) Lead Term of Product: y(1)(4)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(4)*y(3)(2) Lead Term of Product: -y(1)(4)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(2)(2) Lead Term of Product: y(1)(4)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(4)(2)*x(3)(4)+y(3)(2)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(2)*x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(2)*x(2)(4)+y(2)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,3 2,3,4 Quotient: -x(4)(4) Lead Term of Product: y(2)(3)*y(3)(2)*x(1)(4)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 2,3,4 Quotient: x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(4)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 2,3,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(3)*y(4)(2)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(3))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(4)(2)*x(2)(4))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(1)(3)*x(2)(4)+y(3)(3)*y(4)(2)*x(1)(4)*x(2)(4)+y(1)(4)*y(4)(2)*x(2)(4)*x(3)(3)-y(2)(4)*y(4)(2)*x(1)(3)*x(3)(4)+y(2)(2)*y(4)(4)*x(1)(3)*x(3)(4)-y(1)(3)*y(4)(2)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(2)*x(1)(3)*x(4)(4)-y(2)(2)*y(3)(4)*x(1)(3)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{2}{3}{4}{2}{4}{4}) = (-y_{1, 4} y_{4, 2}) \del{2}{3}{3}{4} +(y_{1, 4} y_{3, 2}) \del{2}{4}{3}{4} +(-y_{1, 4} y_{2, 2}) \del{3}{4}{3}{4} +(-y_{4, 2} x_{3, 4}+y_{3, 2} x_{4, 4}) \eps{1}{2}{3}{4} +(-y_{2, 2} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{3, 2} x_{2, 4}+y_{2, 2} x_{3, 4}) \eps{1}{4}{3}{4} +(-x_{4, 4}) \lam{1}{2}{3}{2}{3}{4} +(x_{3, 4}) \lam{1}{2}{4}{2}{3}{4} +(-x_{2, 4}) \lam{1}{3}{4}{2}{3}{4} ---------------------------------- Epsilon: 1,3 3,4 Lam: 2,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(3)*x(2)(4) Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(4)(3) Lead Term of Product: y(1)(4)*y(4)(3)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(4)*y(3)(3) Lead Term of Product: -y(1)(4)*y(3)(3)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(2)(3) Lead Term of Product: y(1)(4)*y(2)(3)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(4)(3)*x(3)(4)+y(3)(3)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(3)*x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(3)*x(2)(4)+y(2)(3)*x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(3))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(4)(3)*x(2)(4))*(y(3)(4)*x(1)(3)-y(3)(3)*x(1)(4)-y(1)(4)*x(3)(3)+y(1)(3)*x(3)(4)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(3)*x(2)(4)+y(3)(3)*y(4)(3)*x(1)(4)*x(2)(4)+y(1)(4)*y(4)(3)*x(2)(4)*x(3)(3)-y(2)(4)*y(4)(3)*x(1)(3)*x(3)(4)+y(2)(3)*y(4)(4)*x(1)(3)*x(3)(4)-y(1)(3)*y(4)(3)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(3)*x(1)(3)*x(4)(4)-y(2)(3)*y(3)(4)*x(1)(3)*x(4)(4) ----------- TeX output: S(\eps{1}{3}{3}{4}, \lam{2}{3}{4}{3}{4}{4}) = (-y_{1, 4} y_{4, 3}) \del{2}{3}{3}{4} +(y_{1, 4} y_{3, 3}) \del{2}{4}{3}{4} +(-y_{1, 4} y_{2, 3}) \del{3}{4}{3}{4} +(-y_{4, 3} x_{3, 4}+y_{3, 3} x_{4, 4}) \eps{1}{2}{3}{4} +(-y_{2, 3} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{3, 3} x_{2, 4}+y_{2, 3} x_{3, 4}) \eps{1}{4}{3}{4} ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,4 2,3,3 Lead Term of Spoly: -y(2)(2)*y(4)(3)*x(1)(1)*x(1)(3) Divisor: Delta 1,2 1,3 Quotient: y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,3 Quotient: -y(1)(3)*y(4)(1)-y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 1,3 Quotient: -y(1)(2)*y(2)(3) Lead Term of Product: y(1)(2)*y(2)(3)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: y(1)(2)*y(1)(3) Lead Term of Product: -y(1)(2)*y(1)(3)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -2*y(1)(1)*y(1)(3) Lead Term of Product: 2*y(1)(1)*y(1)(3)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(3)*x(1)(3)+y(1)(3)*x(4)(3) Lead Term of Product: -y(2)(2)*y(4)(3)*x(1)(1)*x(1)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(1)*x(1)(3)-y(1)(1)*x(4)(3) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(2)*x(1)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(1)(3)*x(2)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(2)(1)*x(1)(3)+y(1)(1)*x(2)(3) Lead Term of Product: -y(2)(1)*y(4)(3)*x(1)(2)*x(1)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: -x(1)(3) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(3)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(3)*y(4)(2)*x(1)(3)+y(2)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(3)) - (-y(2)(3)*x(1)(3))*(y(4)(2)*x(1)(1)-y(4)(1)*x(1)(2)-y(1)(2)*x(4)(1)+y(1)(1)*x(4)(2)) ------- Rewrite: -y(2)(2)*y(4)(3)*x(1)(1)*x(1)(3)+y(2)(3)*y(4)(1)*x(1)(2)*x(1)(3)-y(1)(3)*y(4)(2)*x(1)(1)*x(2)(3)+y(1)(2)*y(4)(3)*x(1)(1)*x(2)(3)+y(1)(2)*y(2)(3)*x(1)(3)*x(4)(1)-y(1)(1)*y(2)(3)*x(1)(3)*x(4)(2)+y(1)(3)*y(2)(2)*x(1)(1)*x(4)(3)-y(1)(2)*y(2)(3)*x(1)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{4}{1}{2}, \lam{1}{2}{4}{2}{3}{3}) = (y_{1, 2} y_{4, 3}) \del{1}{2}{1}{3} +(-y_{1, 3} y_{4, 1}-y_{1, 1} y_{4, 3}) \del{1}{2}{2}{3} +(-y_{1, 2} y_{2, 3}) \del{1}{4}{1}{3} +(y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{1}{4}{2}{3} +(y_{1, 2} y_{1, 3}) \del{2}{4}{1}{3} +(-2 y_{1, 1} y_{1, 3}) \del{2}{4}{2}{3} +(-y_{4, 3} x_{1, 3}+y_{1, 3} x_{4, 3}) \eps{1}{2}{1}{2} +(y_{4, 1} x_{1, 3}-y_{1, 1} x_{4, 3}) \eps{1}{2}{2}{3} +(-y_{1, 3} x_{2, 3}) \eps{1}{4}{1}{2} +(-y_{2, 1} x_{1, 3}+y_{1, 1} x_{2, 3}) \eps{1}{4}{2}{3} +(-x_{1, 3}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,4 2,3,4 Lead Term of Spoly: -y(2)(2)*y(4)(3)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(1)(3)*y(4)(1)-y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(1)(2)*y(2)(3) Lead Term of Product: y(1)(2)*y(2)(3)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: -y(1)(1)*y(2)(2) Lead Term of Product: y(1)(1)*y(2)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(1)(2)*y(1)(3) Lead Term of Product: -y(1)(2)*y(1)(3)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -2*y(1)(1)*y(1)(3) Lead Term of Product: 2*y(1)(1)*y(1)(3)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(1)*y(1)(2) Lead Term of Product: -y(1)(1)*y(1)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(3)*x(1)(4)+y(1)(3)*x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(3)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(1)*x(1)(4)-y(1)(1)*x(4)(4) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(1)(3)*x(2)(4) Lead Term of Product: -y(1)(3)*y(4)(2)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(3)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: -x(1)(4) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(3)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(4)) - (-y(2)(3)*x(1)(4))*(y(4)(2)*x(1)(1)-y(4)(1)*x(1)(2)-y(1)(2)*x(4)(1)+y(1)(1)*x(4)(2)) ------- Rewrite: -y(2)(2)*y(4)(3)*x(1)(1)*x(1)(4)+y(2)(3)*y(4)(1)*x(1)(2)*x(1)(4)-y(1)(3)*y(4)(2)*x(1)(1)*x(2)(4)+y(1)(2)*y(4)(3)*x(1)(1)*x(2)(4)+y(1)(2)*y(2)(3)*x(1)(4)*x(4)(1)-y(1)(1)*y(2)(3)*x(1)(4)*x(4)(2)+y(1)(3)*y(2)(2)*x(1)(1)*x(4)(4)-y(1)(2)*y(2)(3)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{1}{2}, \lam{1}{2}{4}{2}{3}{4}) = (y_{1, 2} y_{4, 3}) \del{1}{2}{1}{4} +(-y_{1, 3} y_{4, 1}-y_{1, 1} y_{4, 3}) \del{1}{2}{2}{4} +(y_{1, 1} y_{4, 2}) \del{1}{2}{3}{4} +(-y_{1, 2} y_{2, 3}) \del{1}{4}{1}{4} +(y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{1}{4}{2}{4} +(-y_{1, 1} y_{2, 2}) \del{1}{4}{3}{4} +(y_{1, 2} y_{1, 3}) \del{2}{4}{1}{4} +(-2 y_{1, 1} y_{1, 3}) \del{2}{4}{2}{4} +(y_{1, 1} y_{1, 2}) \del{2}{4}{3}{4} +(-y_{4, 3} x_{1, 4}+y_{1, 3} x_{4, 4}) \eps{1}{2}{1}{2} +(y_{4, 1} x_{1, 4}-y_{1, 1} x_{4, 4}) \eps{1}{2}{2}{3} +(-y_{1, 3} x_{2, 4}) \eps{1}{4}{1}{2} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{4}{2}{3} +(-x_{1, 4}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,4 2,4,4 Lead Term of Spoly: -y(2)(2)*y(4)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: y(1)(2)*y(4)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(1)(4)*y(4)(1)-y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(1)(2)*y(2)(4) Lead Term of Product: y(1)(2)*y(2)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(1)(2)*y(1)(4) Lead Term of Product: -y(1)(2)*y(1)(4)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -2*y(1)(1)*y(1)(4) Lead Term of Product: 2*y(1)(1)*y(1)(4)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(4)*x(1)(4)+y(1)(4)*x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: y(4)(1)*x(1)(4)-y(1)(1)*x(4)(4) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(1)(4)*x(2)(4) Lead Term of Product: -y(1)(4)*y(4)(2)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: -x(1)(4) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(2)(4)*x(1)(4))*(y(4)(2)*x(1)(1)-y(4)(1)*x(1)(2)-y(1)(2)*x(4)(1)+y(1)(1)*x(4)(2)) ------- Rewrite: -y(2)(2)*y(4)(4)*x(1)(1)*x(1)(4)+y(2)(4)*y(4)(1)*x(1)(2)*x(1)(4)-y(1)(4)*y(4)(2)*x(1)(1)*x(2)(4)+y(1)(2)*y(4)(4)*x(1)(1)*x(2)(4)+y(1)(2)*y(2)(4)*x(1)(4)*x(4)(1)-y(1)(1)*y(2)(4)*x(1)(4)*x(4)(2)+y(1)(4)*y(2)(2)*x(1)(1)*x(4)(4)-y(1)(2)*y(2)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{1}{2}, \lam{1}{2}{4}{2}{4}{4}) = (y_{1, 2} y_{4, 4}) \del{1}{2}{1}{4} +(-y_{1, 4} y_{4, 1}-y_{1, 1} y_{4, 4}) \del{1}{2}{2}{4} +(-y_{1, 2} y_{2, 4}) \del{1}{4}{1}{4} +(y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{1}{4}{2}{4} +(y_{1, 2} y_{1, 4}) \del{2}{4}{1}{4} +(-2 y_{1, 1} y_{1, 4}) \del{2}{4}{2}{4} +(-y_{4, 4} x_{1, 4}+y_{1, 4} x_{4, 4}) \eps{1}{2}{1}{2} +(y_{4, 1} x_{1, 4}-y_{1, 1} x_{4, 4}) \eps{1}{2}{2}{4} +(-y_{1, 4} x_{2, 4}) \eps{1}{4}{1}{2} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{4}{2}{4} +(-x_{1, 4}) \lam{1}{2}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(1)*x(1)(3) Divisor: Delta 1,3 1,3 Quotient: y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: -y(1)(3)*y(4)(1)-y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 1,3 Quotient: -y(1)(2)*y(3)(3) Lead Term of Product: y(1)(2)*y(3)(3)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: -y(1)(3)*y(3)(1)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: y(1)(2)*y(1)(3) Lead Term of Product: -y(1)(2)*y(1)(3)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -2*y(1)(1)*y(1)(3) Lead Term of Product: 2*y(1)(1)*y(1)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(3)*x(1)(3)+y(1)(3)*x(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(1)*x(1)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(4)(1)*x(1)(3)-y(1)(1)*x(4)(3) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(2)*x(1)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(1)(3)*x(3)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(1)(3)+y(1)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(1)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -x(1)(3) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(3)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*x(1)(3))*(y(4)(2)*x(1)(1)-y(4)(1)*x(1)(2)-y(1)(2)*x(4)(1)+y(1)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(1)*x(1)(3)+y(3)(3)*y(4)(1)*x(1)(2)*x(1)(3)-y(1)(3)*y(4)(2)*x(1)(1)*x(3)(3)+y(1)(2)*y(4)(3)*x(1)(1)*x(3)(3)+y(1)(2)*y(3)(3)*x(1)(3)*x(4)(1)-y(1)(1)*y(3)(3)*x(1)(3)*x(4)(2)+y(1)(3)*y(3)(2)*x(1)(1)*x(4)(3)-y(1)(2)*y(3)(3)*x(1)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{4}{1}{2}, \lam{1}{3}{4}{2}{3}{3}) = (y_{1, 2} y_{4, 3}) \del{1}{3}{1}{3} +(-y_{1, 3} y_{4, 1}-y_{1, 1} y_{4, 3}) \del{1}{3}{2}{3} +(-y_{1, 2} y_{3, 3}) \del{1}{4}{1}{3} +(y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{1}{4}{2}{3} +(y_{1, 2} y_{1, 3}) \del{3}{4}{1}{3} +(-2 y_{1, 1} y_{1, 3}) \del{3}{4}{2}{3} +(-y_{4, 3} x_{1, 3}+y_{1, 3} x_{4, 3}) \eps{1}{3}{1}{2} +(y_{4, 1} x_{1, 3}-y_{1, 1} x_{4, 3}) \eps{1}{3}{2}{3} +(-y_{1, 3} x_{3, 3}) \eps{1}{4}{1}{2} +(-y_{3, 1} x_{1, 3}+y_{1, 1} x_{3, 3}) \eps{1}{4}{2}{3} +(-x_{1, 3}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,3,4 2,3,4 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(1)*x(1)(4) Divisor: Delta 1,3 1,4 Quotient: y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(1)(3)*y(4)(1)-y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(1)(2)*y(3)(3) Lead Term of Product: y(1)(2)*y(3)(3)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: -y(1)(3)*y(3)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: -y(1)(1)*y(3)(2) Lead Term of Product: y(1)(1)*y(3)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(2)*y(1)(3) Lead Term of Product: -y(1)(2)*y(1)(3)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -2*y(1)(1)*y(1)(3) Lead Term of Product: 2*y(1)(1)*y(1)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(1)*y(1)(2) Lead Term of Product: -y(1)(1)*y(1)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(3)*x(1)(4)+y(1)(3)*x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(4)(1)*x(1)(4)-y(1)(1)*x(4)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(1)(3)*x(3)(4) Lead Term of Product: -y(1)(3)*y(4)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(1)(4)+y(1)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -x(1)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(3)*x(1)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*x(1)(4))*(y(4)(2)*x(1)(1)-y(4)(1)*x(1)(2)-y(1)(2)*x(4)(1)+y(1)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(1)*x(1)(4)+y(3)(3)*y(4)(1)*x(1)(2)*x(1)(4)-y(1)(3)*y(4)(2)*x(1)(1)*x(3)(4)+y(1)(2)*y(4)(3)*x(1)(1)*x(3)(4)+y(1)(2)*y(3)(3)*x(1)(4)*x(4)(1)-y(1)(1)*y(3)(3)*x(1)(4)*x(4)(2)+y(1)(3)*y(3)(2)*x(1)(1)*x(4)(4)-y(1)(2)*y(3)(3)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{1}{2}, \lam{1}{3}{4}{2}{3}{4}) = (y_{1, 2} y_{4, 3}) \del{1}{3}{1}{4} +(-y_{1, 3} y_{4, 1}-y_{1, 1} y_{4, 3}) \del{1}{3}{2}{4} +(y_{1, 1} y_{4, 2}) \del{1}{3}{3}{4} +(-y_{1, 2} y_{3, 3}) \del{1}{4}{1}{4} +(y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{1}{4}{2}{4} +(-y_{1, 1} y_{3, 2}) \del{1}{4}{3}{4} +(y_{1, 2} y_{1, 3}) \del{3}{4}{1}{4} +(-2 y_{1, 1} y_{1, 3}) \del{3}{4}{2}{4} +(y_{1, 1} y_{1, 2}) \del{3}{4}{3}{4} +(-y_{4, 3} x_{1, 4}+y_{1, 3} x_{4, 4}) \eps{1}{3}{1}{2} +(y_{4, 1} x_{1, 4}-y_{1, 1} x_{4, 4}) \eps{1}{3}{2}{3} +(-y_{1, 3} x_{3, 4}) \eps{1}{4}{1}{2} +(-y_{3, 1} x_{1, 4}+y_{1, 1} x_{3, 4}) \eps{1}{4}{2}{3} +(-x_{1, 4}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,3 1,4 Quotient: y(1)(2)*y(4)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(1)(4)*y(4)(1)-y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(1)(2)*y(3)(4) Lead Term of Product: y(1)(2)*y(3)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: -y(1)(4)*y(3)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(2)*y(1)(4) Lead Term of Product: -y(1)(2)*y(1)(4)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -2*y(1)(1)*y(1)(4) Lead Term of Product: 2*y(1)(1)*y(1)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(4)*x(1)(4)+y(1)(4)*x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: y(4)(1)*x(1)(4)-y(1)(1)*x(4)(4) Lead Term of Product: y(3)(4)*y(4)(1)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(3)(1)*x(1)(4)+y(1)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,4 Quotient: -x(1)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(1)(4))*(y(4)(2)*x(1)(1)-y(4)(1)*x(1)(2)-y(1)(2)*x(4)(1)+y(1)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(1)(1)*x(1)(4)+y(3)(4)*y(4)(1)*x(1)(2)*x(1)(4)-y(1)(4)*y(4)(2)*x(1)(1)*x(3)(4)+y(1)(2)*y(4)(4)*x(1)(1)*x(3)(4)+y(1)(2)*y(3)(4)*x(1)(4)*x(4)(1)-y(1)(1)*y(3)(4)*x(1)(4)*x(4)(2)+y(1)(4)*y(3)(2)*x(1)(1)*x(4)(4)-y(1)(2)*y(3)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{1}{2}, \lam{1}{3}{4}{2}{4}{4}) = (y_{1, 2} y_{4, 4}) \del{1}{3}{1}{4} +(-y_{1, 4} y_{4, 1}-y_{1, 1} y_{4, 4}) \del{1}{3}{2}{4} +(-y_{1, 2} y_{3, 4}) \del{1}{4}{1}{4} +(y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{1}{4}{2}{4} +(y_{1, 2} y_{1, 4}) \del{3}{4}{1}{4} +(-2 y_{1, 1} y_{1, 4}) \del{3}{4}{2}{4} +(-y_{4, 4} x_{1, 4}+y_{1, 4} x_{4, 4}) \eps{1}{3}{1}{2} +(y_{4, 1} x_{1, 4}-y_{1, 1} x_{4, 4}) \eps{1}{3}{2}{4} +(-y_{1, 4} x_{3, 4}) \eps{1}{4}{1}{2} +(-y_{3, 1} x_{1, 4}+y_{1, 1} x_{3, 4}) \eps{1}{4}{2}{4} +(-x_{1, 4}) \lam{1}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,4 1,2 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,2 Lam: 2,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(3) Divisor: Delta 2,3 1,3 Quotient: y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(3)*y(4)(1)-y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(1)(2)*y(3)(3) Lead Term of Product: y(1)(2)*y(3)(3)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: y(1)(3)*y(2)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -2*y(1)(3)*y(2)(1) Lead Term of Product: 2*y(1)(3)*y(2)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(3)*x(3)(3)-y(3)(3)*x(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(2)*x(3)(3)+y(3)(2)*x(4)(3) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(3)*x(2)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(4)(1)*x(2)(3)-y(2)(1)*x(4)(3) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(2)(3)+y(2)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(3)*x(4)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(3)*x(3)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(1)*x(3)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -x(2)(3) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(3)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(3)*y(4)(2)*x(2)(3)+y(3)(2)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*x(2)(3))*(y(4)(2)*x(1)(1)-y(4)(1)*x(1)(2)-y(1)(2)*x(4)(1)+y(1)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(3)+y(3)(3)*y(4)(1)*x(1)(2)*x(2)(3)-y(2)(3)*y(4)(2)*x(1)(1)*x(3)(3)+y(2)(2)*y(4)(3)*x(1)(1)*x(3)(3)+y(1)(2)*y(3)(3)*x(2)(3)*x(4)(1)-y(1)(1)*y(3)(3)*x(2)(3)*x(4)(2)+y(2)(3)*y(3)(2)*x(1)(1)*x(4)(3)-y(2)(2)*y(3)(3)*x(1)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{4}{1}{2}, \lam{2}{3}{4}{2}{3}{3}) = (y_{1, 2} y_{4, 3}) \del{2}{3}{1}{3} +(-y_{1, 3} y_{4, 1}-y_{1, 1} y_{4, 3}) \del{2}{3}{2}{3} +(-y_{1, 2} y_{3, 3}) \del{2}{4}{1}{3} +(y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{2}{4}{2}{3} +(y_{1, 3} y_{2, 2}) \del{3}{4}{1}{3} +(-2 y_{1, 3} y_{2, 1}) \del{3}{4}{2}{3} +(y_{4, 3} x_{3, 3}-y_{3, 3} x_{4, 3}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{3, 3}+y_{3, 2} x_{4, 3}) \eps{1}{2}{1}{3} +(-y_{4, 3} x_{2, 3}) \eps{1}{3}{1}{2} +(y_{4, 1} x_{2, 3}-y_{2, 1} x_{4, 3}) \eps{1}{3}{2}{3} +(-y_{3, 1} x_{2, 3}+y_{2, 1} x_{3, 3}) \eps{1}{4}{2}{3} +(y_{1, 3} x_{4, 3}) \eps{2}{3}{1}{2} +(-y_{1, 3} x_{3, 3}) \eps{2}{4}{1}{2} +(-x_{2, 3}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,4 1,2 Lam: 2,3,4 2,3,4 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(3)*y(4)(1)-y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(2)*y(3)(3) Lead Term of Product: y(1)(2)*y(3)(3)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(1)*y(3)(2) Lead Term of Product: y(1)(1)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(3)*y(2)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -2*y(1)(3)*y(2)(1) Lead Term of Product: 2*y(1)(3)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(2)*y(2)(1) Lead Term of Product: -y(1)(2)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(3)*x(3)(4)-y(3)(3)*x(4)(4) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(2)*x(3)(4)+y(3)(2)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(3)*x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(4)(1)*x(2)(4)-y(2)(1)*x(4)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(3)*x(4)(4) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(3)*x(3)(4) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -x(2)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(3)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*x(2)(4))*(y(4)(2)*x(1)(1)-y(4)(1)*x(1)(2)-y(1)(2)*x(4)(1)+y(1)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(4)+y(3)(3)*y(4)(1)*x(1)(2)*x(2)(4)-y(2)(3)*y(4)(2)*x(1)(1)*x(3)(4)+y(2)(2)*y(4)(3)*x(1)(1)*x(3)(4)+y(1)(2)*y(3)(3)*x(2)(4)*x(4)(1)-y(1)(1)*y(3)(3)*x(2)(4)*x(4)(2)+y(2)(3)*y(3)(2)*x(1)(1)*x(4)(4)-y(2)(2)*y(3)(3)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{1}{2}, \lam{2}{3}{4}{2}{3}{4}) = (y_{1, 2} y_{4, 3}) \del{2}{3}{1}{4} +(-y_{1, 3} y_{4, 1}-y_{1, 1} y_{4, 3}) \del{2}{3}{2}{4} +(y_{1, 1} y_{4, 2}) \del{2}{3}{3}{4} +(-y_{1, 2} y_{3, 3}) \del{2}{4}{1}{4} +(y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{2}{4}{2}{4} +(-y_{1, 1} y_{3, 2}) \del{2}{4}{3}{4} +(y_{1, 3} y_{2, 2}) \del{3}{4}{1}{4} +(-2 y_{1, 3} y_{2, 1}) \del{3}{4}{2}{4} +(y_{1, 2} y_{2, 1}) \del{3}{4}{3}{4} +(y_{4, 3} x_{3, 4}-y_{3, 3} x_{4, 4}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{3, 4}+y_{3, 2} x_{4, 4}) \eps{1}{2}{1}{3} +(-y_{4, 3} x_{2, 4}) \eps{1}{3}{1}{2} +(y_{4, 1} x_{2, 4}-y_{2, 1} x_{4, 4}) \eps{1}{3}{2}{3} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{1}{4}{2}{3} +(y_{1, 3} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{1, 3} x_{3, 4}) \eps{2}{4}{1}{2} +(-x_{2, 4}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,4 1,2 Lam: 2,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(1)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: y(1)(2)*y(4)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(4)*y(4)(1)-y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(2)*y(3)(4) Lead Term of Product: y(1)(2)*y(3)(4)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: -y(1)(4)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(4)*y(2)(2) Lead Term of Product: -y(1)(4)*y(2)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -2*y(1)(4)*y(2)(1) Lead Term of Product: 2*y(1)(4)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(4)*x(3)(4)-y(3)(4)*x(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(4)(2)*x(3)(4)+y(3)(2)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(4)*x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: y(4)(1)*x(2)(4)-y(2)(1)*x(4)(4) Lead Term of Product: y(3)(4)*y(4)(1)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(2)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(2)(4))*(y(4)(2)*x(1)(1)-y(4)(1)*x(1)(2)-y(1)(2)*x(4)(1)+y(1)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(1)(1)*x(2)(4)+y(3)(4)*y(4)(1)*x(1)(2)*x(2)(4)-y(2)(4)*y(4)(2)*x(1)(1)*x(3)(4)+y(2)(2)*y(4)(4)*x(1)(1)*x(3)(4)+y(1)(2)*y(3)(4)*x(2)(4)*x(4)(1)-y(1)(1)*y(3)(4)*x(2)(4)*x(4)(2)+y(2)(4)*y(3)(2)*x(1)(1)*x(4)(4)-y(2)(2)*y(3)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{1}{2}, \lam{2}{3}{4}{2}{4}{4}) = (y_{1, 2} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{1, 4} y_{4, 1}-y_{1, 1} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{1, 2} y_{3, 4}) \del{2}{4}{1}{4} +(y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{2}{4}{2}{4} +(y_{1, 4} y_{2, 2}) \del{3}{4}{1}{4} +(-2 y_{1, 4} y_{2, 1}) \del{3}{4}{2}{4} +(y_{4, 4} x_{3, 4}-y_{3, 4} x_{4, 4}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{3, 4}+y_{3, 2} x_{4, 4}) \eps{1}{2}{1}{4} +(-y_{4, 4} x_{2, 4}) \eps{1}{3}{1}{2} +(y_{4, 1} x_{2, 4}-y_{2, 1} x_{4, 4}) \eps{1}{3}{2}{4} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{1}{4}{2}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{1, 4} x_{3, 4}) \eps{2}{4}{1}{2} +(-x_{2, 4}) \lam{1}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,4 1,2 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,2,4 3,4,4 Lead Term of Spoly: -y(2)(3)*y(4)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,2 1,4 Quotient: y(1)(3)*y(4)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(1)(4)*y(4)(1)-y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(1)(3)*y(2)(4) Lead Term of Product: y(1)(3)*y(2)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(1)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(1)(3)*y(1)(4) Lead Term of Product: -y(1)(3)*y(1)(4)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -2*y(1)(1)*y(1)(4) Lead Term of Product: 2*y(1)(1)*y(1)(4)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(4)*x(1)(4)+y(1)(4)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: y(4)(1)*x(1)(4)-y(1)(1)*x(4)(4) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: -y(1)(4)*x(2)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(1)*x(1)(4)+y(1)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,3,4 Quotient: -x(1)(4) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*x(1)(4))*(y(4)(3)*x(1)(1)-y(4)(1)*x(1)(3)-y(1)(3)*x(4)(1)+y(1)(1)*x(4)(3)) ------- Rewrite: -y(2)(3)*y(4)(4)*x(1)(1)*x(1)(4)+y(2)(4)*y(4)(1)*x(1)(3)*x(1)(4)-y(1)(4)*y(4)(3)*x(1)(1)*x(2)(4)+y(1)(3)*y(4)(4)*x(1)(1)*x(2)(4)+y(1)(3)*y(2)(4)*x(1)(4)*x(4)(1)-y(1)(1)*y(2)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(2)(3)*x(1)(1)*x(4)(4)-y(1)(3)*y(2)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{1}{3}, \lam{1}{2}{4}{3}{4}{4}) = (y_{1, 3} y_{4, 4}) \del{1}{2}{1}{4} +(-y_{1, 4} y_{4, 1}-y_{1, 1} y_{4, 4}) \del{1}{2}{3}{4} +(-y_{1, 3} y_{2, 4}) \del{1}{4}{1}{4} +(y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{1}{4}{3}{4} +(y_{1, 3} y_{1, 4}) \del{2}{4}{1}{4} +(-2 y_{1, 1} y_{1, 4}) \del{2}{4}{3}{4} +(-y_{4, 4} x_{1, 4}+y_{1, 4} x_{4, 4}) \eps{1}{2}{1}{3} +(y_{4, 1} x_{1, 4}-y_{1, 1} x_{4, 4}) \eps{1}{2}{3}{4} +(-y_{1, 4} x_{2, 4}) \eps{1}{4}{1}{3} +(-y_{2, 1} x_{1, 4}+y_{1, 1} x_{2, 4}) \eps{1}{4}{3}{4} +(-x_{1, 4}) \lam{1}{2}{4}{1}{3}{4} ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 1,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(1)*x(1)(4) Divisor: Delta 1,3 1,4 Quotient: y(1)(3)*y(4)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(1)(4)*y(4)(1)-y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(1)(3)*y(3)(4) Lead Term of Product: y(1)(3)*y(3)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: -y(1)(4)*y(3)(1)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(3)*y(1)(4) Lead Term of Product: -y(1)(3)*y(1)(4)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -2*y(1)(1)*y(1)(4) Lead Term of Product: 2*y(1)(1)*y(1)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(4)*x(1)(4)+y(1)(4)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(1)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(4)(1)*x(1)(4)-y(1)(1)*x(4)(4) Lead Term of Product: y(3)(4)*y(4)(1)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(1)*x(1)(4)+y(1)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,3,4 Quotient: -x(1)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(1)(4))*(y(4)(3)*x(1)(1)-y(4)(1)*x(1)(3)-y(1)(3)*x(4)(1)+y(1)(1)*x(4)(3)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(1)*x(1)(4)+y(3)(4)*y(4)(1)*x(1)(3)*x(1)(4)-y(1)(4)*y(4)(3)*x(1)(1)*x(3)(4)+y(1)(3)*y(4)(4)*x(1)(1)*x(3)(4)+y(1)(3)*y(3)(4)*x(1)(4)*x(4)(1)-y(1)(1)*y(3)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(3)(3)*x(1)(1)*x(4)(4)-y(1)(3)*y(3)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{1}{3}, \lam{1}{3}{4}{3}{4}{4}) = (y_{1, 3} y_{4, 4}) \del{1}{3}{1}{4} +(-y_{1, 4} y_{4, 1}-y_{1, 1} y_{4, 4}) \del{1}{3}{3}{4} +(-y_{1, 3} y_{3, 4}) \del{1}{4}{1}{4} +(y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{1}{4}{3}{4} +(y_{1, 3} y_{1, 4}) \del{3}{4}{1}{4} +(-2 y_{1, 1} y_{1, 4}) \del{3}{4}{3}{4} +(-y_{4, 4} x_{1, 4}+y_{1, 4} x_{4, 4}) \eps{1}{3}{1}{3} +(y_{4, 1} x_{1, 4}-y_{1, 1} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{1, 4} x_{3, 4}) \eps{1}{4}{1}{3} +(-y_{3, 1} x_{1, 4}+y_{1, 1} x_{3, 4}) \eps{1}{4}{3}{4} +(-x_{1, 4}) \lam{1}{3}{4}{1}{3}{4} ---------------------------------- Epsilon: 1,4 1,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,3 Lam: 2,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: y(1)(3)*y(4)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(4)(1)-y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(3)*y(3)(4) Lead Term of Product: y(1)(3)*y(3)(4)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: -y(1)(4)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(4)*y(2)(3) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -2*y(1)(4)*y(2)(1) Lead Term of Product: 2*y(1)(4)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(4)(4)*x(3)(4)-y(3)(4)*x(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(4)(3)*x(3)(4)+y(3)(3)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(4)*x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(4)(1)*x(2)(4)-y(2)(1)*x(4)(4) Lead Term of Product: y(3)(4)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,3,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(2)(4))*(y(4)(3)*x(1)(1)-y(4)(1)*x(1)(3)-y(1)(3)*x(4)(1)+y(1)(1)*x(4)(3)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(1)*x(2)(4)+y(3)(4)*y(4)(1)*x(1)(3)*x(2)(4)-y(2)(4)*y(4)(3)*x(1)(1)*x(3)(4)+y(2)(3)*y(4)(4)*x(1)(1)*x(3)(4)+y(1)(3)*y(3)(4)*x(2)(4)*x(4)(1)-y(1)(1)*y(3)(4)*x(2)(4)*x(4)(3)+y(2)(4)*y(3)(3)*x(1)(1)*x(4)(4)-y(2)(3)*y(3)(4)*x(1)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{1}{3}, \lam{2}{3}{4}{3}{4}{4}) = (y_{1, 3} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{1, 4} y_{4, 1}-y_{1, 1} y_{4, 4}) \del{2}{3}{3}{4} +(-y_{1, 3} y_{3, 4}) \del{2}{4}{1}{4} +(y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{2}{4}{3}{4} +(y_{1, 4} y_{2, 3}) \del{3}{4}{1}{4} +(-2 y_{1, 4} y_{2, 1}) \del{3}{4}{3}{4} +(y_{4, 4} x_{3, 4}-y_{3, 4} x_{4, 4}) \eps{1}{2}{1}{3} +(-y_{4, 3} x_{3, 4}+y_{3, 3} x_{4, 4}) \eps{1}{2}{1}{4} +(-y_{4, 4} x_{2, 4}) \eps{1}{3}{1}{3} +(y_{4, 1} x_{2, 4}-y_{2, 1} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{1}{4}{3}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{1}{3} +(-y_{1, 4} x_{3, 4}) \eps{2}{4}{1}{3} +(-x_{2, 4}) \lam{1}{3}{4}{1}{3}{4} ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 1,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,3 1,2,2 Lead Term of Spoly: -y(2)(1)*y(3)(2)*y(4)(3)*x(1)(2) Divisor: Epsilon 1,4 2,3 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(1)*y(3)(2)*y(4)(3)*x(1)(2) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: -y(1)(2)*y(3)(1)*y(4)(3)*x(2)(2) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*y(4)(3)*x(3)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: -y(4)(2) Lead Term of Product: y(2)(2)*y(3)(1)*y(4)(2)*x(1)(3) Lead term is well behaved Divisor: Psi 1,2,3 1,2,3 Quotient: -x(4)(2) Lead Term of Product: y(1)(3)*y(2)(2)*y(3)(1)*x(4)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(3))*(-y(2)(2)*y(3)(1)*x(1)(2)+y(2)(1)*y(3)(2)*x(1)(2)+y(1)(2)*y(3)(1)*x(2)(2)-y(1)(1)*y(3)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(3)(2)+y(1)(1)*y(2)(2)*x(3)(2)) - (-y(2)(2)*y(3)(1))*(y(4)(3)*x(1)(2)-y(4)(2)*x(1)(3)-y(1)(3)*x(4)(2)+y(1)(2)*x(4)(3)) ------- Rewrite: -y(2)(1)*y(3)(2)*y(4)(3)*x(1)(2)+y(2)(2)*y(3)(1)*y(4)(2)*x(1)(3)-y(1)(2)*y(3)(1)*y(4)(3)*x(2)(2)+y(1)(1)*y(3)(2)*y(4)(3)*x(2)(2)+y(1)(2)*y(2)(1)*y(4)(3)*x(3)(2)-y(1)(1)*y(2)(2)*y(4)(3)*x(3)(2)+y(1)(3)*y(2)(2)*y(3)(1)*x(4)(2)-y(1)(2)*y(2)(2)*y(3)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{4}{2}{3}, \lam{1}{2}{3}{1}{2}{2}) = (-y_{2, 1} y_{3, 2}) \eps{1}{4}{2}{3} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \eps{2}{4}{2}{3} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \eps{3}{4}{2}{3} +(-y_{4, 2}) \lam{1}{2}{3}{1}{2}{3} +(-x_{4, 2}) \psi{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,4 1,2,2 Lead Term of Spoly: -y(2)(1)*y(4)(2)*y(4)(3)*x(1)(2) Divisor: Epsilon 1,4 2,3 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(1)*y(4)(2)*y(4)(3)*x(1)(2) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(1)*y(4)(3)*x(2)(2) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: -y(4)(2) Lead Term of Product: y(2)(2)*y(4)(1)*y(4)(2)*x(1)(3) Lead term is well behaved Divisor: Psi 1,2,4 1,2,3 Quotient: -x(4)(2) Lead Term of Product: y(1)(3)*y(2)(2)*y(4)(1)*x(4)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(3))*(-y(2)(2)*y(4)(1)*x(1)(2)+y(2)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(2)(2)-y(1)(1)*y(4)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(4)(2)+y(1)(1)*y(2)(2)*x(4)(2)) - (-y(2)(2)*y(4)(1))*(y(4)(3)*x(1)(2)-y(4)(2)*x(1)(3)-y(1)(3)*x(4)(2)+y(1)(2)*x(4)(3)) ------- Rewrite: -y(2)(1)*y(4)(2)*y(4)(3)*x(1)(2)+y(2)(2)*y(4)(1)*y(4)(2)*x(1)(3)-y(1)(2)*y(4)(1)*y(4)(3)*x(2)(2)+y(1)(1)*y(4)(2)*y(4)(3)*x(2)(2)+y(1)(3)*y(2)(2)*y(4)(1)*x(4)(2)+y(1)(2)*y(2)(1)*y(4)(3)*x(4)(2)-y(1)(1)*y(2)(2)*y(4)(3)*x(4)(2)-y(1)(2)*y(2)(2)*y(4)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{4}{2}{3}, \lam{1}{2}{4}{1}{2}{2}) = (-y_{2, 1} y_{4, 2}) \eps{1}{4}{2}{3} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \eps{2}{4}{2}{3} +(-y_{4, 2}) \lam{1}{2}{4}{1}{2}{3} +(-x_{4, 2}) \psi{1}{2}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,2,4 3,4,4 Lead Term of Spoly: -y(2)(3)*y(4)(4)*x(1)(2)*x(1)(4) Divisor: Delta 1,2 2,4 Quotient: y(1)(3)*y(4)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(1)(4)*y(4)(2)-y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: -y(1)(3)*y(2)(4) Lead Term of Product: y(1)(3)*y(2)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(1)(4)*y(2)(2)+y(1)(2)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(3)*y(1)(4) Lead Term of Product: -y(1)(3)*y(1)(4)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -2*y(1)(2)*y(1)(4) Lead Term of Product: 2*y(1)(2)*y(1)(4)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(4)*x(1)(4)+y(1)(4)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: y(4)(2)*x(1)(4)-y(1)(2)*x(4)(4) Lead Term of Product: y(2)(4)*y(4)(2)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(1)(4)*x(2)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(2)*x(1)(4)+y(1)(2)*x(2)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Lam 1,2,4 2,3,4 Quotient: -x(1)(4) Lead Term of Product: y(2)(3)*y(4)(2)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*x(1)(4))*(y(4)(3)*x(1)(2)-y(4)(2)*x(1)(3)-y(1)(3)*x(4)(2)+y(1)(2)*x(4)(3)) ------- Rewrite: -y(2)(3)*y(4)(4)*x(1)(2)*x(1)(4)+y(2)(4)*y(4)(2)*x(1)(3)*x(1)(4)-y(1)(4)*y(4)(3)*x(1)(2)*x(2)(4)+y(1)(3)*y(4)(4)*x(1)(2)*x(2)(4)+y(1)(3)*y(2)(4)*x(1)(4)*x(4)(2)-y(1)(2)*y(2)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(2)(3)*x(1)(2)*x(4)(4)-y(1)(3)*y(2)(4)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{2}{3}, \lam{1}{2}{4}{3}{4}{4}) = (y_{1, 3} y_{4, 4}) \del{1}{2}{2}{4} +(-y_{1, 4} y_{4, 2}-y_{1, 2} y_{4, 4}) \del{1}{2}{3}{4} +(-y_{1, 3} y_{2, 4}) \del{1}{4}{2}{4} +(y_{1, 4} y_{2, 2}+y_{1, 2} y_{2, 4}) \del{1}{4}{3}{4} +(y_{1, 3} y_{1, 4}) \del{2}{4}{2}{4} +(-2 y_{1, 2} y_{1, 4}) \del{2}{4}{3}{4} +(-y_{4, 4} x_{1, 4}+y_{1, 4} x_{4, 4}) \eps{1}{2}{2}{3} +(y_{4, 2} x_{1, 4}-y_{1, 2} x_{4, 4}) \eps{1}{2}{3}{4} +(-y_{1, 4} x_{2, 4}) \eps{1}{4}{2}{3} +(-y_{2, 2} x_{1, 4}+y_{1, 2} x_{2, 4}) \eps{1}{4}{3}{4} +(-x_{1, 4}) \lam{1}{2}{4}{2}{3}{4} ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,3,4 1,2,2 Lead Term of Spoly: -y(3)(1)*y(4)(2)*y(4)(3)*x(1)(2) Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(4)(2)*y(4)(3)*x(1)(2) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(1)*y(4)(3)*x(3)(2) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -y(4)(2) Lead Term of Product: y(3)(2)*y(4)(1)*y(4)(2)*x(1)(3) Lead term is well behaved Divisor: Psi 1,3,4 1,2,3 Quotient: -x(4)(2) Lead Term of Product: y(1)(3)*y(3)(2)*y(4)(1)*x(4)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(3))*(-y(3)(2)*y(4)(1)*x(1)(2)+y(3)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(3)(2)-y(1)(1)*y(4)(2)*x(3)(2)-y(1)(2)*y(3)(1)*x(4)(2)+y(1)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(y(4)(3)*x(1)(2)-y(4)(2)*x(1)(3)-y(1)(3)*x(4)(2)+y(1)(2)*x(4)(3)) ------- Rewrite: -y(3)(1)*y(4)(2)*y(4)(3)*x(1)(2)+y(3)(2)*y(4)(1)*y(4)(2)*x(1)(3)-y(1)(2)*y(4)(1)*y(4)(3)*x(3)(2)+y(1)(1)*y(4)(2)*y(4)(3)*x(3)(2)+y(1)(3)*y(3)(2)*y(4)(1)*x(4)(2)+y(1)(2)*y(3)(1)*y(4)(3)*x(4)(2)-y(1)(1)*y(3)(2)*y(4)(3)*x(4)(2)-y(1)(2)*y(3)(2)*y(4)(1)*x(4)(3) ----------- TeX output: S(\eps{1}{4}{2}{3}, \lam{1}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \eps{1}{4}{2}{3} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \eps{3}{4}{2}{3} +(-y_{4, 2}) \lam{1}{3}{4}{1}{2}{3} +(-x_{4, 2}) \psi{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 1,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(2)*x(1)(4) Divisor: Delta 1,3 2,4 Quotient: y(1)(3)*y(4)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(1)(4)*y(4)(2)-y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: -y(1)(3)*y(3)(4) Lead Term of Product: y(1)(3)*y(3)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(1)(4)*y(3)(2)+y(1)(2)*y(3)(4) Lead Term of Product: -y(1)(4)*y(3)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(3)*y(1)(4) Lead Term of Product: -y(1)(3)*y(1)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -2*y(1)(2)*y(1)(4) Lead Term of Product: 2*y(1)(2)*y(1)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(4)*x(1)(4)+y(1)(4)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(2)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(4)(2)*x(1)(4)-y(1)(2)*x(4)(4) Lead Term of Product: y(3)(4)*y(4)(2)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(2)*x(1)(4)+y(1)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(3)*x(1)(4) Lead term is well behaved Divisor: Lam 1,3,4 2,3,4 Quotient: -x(1)(4) Lead Term of Product: y(3)(3)*y(4)(2)*x(1)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(1)(4))*(y(4)(3)*x(1)(2)-y(4)(2)*x(1)(3)-y(1)(3)*x(4)(2)+y(1)(2)*x(4)(3)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(2)*x(1)(4)+y(3)(4)*y(4)(2)*x(1)(3)*x(1)(4)-y(1)(4)*y(4)(3)*x(1)(2)*x(3)(4)+y(1)(3)*y(4)(4)*x(1)(2)*x(3)(4)+y(1)(3)*y(3)(4)*x(1)(4)*x(4)(2)-y(1)(2)*y(3)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(3)(3)*x(1)(2)*x(4)(4)-y(1)(3)*y(3)(4)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{2}{3}, \lam{1}{3}{4}{3}{4}{4}) = (y_{1, 3} y_{4, 4}) \del{1}{3}{2}{4} +(-y_{1, 4} y_{4, 2}-y_{1, 2} y_{4, 4}) \del{1}{3}{3}{4} +(-y_{1, 3} y_{3, 4}) \del{1}{4}{2}{4} +(y_{1, 4} y_{3, 2}+y_{1, 2} y_{3, 4}) \del{1}{4}{3}{4} +(y_{1, 3} y_{1, 4}) \del{3}{4}{2}{4} +(-2 y_{1, 2} y_{1, 4}) \del{3}{4}{3}{4} +(-y_{4, 4} x_{1, 4}+y_{1, 4} x_{4, 4}) \eps{1}{3}{2}{3} +(y_{4, 2} x_{1, 4}-y_{1, 2} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{1, 4} x_{3, 4}) \eps{1}{4}{2}{3} +(-y_{3, 2} x_{1, 4}+y_{1, 2} x_{3, 4}) \eps{1}{4}{3}{4} +(-x_{1, 4}) \lam{1}{3}{4}{2}{3}{4} ---------------------------------- Epsilon: 1,4 2,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,3 Lam: 2,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(2)*x(2)(4) Divisor: Delta 2,3 2,4 Quotient: y(1)(3)*y(4)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(4)(2)-y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(3)*y(3)(4) Lead Term of Product: y(1)(3)*y(3)(4)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(4)*y(3)(2)+y(1)(2)*y(3)(4) Lead Term of Product: -y(1)(4)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(4)*y(2)(3) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -2*y(1)(4)*y(2)(2) Lead Term of Product: 2*y(1)(4)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(4)*x(3)(4)-y(3)(4)*x(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(4)(3)*x(3)(4)+y(3)(3)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(4)*x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(4)(2)*x(2)(4)-y(2)(2)*x(4)(4) Lead Term of Product: y(3)(4)*y(4)(2)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(2)*x(2)(4)+y(2)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 2,3,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(3)*y(4)(2)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(2)(4))*(y(4)(3)*x(1)(2)-y(4)(2)*x(1)(3)-y(1)(3)*x(4)(2)+y(1)(2)*x(4)(3)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(2)*x(2)(4)+y(3)(4)*y(4)(2)*x(1)(3)*x(2)(4)-y(2)(4)*y(4)(3)*x(1)(2)*x(3)(4)+y(2)(3)*y(4)(4)*x(1)(2)*x(3)(4)+y(1)(3)*y(3)(4)*x(2)(4)*x(4)(2)-y(1)(2)*y(3)(4)*x(2)(4)*x(4)(3)+y(2)(4)*y(3)(3)*x(1)(2)*x(4)(4)-y(2)(3)*y(3)(4)*x(1)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{2}{3}, \lam{2}{3}{4}{3}{4}{4}) = (y_{1, 3} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{1, 4} y_{4, 2}-y_{1, 2} y_{4, 4}) \del{2}{3}{3}{4} +(-y_{1, 3} y_{3, 4}) \del{2}{4}{2}{4} +(y_{1, 4} y_{3, 2}+y_{1, 2} y_{3, 4}) \del{2}{4}{3}{4} +(y_{1, 4} y_{2, 3}) \del{3}{4}{2}{4} +(-2 y_{1, 4} y_{2, 2}) \del{3}{4}{3}{4} +(y_{4, 4} x_{3, 4}-y_{3, 4} x_{4, 4}) \eps{1}{2}{2}{3} +(-y_{4, 3} x_{3, 4}+y_{3, 3} x_{4, 4}) \eps{1}{2}{2}{4} +(-y_{4, 4} x_{2, 4}) \eps{1}{3}{2}{3} +(y_{4, 2} x_{2, 4}-y_{2, 2} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{3, 2} x_{2, 4}+y_{2, 2} x_{3, 4}) \eps{1}{4}{3}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{2}{3} +(-y_{1, 4} x_{3, 4}) \eps{2}{4}{2}{3} +(-x_{2, 4}) \lam{1}{3}{4}{2}{3}{4} ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,3 1,2,2 Lead Term of Spoly: -y(2)(1)*y(3)(2)*y(4)(4)*x(1)(2) Divisor: Epsilon 1,4 2,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(1)*y(3)(2)*y(4)(4)*x(1)(2) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: -y(1)(2)*y(3)(1)*y(4)(4)*x(2)(2) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*y(4)(4)*x(3)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: -y(4)(2) Lead Term of Product: y(2)(2)*y(3)(1)*y(4)(2)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,3 1,2,4 Quotient: -x(4)(2) Lead Term of Product: y(1)(4)*y(2)(2)*y(3)(1)*x(4)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(2)(2)*y(3)(1)*x(1)(2)+y(2)(1)*y(3)(2)*x(1)(2)+y(1)(2)*y(3)(1)*x(2)(2)-y(1)(1)*y(3)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(3)(2)+y(1)(1)*y(2)(2)*x(3)(2)) - (-y(2)(2)*y(3)(1))*(y(4)(4)*x(1)(2)-y(4)(2)*x(1)(4)-y(1)(4)*x(4)(2)+y(1)(2)*x(4)(4)) ------- Rewrite: -y(2)(1)*y(3)(2)*y(4)(4)*x(1)(2)+y(2)(2)*y(3)(1)*y(4)(2)*x(1)(4)-y(1)(2)*y(3)(1)*y(4)(4)*x(2)(2)+y(1)(1)*y(3)(2)*y(4)(4)*x(2)(2)+y(1)(2)*y(2)(1)*y(4)(4)*x(3)(2)-y(1)(1)*y(2)(2)*y(4)(4)*x(3)(2)+y(1)(4)*y(2)(2)*y(3)(1)*x(4)(2)-y(1)(2)*y(2)(2)*y(3)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{2}{4}, \lam{1}{2}{3}{1}{2}{2}) = (-y_{2, 1} y_{3, 2}) \eps{1}{4}{2}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \eps{2}{4}{2}{4} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \eps{3}{4}{2}{4} +(-y_{4, 2}) \lam{1}{2}{3}{1}{2}{4} +(-x_{4, 2}) \psi{1}{2}{3}{1}{2}{4} ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,4 1,2,2 Lead Term of Spoly: -y(2)(1)*y(4)(2)*y(4)(4)*x(1)(2) Divisor: Epsilon 1,4 2,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(1)*y(4)(2)*y(4)(4)*x(1)(2) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(1)*y(4)(4)*x(2)(2) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: -y(4)(2) Lead Term of Product: y(2)(2)*y(4)(1)*y(4)(2)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,4 1,2,4 Quotient: -x(4)(2) Lead Term of Product: y(1)(4)*y(2)(2)*y(4)(1)*x(4)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(2)(2)*y(4)(1)*x(1)(2)+y(2)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(2)(2)-y(1)(1)*y(4)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(4)(2)+y(1)(1)*y(2)(2)*x(4)(2)) - (-y(2)(2)*y(4)(1))*(y(4)(4)*x(1)(2)-y(4)(2)*x(1)(4)-y(1)(4)*x(4)(2)+y(1)(2)*x(4)(4)) ------- Rewrite: -y(2)(1)*y(4)(2)*y(4)(4)*x(1)(2)+y(2)(2)*y(4)(1)*y(4)(2)*x(1)(4)-y(1)(2)*y(4)(1)*y(4)(4)*x(2)(2)+y(1)(1)*y(4)(2)*y(4)(4)*x(2)(2)+y(1)(4)*y(2)(2)*y(4)(1)*x(4)(2)+y(1)(2)*y(2)(1)*y(4)(4)*x(4)(2)-y(1)(1)*y(2)(2)*y(4)(4)*x(4)(2)-y(1)(2)*y(2)(2)*y(4)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{2}{4}, \lam{1}{2}{4}{1}{2}{2}) = (-y_{2, 1} y_{4, 2}) \eps{1}{4}{2}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \eps{2}{4}{2}{4} +(-y_{4, 2}) \lam{1}{2}{4}{1}{2}{4} +(-x_{4, 2}) \psi{1}{2}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,3,4 1,2,2 Lead Term of Spoly: -y(3)(1)*y(4)(2)*y(4)(4)*x(1)(2) Divisor: Epsilon 1,4 2,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(4)(2)*y(4)(4)*x(1)(2) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(1)*y(4)(4)*x(3)(2) Lead term is well behaved Divisor: Lam 1,3,4 1,2,4 Quotient: -y(4)(2) Lead Term of Product: y(3)(2)*y(4)(1)*y(4)(2)*x(1)(4) Lead term is well behaved Divisor: Psi 1,3,4 1,2,4 Quotient: -x(4)(2) Lead Term of Product: y(1)(4)*y(3)(2)*y(4)(1)*x(4)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(3)(2)*y(4)(1)*x(1)(2)+y(3)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(3)(2)-y(1)(1)*y(4)(2)*x(3)(2)-y(1)(2)*y(3)(1)*x(4)(2)+y(1)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(y(4)(4)*x(1)(2)-y(4)(2)*x(1)(4)-y(1)(4)*x(4)(2)+y(1)(2)*x(4)(4)) ------- Rewrite: -y(3)(1)*y(4)(2)*y(4)(4)*x(1)(2)+y(3)(2)*y(4)(1)*y(4)(2)*x(1)(4)-y(1)(2)*y(4)(1)*y(4)(4)*x(3)(2)+y(1)(1)*y(4)(2)*y(4)(4)*x(3)(2)+y(1)(4)*y(3)(2)*y(4)(1)*x(4)(2)+y(1)(2)*y(3)(1)*y(4)(4)*x(4)(2)-y(1)(1)*y(3)(2)*y(4)(4)*x(4)(2)-y(1)(2)*y(3)(2)*y(4)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{2}{4}, \lam{1}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \eps{1}{4}{2}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \eps{3}{4}{2}{4} +(-y_{4, 2}) \lam{1}{3}{4}{1}{2}{4} +(-x_{4, 2}) \psi{1}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 2,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,3 1,2,3 Lead Term of Spoly: -y(2)(1)*y(3)(2)*y(4)(4)*x(1)(3) Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(1)*y(3)(2)*y(4)(4)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: -y(1)(2)*y(3)(1)*y(4)(4)*x(2)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: -y(4)(3) Lead Term of Product: y(2)(2)*y(3)(1)*y(4)(3)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,3 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(1)(3)*y(2)(2)*y(3)(1)*x(4)(4) Lead term is well behaved Divisor: Psi 1,2,3 1,2,4 Quotient: -x(4)(3) Lead Term of Product: y(1)(4)*y(2)(2)*y(3)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(2)(2)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(2)*x(1)(3)+y(1)(2)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(2)*x(3)(3)) - (-y(2)(2)*y(3)(1))*(y(4)(4)*x(1)(3)-y(4)(3)*x(1)(4)-y(1)(4)*x(4)(3)+y(1)(3)*x(4)(4)) ------- Rewrite: -y(2)(1)*y(3)(2)*y(4)(4)*x(1)(3)+y(2)(2)*y(3)(1)*y(4)(3)*x(1)(4)-y(1)(2)*y(3)(1)*y(4)(4)*x(2)(3)+y(1)(1)*y(3)(2)*y(4)(4)*x(2)(3)+y(1)(2)*y(2)(1)*y(4)(4)*x(3)(3)-y(1)(1)*y(2)(2)*y(4)(4)*x(3)(3)+y(1)(4)*y(2)(2)*y(3)(1)*x(4)(3)-y(1)(3)*y(2)(2)*y(3)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{3}{4}, \lam{1}{2}{3}{1}{2}{3}) = (-y_{2, 1} y_{3, 2}) \eps{1}{4}{3}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \eps{2}{4}{3}{4} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \eps{3}{4}{3}{4} +(-y_{4, 3}) \lam{1}{2}{3}{1}{2}{4} +(x_{4, 4}) \psi{1}{2}{3}{1}{2}{3} +(-x_{4, 3}) \psi{1}{2}{3}{1}{2}{4} ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,3 1,3,3 Lead Term of Spoly: -y(2)(1)*y(3)(3)*y(4)(4)*x(1)(3) Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: -y(2)(1)*y(3)(3)*y(4)(4)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: -y(1)(3)*y(3)(1)*y(4)(4)*x(2)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: y(1)(3)*y(2)(1)-y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,3,4 Quotient: -y(4)(3) Lead Term of Product: y(2)(3)*y(3)(1)*y(4)(3)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,3 1,3,4 Quotient: -x(4)(3) Lead Term of Product: y(1)(4)*y(2)(3)*y(3)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(2)(3)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(1))*(y(4)(4)*x(1)(3)-y(4)(3)*x(1)(4)-y(1)(4)*x(4)(3)+y(1)(3)*x(4)(4)) ------- Rewrite: -y(2)(1)*y(3)(3)*y(4)(4)*x(1)(3)+y(2)(3)*y(3)(1)*y(4)(3)*x(1)(4)-y(1)(3)*y(3)(1)*y(4)(4)*x(2)(3)+y(1)(1)*y(3)(3)*y(4)(4)*x(2)(3)+y(1)(3)*y(2)(1)*y(4)(4)*x(3)(3)-y(1)(1)*y(2)(3)*y(4)(4)*x(3)(3)+y(1)(4)*y(2)(3)*y(3)(1)*x(4)(3)-y(1)(3)*y(2)(3)*y(3)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{3}{4}, \lam{1}{2}{3}{1}{3}{3}) = (-y_{2, 1} y_{3, 3}) \eps{1}{4}{3}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \eps{2}{4}{3}{4} +(y_{1, 3} y_{2, 1}-y_{1, 1} y_{2, 3}) \eps{3}{4}{3}{4} +(-y_{4, 3}) \lam{1}{2}{3}{1}{3}{4} +(-x_{4, 3}) \psi{1}{2}{3}{1}{3}{4} ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,3 2,3,3 Lead Term of Spoly: -y(2)(2)*y(3)(3)*y(4)(4)*x(1)(3) Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: -y(2)(2)*y(3)(3)*y(4)(4)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: -y(1)(3)*y(3)(2)*y(4)(4)*x(2)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: y(1)(3)*y(2)(2)-y(1)(2)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(2)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,3 2,3,4 Quotient: -y(4)(3) Lead Term of Product: y(2)(3)*y(3)(2)*y(4)(3)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,3 2,3,4 Quotient: -x(4)(3) Lead Term of Product: y(1)(4)*y(2)(3)*y(3)(2)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(2)(3)*y(3)(2)*x(1)(3)+y(2)(2)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(2)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(2))*(y(4)(4)*x(1)(3)-y(4)(3)*x(1)(4)-y(1)(4)*x(4)(3)+y(1)(3)*x(4)(4)) ------- Rewrite: -y(2)(2)*y(3)(3)*y(4)(4)*x(1)(3)+y(2)(3)*y(3)(2)*y(4)(3)*x(1)(4)-y(1)(3)*y(3)(2)*y(4)(4)*x(2)(3)+y(1)(2)*y(3)(3)*y(4)(4)*x(2)(3)+y(1)(3)*y(2)(2)*y(4)(4)*x(3)(3)-y(1)(2)*y(2)(3)*y(4)(4)*x(3)(3)+y(1)(4)*y(2)(3)*y(3)(2)*x(4)(3)-y(1)(3)*y(2)(3)*y(3)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{3}{4}, \lam{1}{2}{3}{2}{3}{3}) = (-y_{2, 2} y_{3, 3}) \eps{1}{4}{3}{4} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \eps{2}{4}{3}{4} +(y_{1, 3} y_{2, 2}-y_{1, 2} y_{2, 3}) \eps{3}{4}{3}{4} +(-y_{4, 3}) \lam{1}{2}{3}{2}{3}{4} +(-x_{4, 3}) \psi{1}{2}{3}{2}{3}{4} ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,4 1,2,3 Lead Term of Spoly: -y(2)(1)*y(4)(2)*y(4)(4)*x(1)(3) Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(1)*y(4)(2)*y(4)(4)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(1)*y(4)(4)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: -y(4)(3) Lead Term of Product: y(2)(2)*y(4)(1)*y(4)(3)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,4 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(1)(3)*y(2)(2)*y(4)(1)*x(4)(4) Lead term is well behaved Divisor: Psi 1,2,4 1,2,4 Quotient: -x(4)(3) Lead Term of Product: y(1)(4)*y(2)(2)*y(4)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(2)(2)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(2)*x(4)(3)) - (-y(2)(2)*y(4)(1))*(y(4)(4)*x(1)(3)-y(4)(3)*x(1)(4)-y(1)(4)*x(4)(3)+y(1)(3)*x(4)(4)) ------- Rewrite: -y(2)(1)*y(4)(2)*y(4)(4)*x(1)(3)+y(2)(2)*y(4)(1)*y(4)(3)*x(1)(4)-y(1)(2)*y(4)(1)*y(4)(4)*x(2)(3)+y(1)(1)*y(4)(2)*y(4)(4)*x(2)(3)+y(1)(4)*y(2)(2)*y(4)(1)*x(4)(3)+y(1)(2)*y(2)(1)*y(4)(4)*x(4)(3)-y(1)(1)*y(2)(2)*y(4)(4)*x(4)(3)-y(1)(3)*y(2)(2)*y(4)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{3}{4}, \lam{1}{2}{4}{1}{2}{3}) = (-y_{2, 1} y_{4, 2}) \eps{1}{4}{3}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \eps{2}{4}{3}{4} +(-y_{4, 3}) \lam{1}{2}{4}{1}{2}{4} +(x_{4, 4}) \psi{1}{2}{4}{1}{2}{3} +(-x_{4, 3}) \psi{1}{2}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,4 1,3,3 Lead Term of Spoly: -y(2)(1)*y(4)(3)*y(4)(4)*x(1)(3) Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: -y(2)(1)*y(4)(3)*y(4)(4)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: -y(1)(3)*y(4)(1)*y(4)(4)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,3,4 Quotient: -y(4)(3) Lead Term of Product: y(2)(3)*y(4)(1)*y(4)(3)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,4 1,3,4 Quotient: -x(4)(3) Lead Term of Product: y(1)(4)*y(2)(3)*y(4)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(2)(3)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(1))*(y(4)(4)*x(1)(3)-y(4)(3)*x(1)(4)-y(1)(4)*x(4)(3)+y(1)(3)*x(4)(4)) ------- Rewrite: -y(2)(1)*y(4)(3)*y(4)(4)*x(1)(3)+y(2)(3)*y(4)(1)*y(4)(3)*x(1)(4)-y(1)(3)*y(4)(1)*y(4)(4)*x(2)(3)+y(1)(1)*y(4)(3)*y(4)(4)*x(2)(3)+y(1)(4)*y(2)(3)*y(4)(1)*x(4)(3)+y(1)(3)*y(2)(1)*y(4)(4)*x(4)(3)-y(1)(1)*y(2)(3)*y(4)(4)*x(4)(3)-y(1)(3)*y(2)(3)*y(4)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{3}{4}, \lam{1}{2}{4}{1}{3}{3}) = (-y_{2, 1} y_{4, 3}) \eps{1}{4}{3}{4} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \eps{2}{4}{3}{4} +(-y_{4, 3}) \lam{1}{2}{4}{1}{3}{4} +(-x_{4, 3}) \psi{1}{2}{4}{1}{3}{4} ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,4 2,3,3 Lead Term of Spoly: -y(2)(2)*y(4)(3)*y(4)(4)*x(1)(3) Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: -y(2)(2)*y(4)(3)*y(4)(4)*x(1)(3) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*y(4)(4)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,4 2,3,4 Quotient: -y(4)(3) Lead Term of Product: y(2)(3)*y(4)(2)*y(4)(3)*x(1)(4) Lead term is well behaved Divisor: Psi 1,2,4 2,3,4 Quotient: -x(4)(3) Lead Term of Product: y(1)(4)*y(2)(3)*y(4)(2)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(2)(3)*y(4)(2)*x(1)(3)+y(2)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(2))*(y(4)(4)*x(1)(3)-y(4)(3)*x(1)(4)-y(1)(4)*x(4)(3)+y(1)(3)*x(4)(4)) ------- Rewrite: -y(2)(2)*y(4)(3)*y(4)(4)*x(1)(3)+y(2)(3)*y(4)(2)*y(4)(3)*x(1)(4)-y(1)(3)*y(4)(2)*y(4)(4)*x(2)(3)+y(1)(2)*y(4)(3)*y(4)(4)*x(2)(3)+y(1)(4)*y(2)(3)*y(4)(2)*x(4)(3)+y(1)(3)*y(2)(2)*y(4)(4)*x(4)(3)-y(1)(2)*y(2)(3)*y(4)(4)*x(4)(3)-y(1)(3)*y(2)(3)*y(4)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{3}{4}, \lam{1}{2}{4}{2}{3}{3}) = (-y_{2, 2} y_{4, 3}) \eps{1}{4}{3}{4} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \eps{2}{4}{3}{4} +(-y_{4, 3}) \lam{1}{2}{4}{2}{3}{4} +(-x_{4, 3}) \psi{1}{2}{4}{2}{3}{4} ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,3,4 1,2,3 Lead Term of Spoly: -y(3)(1)*y(4)(2)*y(4)(4)*x(1)(3) Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(4)(2)*y(4)(4)*x(1)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(1)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,4 Quotient: -y(4)(3) Lead Term of Product: y(3)(2)*y(4)(1)*y(4)(3)*x(1)(4) Lead term is well behaved Divisor: Psi 1,3,4 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(1)(3)*y(3)(2)*y(4)(1)*x(4)(4) Lead term is well behaved Divisor: Psi 1,3,4 1,2,4 Quotient: -x(4)(3) Lead Term of Product: y(1)(4)*y(3)(2)*y(4)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(3)(2)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(3)(3)-y(1)(2)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(y(4)(4)*x(1)(3)-y(4)(3)*x(1)(4)-y(1)(4)*x(4)(3)+y(1)(3)*x(4)(4)) ------- Rewrite: -y(3)(1)*y(4)(2)*y(4)(4)*x(1)(3)+y(3)(2)*y(4)(1)*y(4)(3)*x(1)(4)-y(1)(2)*y(4)(1)*y(4)(4)*x(3)(3)+y(1)(1)*y(4)(2)*y(4)(4)*x(3)(3)+y(1)(4)*y(3)(2)*y(4)(1)*x(4)(3)+y(1)(2)*y(3)(1)*y(4)(4)*x(4)(3)-y(1)(1)*y(3)(2)*y(4)(4)*x(4)(3)-y(1)(3)*y(3)(2)*y(4)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{3}{4}, \lam{1}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \eps{1}{4}{3}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \eps{3}{4}{3}{4} +(-y_{4, 3}) \lam{1}{3}{4}{1}{2}{4} +(x_{4, 4}) \psi{1}{3}{4}{1}{2}{3} +(-x_{4, 3}) \psi{1}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,3,4 1,3,3 Lead Term of Spoly: -y(3)(1)*y(4)(3)*y(4)(4)*x(1)(3) Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*y(4)(4)*x(1)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: -y(1)(3)*y(4)(1)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,3,4 Quotient: -y(4)(3) Lead Term of Product: y(3)(3)*y(4)(1)*y(4)(3)*x(1)(4) Lead term is well behaved Divisor: Psi 1,3,4 1,3,4 Quotient: -x(4)(3) Lead Term of Product: y(1)(4)*y(3)(3)*y(4)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(3)(3)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(y(4)(4)*x(1)(3)-y(4)(3)*x(1)(4)-y(1)(4)*x(4)(3)+y(1)(3)*x(4)(4)) ------- Rewrite: -y(3)(1)*y(4)(3)*y(4)(4)*x(1)(3)+y(3)(3)*y(4)(1)*y(4)(3)*x(1)(4)-y(1)(3)*y(4)(1)*y(4)(4)*x(3)(3)+y(1)(1)*y(4)(3)*y(4)(4)*x(3)(3)+y(1)(4)*y(3)(3)*y(4)(1)*x(4)(3)+y(1)(3)*y(3)(1)*y(4)(4)*x(4)(3)-y(1)(1)*y(3)(3)*y(4)(4)*x(4)(3)-y(1)(3)*y(3)(3)*y(4)(1)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{3}{4}, \lam{1}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \eps{1}{4}{3}{4} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \eps{3}{4}{3}{4} +(-y_{4, 3}) \lam{1}{3}{4}{1}{3}{4} +(-x_{4, 3}) \psi{1}{3}{4}{1}{3}{4} ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*y(4)(4)*x(1)(3) Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*y(4)(4)*x(1)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,3,4 2,3,4 Quotient: -y(4)(3) Lead Term of Product: y(3)(3)*y(4)(2)*y(4)(3)*x(1)(4) Lead term is well behaved Divisor: Psi 1,3,4 2,3,4 Quotient: -x(4)(3) Lead Term of Product: y(1)(4)*y(3)(3)*y(4)(2)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(y(4)(4)*x(1)(3)-y(4)(3)*x(1)(4)-y(1)(4)*x(4)(3)+y(1)(3)*x(4)(4)) ------- Rewrite: -y(3)(2)*y(4)(3)*y(4)(4)*x(1)(3)+y(3)(3)*y(4)(2)*y(4)(3)*x(1)(4)-y(1)(3)*y(4)(2)*y(4)(4)*x(3)(3)+y(1)(2)*y(4)(3)*y(4)(4)*x(3)(3)+y(1)(4)*y(3)(3)*y(4)(2)*x(4)(3)+y(1)(3)*y(3)(2)*y(4)(4)*x(4)(3)-y(1)(2)*y(3)(3)*y(4)(4)*x(4)(3)-y(1)(3)*y(3)(3)*y(4)(2)*x(4)(4) ----------- TeX output: S(\eps{1}{4}{3}{4}, \lam{1}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \eps{1}{4}{3}{4} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \eps{3}{4}{3}{4} +(-y_{4, 3}) \lam{1}{3}{4}{2}{3}{4} +(-x_{4, 3}) \psi{1}{3}{4}{2}{3}{4} ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 1,4 3,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,3 2,3,3 Lead Term of Spoly: -y(2)(2)*y(3)(3)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: y(2)(2)*y(3)(3) Lead Term of Product: -y(2)(2)*y(3)(3)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,3 Quotient: -y(2)(3)*y(3)(1) Lead Term of Product: y(2)(3)*y(3)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 1,3 Quotient: -y(2)(2)*y(2)(3) Lead Term of Product: y(2)(2)*y(2)(3)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: y(2)(1)*y(2)(3) Lead Term of Product: -y(2)(1)*y(2)(3)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: y(1)(3)*y(2)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(1)*y(2)(3) Lead Term of Product: y(1)(1)*y(2)(3)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(3)*x(2)(3)+y(2)(3)*x(3)(3) Lead Term of Product: -y(2)(2)*y(3)(3)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(3)(1)*x(2)(3) Lead Term of Product: y(2)(3)*y(3)(1)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1)*x(2)(3) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(3)*x(2)(3) Lead Term of Product: -y(1)(3)*y(3)(2)*x(2)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(1)(1)*x(2)(3) Lead Term of Product: y(1)(1)*y(3)(3)*x(2)(2)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: -x(2)(3) Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(3)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(2)(3)*y(3)(2)*x(1)(3)+y(2)(2)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(2)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(3)) - (-y(2)(3)*x(1)(3))*(y(3)(2)*x(2)(1)-y(3)(1)*x(2)(2)-y(2)(2)*x(3)(1)+y(2)(1)*x(3)(2)) ------- Rewrite: -y(2)(2)*y(3)(3)*x(1)(3)*x(2)(1)+y(2)(3)*y(3)(1)*x(1)(3)*x(2)(2)-y(1)(3)*y(3)(2)*x(2)(1)*x(2)(3)+y(1)(2)*y(3)(3)*x(2)(1)*x(2)(3)+y(2)(2)*y(2)(3)*x(1)(3)*x(3)(1)-y(2)(1)*y(2)(3)*x(1)(3)*x(3)(2)+y(1)(3)*y(2)(2)*x(2)(1)*x(3)(3)-y(1)(2)*y(2)(3)*x(2)(1)*x(3)(3) ----------- TeX output: S(\eps{2}{3}{1}{2}, \lam{1}{2}{3}{2}{3}{3}) = (y_{2, 2} y_{3, 3}) \del{1}{2}{1}{3} +(-y_{2, 3} y_{3, 1}) \del{1}{2}{2}{3} +(-y_{2, 2} y_{2, 3}) \del{1}{3}{1}{3} +(y_{2, 1} y_{2, 3}) \del{1}{3}{2}{3} +(y_{1, 3} y_{2, 2}) \del{2}{3}{1}{3} +(-y_{1, 1} y_{2, 3}) \del{2}{3}{2}{3} +(-y_{3, 3} x_{2, 3}+y_{2, 3} x_{3, 3}) \eps{1}{2}{1}{2} +(y_{3, 1} x_{2, 3}) \eps{1}{2}{2}{3} +(-y_{2, 1} x_{2, 3}) \eps{1}{3}{2}{3} +(-y_{1, 3} x_{2, 3}) \eps{2}{3}{1}{2} +(y_{1, 1} x_{2, 3}) \eps{2}{3}{2}{3} +(-x_{2, 3}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,3 2,3,4 Lead Term of Spoly: -y(2)(2)*y(3)(3)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(2)(2)*y(3)(3) Lead Term of Product: -y(2)(2)*y(3)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(2)(3)*y(3)(1) Lead Term of Product: y(2)(3)*y(3)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: -y(2)(2)*y(2)(3) Lead Term of Product: y(2)(2)*y(2)(3)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: y(2)(1)*y(2)(3) Lead Term of Product: -y(2)(1)*y(2)(3)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(3)*y(2)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(1)*y(2)(3) Lead Term of Product: y(1)(1)*y(2)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(3)*x(2)(4)+y(2)(3)*x(3)(4) Lead Term of Product: -y(2)(2)*y(3)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(3)(1)*x(2)(4) Lead Term of Product: y(2)(3)*y(3)(1)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(3)*x(2)(4) Lead Term of Product: -y(1)(3)*y(3)(2)*x(2)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(1)(1)*x(2)(4) Lead Term of Product: y(1)(1)*y(3)(3)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: -x(2)(4) Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(2)(3)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(4)) - (-y(2)(3)*x(1)(4))*(y(3)(2)*x(2)(1)-y(3)(1)*x(2)(2)-y(2)(2)*x(3)(1)+y(2)(1)*x(3)(2)) ------- Rewrite: -y(2)(2)*y(3)(3)*x(1)(4)*x(2)(1)+y(2)(3)*y(3)(1)*x(1)(4)*x(2)(2)-y(1)(3)*y(3)(2)*x(2)(1)*x(2)(4)+y(1)(2)*y(3)(3)*x(2)(1)*x(2)(4)+y(2)(2)*y(2)(3)*x(1)(4)*x(3)(1)-y(2)(1)*y(2)(3)*x(1)(4)*x(3)(2)+y(1)(3)*y(2)(2)*x(2)(1)*x(3)(4)-y(1)(2)*y(2)(3)*x(2)(1)*x(3)(4) ----------- TeX output: S(\eps{2}{3}{1}{2}, \lam{1}{2}{3}{2}{3}{4}) = (y_{2, 2} y_{3, 3}) \del{1}{2}{1}{4} +(-y_{2, 3} y_{3, 1}) \del{1}{2}{2}{4} +(-y_{2, 2} y_{2, 3}) \del{1}{3}{1}{4} +(y_{2, 1} y_{2, 3}) \del{1}{3}{2}{4} +(y_{1, 3} y_{2, 2}) \del{2}{3}{1}{4} +(-y_{1, 1} y_{2, 3}) \del{2}{3}{2}{4} +(-y_{3, 3} x_{2, 4}+y_{2, 3} x_{3, 4}) \eps{1}{2}{1}{2} +(y_{3, 1} x_{2, 4}) \eps{1}{2}{2}{3} +(-y_{2, 1} x_{2, 4}) \eps{1}{3}{2}{3} +(-y_{1, 3} x_{2, 4}) \eps{2}{3}{1}{2} +(y_{1, 1} x_{2, 4}) \eps{2}{3}{2}{3} +(-x_{2, 4}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,3 2,4,4 Lead Term of Spoly: -y(2)(2)*y(3)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(2)(2)*y(3)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(2)(4)*y(3)(1) Lead Term of Product: y(2)(4)*y(3)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: -y(2)(2)*y(2)(4) Lead Term of Product: y(2)(2)*y(2)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: y(2)(1)*y(2)(4) Lead Term of Product: -y(2)(1)*y(2)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(4)*y(2)(2) Lead Term of Product: -y(1)(4)*y(2)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(1)*y(2)(4) Lead Term of Product: y(1)(1)*y(2)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(4)*x(2)(4)+y(2)(4)*x(3)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: y(3)(1)*x(2)(4) Lead Term of Product: y(2)(4)*y(3)(1)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(2)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(4)*x(2)(4) Lead Term of Product: -y(1)(4)*y(3)(2)*x(2)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: y(1)(1)*x(2)(4) Lead Term of Product: y(1)(1)*y(3)(4)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: -x(2)(4) Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(2)(4)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(4)) - (-y(2)(4)*x(1)(4))*(y(3)(2)*x(2)(1)-y(3)(1)*x(2)(2)-y(2)(2)*x(3)(1)+y(2)(1)*x(3)(2)) ------- Rewrite: -y(2)(2)*y(3)(4)*x(1)(4)*x(2)(1)+y(2)(4)*y(3)(1)*x(1)(4)*x(2)(2)-y(1)(4)*y(3)(2)*x(2)(1)*x(2)(4)+y(1)(2)*y(3)(4)*x(2)(1)*x(2)(4)+y(2)(2)*y(2)(4)*x(1)(4)*x(3)(1)-y(2)(1)*y(2)(4)*x(1)(4)*x(3)(2)+y(1)(4)*y(2)(2)*x(2)(1)*x(3)(4)-y(1)(2)*y(2)(4)*x(2)(1)*x(3)(4) ----------- TeX output: S(\eps{2}{3}{1}{2}, \lam{1}{2}{3}{2}{4}{4}) = (y_{2, 2} y_{3, 4}) \del{1}{2}{1}{4} +(-y_{2, 4} y_{3, 1}) \del{1}{2}{2}{4} +(-y_{2, 2} y_{2, 4}) \del{1}{3}{1}{4} +(y_{2, 1} y_{2, 4}) \del{1}{3}{2}{4} +(y_{1, 4} y_{2, 2}) \del{2}{3}{1}{4} +(-y_{1, 1} y_{2, 4}) \del{2}{3}{2}{4} +(-y_{3, 4} x_{2, 4}+y_{2, 4} x_{3, 4}) \eps{1}{2}{1}{2} +(y_{3, 1} x_{2, 4}) \eps{1}{2}{2}{4} +(-y_{2, 1} x_{2, 4}) \eps{1}{3}{2}{4} +(-y_{1, 4} x_{2, 4}) \eps{2}{3}{1}{2} +(y_{1, 1} x_{2, 4}) \eps{2}{3}{2}{4} +(-x_{2, 4}) \lam{1}{2}{3}{1}{2}{4} ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,3,4 1,2,2 Lead Term of Spoly: -y(3)(1)*y(4)(2)*x(1)(2)*x(2)(1) Divisor: Delta 1,2 1,2 Quotient: y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(4)(2)*x(1)(2)*x(2)(1) Lead term is well behaved Divisor: Delta 1,3 1,2 Quotient: -y(2)(2)*y(4)(1) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 2,4 1,2 Quotient: y(1)(2)*y(3)(1) Lead Term of Product: -y(1)(2)*y(3)(1)*x(2)(2)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,2 Quotient: -y(1)(1)*y(2)(2) Lead Term of Product: y(1)(1)*y(2)(2)*x(3)(2)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(1)*x(3)(2) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(3)(1)*x(2)(2) Lead Term of Product: -y(3)(1)*y(4)(2)*x(1)(1)*x(2)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(1)*x(4)(2) Lead Term of Product: -y(1)(1)*y(3)(2)*x(2)(1)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: y(1)(1)*x(3)(2) Lead Term of Product: y(1)(1)*y(4)(2)*x(2)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(2)*y(4)(1)*x(1)(2)+y(3)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(3)(2)-y(1)(1)*y(4)(2)*x(3)(2)-y(1)(2)*y(3)(1)*x(4)(2)+y(1)(1)*y(3)(2)*x(4)(2)) - (-y(4)(1)*x(1)(2))*(y(3)(2)*x(2)(1)-y(3)(1)*x(2)(2)-y(2)(2)*x(3)(1)+y(2)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*y(4)(2)*x(1)(2)*x(2)(1)+y(3)(1)*y(4)(1)*x(1)(2)*x(2)(2)+y(2)(2)*y(4)(1)*x(1)(2)*x(3)(1)-y(2)(1)*y(4)(1)*x(1)(2)*x(3)(2)-y(1)(2)*y(4)(1)*x(2)(1)*x(3)(2)+y(1)(1)*y(4)(2)*x(2)(1)*x(3)(2)+y(1)(2)*y(3)(1)*x(2)(1)*x(4)(2)-y(1)(1)*y(3)(2)*x(2)(1)*x(4)(2) ----------- TeX output: S(\eps{2}{3}{1}{2}, \lam{1}{3}{4}{1}{2}{2}) = (y_{3, 1} y_{4, 2}) \del{1}{2}{1}{2} +(-y_{2, 2} y_{4, 1}) \del{1}{3}{1}{2} +(y_{1, 2} y_{3, 1}) \del{2}{4}{1}{2} +(-y_{1, 1} y_{2, 2}) \del{3}{4}{1}{2} +(y_{4, 1} x_{3, 2}) \eps{1}{2}{1}{2} +(-y_{3, 1} x_{2, 2}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{4, 2}) \eps{2}{3}{1}{2} +(y_{1, 1} x_{3, 2}) \eps{2}{4}{1}{2} ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,3,4 1,2,3 Lead Term of Spoly: -y(3)(1)*y(4)(2)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(4)(2)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,3 Quotient: -y(3)(1)*y(4)(1) Lead Term of Product: y(3)(1)*y(4)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 1,3 Quotient: -y(2)(2)*y(4)(1) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: y(2)(1)*y(4)(1) Lead Term of Product: -y(2)(1)*y(4)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: y(1)(2)*y(3)(1) Lead Term of Product: -y(1)(2)*y(3)(1)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(1)*y(3)(1) Lead Term of Product: y(1)(1)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(1)(1)*y(2)(2) Lead Term of Product: y(1)(1)*y(2)(2)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: y(1)(1)*y(2)(1) Lead Term of Product: -y(1)(1)*y(2)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(1)*x(3)(3) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(3)(1)*x(2)(3) Lead Term of Product: -y(3)(1)*y(4)(2)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(3)(2)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: y(1)(1)*x(3)(3) Lead Term of Product: y(1)(1)*y(4)(2)*x(2)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(2)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(3)(3)-y(1)(2)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(2)*x(4)(3)) - (-y(4)(1)*x(1)(3))*(y(3)(2)*x(2)(1)-y(3)(1)*x(2)(2)-y(2)(2)*x(3)(1)+y(2)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*y(4)(2)*x(1)(3)*x(2)(1)+y(3)(1)*y(4)(1)*x(1)(3)*x(2)(2)+y(2)(2)*y(4)(1)*x(1)(3)*x(3)(1)-y(2)(1)*y(4)(1)*x(1)(3)*x(3)(2)-y(1)(2)*y(4)(1)*x(2)(1)*x(3)(3)+y(1)(1)*y(4)(2)*x(2)(1)*x(3)(3)+y(1)(2)*y(3)(1)*x(2)(1)*x(4)(3)-y(1)(1)*y(3)(2)*x(2)(1)*x(4)(3) ----------- TeX output: S(\eps{2}{3}{1}{2}, \lam{1}{3}{4}{1}{2}{3}) = (y_{3, 1} y_{4, 2}) \del{1}{2}{1}{3} +(-y_{3, 1} y_{4, 1}) \del{1}{2}{2}{3} +(-y_{2, 2} y_{4, 1}) \del{1}{3}{1}{3} +(y_{2, 1} y_{4, 1}) \del{1}{3}{2}{3} +(y_{1, 2} y_{3, 1}) \del{2}{4}{1}{3} +(-y_{1, 1} y_{3, 1}) \del{2}{4}{2}{3} +(-y_{1, 1} y_{2, 2}) \del{3}{4}{1}{3} +(y_{1, 1} y_{2, 1}) \del{3}{4}{2}{3} +(y_{4, 1} x_{3, 3}) \eps{1}{2}{1}{2} +(-y_{3, 1} x_{2, 3}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{4, 3}) \eps{2}{3}{1}{2} +(y_{1, 1} x_{3, 3}) \eps{2}{4}{1}{2} ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,3,4 1,2,4 Lead Term of Spoly: -y(3)(1)*y(4)(2)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(4)(2)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(3)(1)*y(4)(1) Lead Term of Product: y(3)(1)*y(4)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: -y(2)(2)*y(4)(1) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: y(2)(1)*y(4)(1) Lead Term of Product: -y(2)(1)*y(4)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(1)(2)*y(3)(1) Lead Term of Product: -y(1)(2)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(1)*y(3)(1) Lead Term of Product: y(1)(1)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(1)*y(2)(2) Lead Term of Product: y(1)(1)*y(2)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(1)*y(2)(1) Lead Term of Product: -y(1)(1)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(1)*x(3)(4) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(3)(1)*y(4)(2)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(2)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(2)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(3)(4)-y(1)(2)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(2)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(3)(2)*x(2)(1)-y(3)(1)*x(2)(2)-y(2)(2)*x(3)(1)+y(2)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*y(4)(2)*x(1)(4)*x(2)(1)+y(3)(1)*y(4)(1)*x(1)(4)*x(2)(2)+y(2)(2)*y(4)(1)*x(1)(4)*x(3)(1)-y(2)(1)*y(4)(1)*x(1)(4)*x(3)(2)-y(1)(2)*y(4)(1)*x(2)(1)*x(3)(4)+y(1)(1)*y(4)(2)*x(2)(1)*x(3)(4)+y(1)(2)*y(3)(1)*x(2)(1)*x(4)(4)-y(1)(1)*y(3)(2)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{1}{2}, \lam{1}{3}{4}{1}{2}{4}) = (y_{3, 1} y_{4, 2}) \del{1}{2}{1}{4} +(-y_{3, 1} y_{4, 1}) \del{1}{2}{2}{4} +(-y_{2, 2} y_{4, 1}) \del{1}{3}{1}{4} +(y_{2, 1} y_{4, 1}) \del{1}{3}{2}{4} +(y_{1, 2} y_{3, 1}) \del{2}{4}{1}{4} +(-y_{1, 1} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{1, 1} y_{2, 2}) \del{3}{4}{1}{4} +(y_{1, 1} y_{2, 1}) \del{3}{4}{2}{4} +(y_{4, 1} x_{3, 4}) \eps{1}{2}{1}{2} +(-y_{3, 1} x_{2, 4}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{1}{2} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{1}{2} ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 2,3,4 1,2,2 Lead Term of Spoly: -y(3)(1)*y(4)(2)*x(2)(1)*x(2)(2) Divisor: Delta 2,3 1,2 Quotient: -y(2)(2)*y(4)(1) Lead Term of Product: y(2)(2)*y(4)(1)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 2,4 1,2 Quotient: y(2)(2)*y(3)(1) Lead Term of Product: -y(2)(2)*y(3)(1)*x(2)(2)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,2 Quotient: -y(2)(1)*y(2)(2) Lead Term of Product: y(2)(1)*y(2)(2)*x(3)(2)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(2)(1)*x(4)(2) Lead Term of Product: -y(2)(1)*y(3)(2)*x(2)(1)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(3)(1)*x(2)(2)+y(2)(1)*x(3)(2) Lead Term of Product: -y(3)(1)*y(4)(2)*x(2)(1)*x(2)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(2)*y(4)(1)*x(2)(2)+y(3)(1)*y(4)(2)*x(2)(2)+y(2)(2)*y(4)(1)*x(3)(2)-y(2)(1)*y(4)(2)*x(3)(2)-y(2)(2)*y(3)(1)*x(4)(2)+y(2)(1)*y(3)(2)*x(4)(2)) - (-y(4)(1)*x(2)(2))*(y(3)(2)*x(2)(1)-y(3)(1)*x(2)(2)-y(2)(2)*x(3)(1)+y(2)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*y(4)(2)*x(2)(1)*x(2)(2)+y(3)(1)*y(4)(1)*x(2)(2)^2+y(2)(2)*y(4)(1)*x(2)(2)*x(3)(1)-y(2)(2)*y(4)(1)*x(2)(1)*x(3)(2)+y(2)(1)*y(4)(2)*x(2)(1)*x(3)(2)-y(2)(1)*y(4)(1)*x(2)(2)*x(3)(2)+y(2)(2)*y(3)(1)*x(2)(1)*x(4)(2)-y(2)(1)*y(3)(2)*x(2)(1)*x(4)(2) ----------- TeX output: S(\eps{2}{3}{1}{2}, \lam{2}{3}{4}{1}{2}{2}) = (-y_{2, 2} y_{4, 1}) \del{2}{3}{1}{2} +(y_{2, 2} y_{3, 1}) \del{2}{4}{1}{2} +(-y_{2, 1} y_{2, 2}) \del{3}{4}{1}{2} +(-y_{2, 1} x_{4, 2}) \eps{2}{3}{1}{2} +(-y_{3, 1} x_{2, 2}+y_{2, 1} x_{3, 2}) \eps{2}{4}{1}{2} ---------------------------------- Epsilon: 2,3 1,2 Lam: 2,3,4 1,2,3 Lead Term of Spoly: -y(3)(1)*y(4)(2)*x(2)(1)*x(2)(3) Divisor: Delta 2,3 1,3 Quotient: -y(2)(2)*y(4)(1) Lead Term of Product: y(2)(2)*y(4)(1)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: y(2)(1)*y(4)(1) Lead Term of Product: -y(2)(1)*y(4)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: y(2)(2)*y(3)(1) Lead Term of Product: -y(2)(2)*y(3)(1)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(2)(1)*y(3)(1) Lead Term of Product: y(2)(1)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(2)(1)*y(2)(2) Lead Term of Product: y(2)(1)*y(2)(2)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: y(2)(1)^2 Lead Term of Product: -y(2)(1)^2*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(2)(1)*x(4)(3) Lead Term of Product: -y(2)(1)*y(3)(2)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(3)(1)*x(2)(3)+y(2)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(2)*x(2)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(2)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(2)*x(2)(3)+y(2)(2)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(2)*x(3)(3)-y(2)(2)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(2)*x(4)(3)) - (-y(4)(1)*x(2)(3))*(y(3)(2)*x(2)(1)-y(3)(1)*x(2)(2)-y(2)(2)*x(3)(1)+y(2)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*y(4)(2)*x(2)(1)*x(2)(3)+y(3)(1)*y(4)(1)*x(2)(2)*x(2)(3)+y(2)(2)*y(4)(1)*x(2)(3)*x(3)(1)-y(2)(1)*y(4)(1)*x(2)(3)*x(3)(2)-y(2)(2)*y(4)(1)*x(2)(1)*x(3)(3)+y(2)(1)*y(4)(2)*x(2)(1)*x(3)(3)+y(2)(2)*y(3)(1)*x(2)(1)*x(4)(3)-y(2)(1)*y(3)(2)*x(2)(1)*x(4)(3) ----------- TeX output: S(\eps{2}{3}{1}{2}, \lam{2}{3}{4}{1}{2}{3}) = (-y_{2, 2} y_{4, 1}) \del{2}{3}{1}{3} +(y_{2, 1} y_{4, 1}) \del{2}{3}{2}{3} +(y_{2, 2} y_{3, 1}) \del{2}{4}{1}{3} +(-y_{2, 1} y_{3, 1}) \del{2}{4}{2}{3} +(-y_{2, 1} y_{2, 2}) \del{3}{4}{1}{3} +(y_{2, 1}^2) \del{3}{4}{2}{3} +(-y_{2, 1} x_{4, 3}) \eps{2}{3}{1}{2} +(-y_{3, 1} x_{2, 3}+y_{2, 1} x_{3, 3}) \eps{2}{4}{1}{2} ---------------------------------- Epsilon: 2,3 1,2 Lam: 2,3,4 1,2,4 Lead Term of Spoly: -y(3)(1)*y(4)(2)*x(2)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: -y(2)(2)*y(4)(1) Lead Term of Product: y(2)(2)*y(4)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(2)(1)*y(4)(1) Lead Term of Product: -y(2)(1)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(2)(2)*y(3)(1) Lead Term of Product: -y(2)(2)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(2)(1)*y(3)(1) Lead Term of Product: y(2)(1)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(2)(1)*y(2)(2) Lead Term of Product: y(2)(1)*y(2)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(2)(1)^2 Lead Term of Product: -y(2)(1)^2*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(2)*x(2)(1)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(2)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(2)*x(2)(4)+y(2)(2)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(2)*x(3)(4)-y(2)(2)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(2)*x(4)(4)) - (-y(4)(1)*x(2)(4))*(y(3)(2)*x(2)(1)-y(3)(1)*x(2)(2)-y(2)(2)*x(3)(1)+y(2)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*y(4)(2)*x(2)(1)*x(2)(4)+y(3)(1)*y(4)(1)*x(2)(2)*x(2)(4)+y(2)(2)*y(4)(1)*x(2)(4)*x(3)(1)-y(2)(1)*y(4)(1)*x(2)(4)*x(3)(2)-y(2)(2)*y(4)(1)*x(2)(1)*x(3)(4)+y(2)(1)*y(4)(2)*x(2)(1)*x(3)(4)+y(2)(2)*y(3)(1)*x(2)(1)*x(4)(4)-y(2)(1)*y(3)(2)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{1}{2}, \lam{2}{3}{4}{1}{2}{4}) = (-y_{2, 2} y_{4, 1}) \del{2}{3}{1}{4} +(y_{2, 1} y_{4, 1}) \del{2}{3}{2}{4} +(y_{2, 2} y_{3, 1}) \del{2}{4}{1}{4} +(-y_{2, 1} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{2, 1} y_{2, 2}) \del{3}{4}{1}{4} +(y_{2, 1}^2) \del{3}{4}{2}{4} +(-y_{2, 1} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{2}{4}{1}{2} ---------------------------------- Epsilon: 2,3 1,2 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,2 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,3 3,4,4 Lead Term of Spoly: -y(2)(3)*y(3)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(2)(3)*y(3)(4) Lead Term of Product: -y(2)(3)*y(3)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(2)(4)*y(3)(1) Lead Term of Product: y(2)(4)*y(3)(1)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: -y(2)(3)*y(2)(4) Lead Term of Product: y(2)(3)*y(2)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(2)(1)*y(2)(4) Lead Term of Product: -y(2)(1)*y(2)(4)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(4)*y(2)(3) Lead Term of Product: -y(1)(4)*y(2)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(1)*y(2)(4) Lead Term of Product: y(1)(1)*y(2)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(4)*x(2)(4)+y(2)(4)*x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: y(3)(1)*x(2)(4) Lead Term of Product: y(2)(4)*y(3)(1)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(4)*x(2)(4) Lead Term of Product: -y(1)(4)*y(3)(3)*x(2)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: y(1)(1)*x(2)(4) Lead Term of Product: y(1)(1)*y(3)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,3,4 Quotient: -x(2)(4) Lead Term of Product: y(2)(3)*y(3)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(2)(4)*x(1)(4))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) ------- Rewrite: -y(2)(3)*y(3)(4)*x(1)(4)*x(2)(1)+y(2)(4)*y(3)(1)*x(1)(4)*x(2)(3)-y(1)(4)*y(3)(3)*x(2)(1)*x(2)(4)+y(1)(3)*y(3)(4)*x(2)(1)*x(2)(4)+y(2)(3)*y(2)(4)*x(1)(4)*x(3)(1)-y(2)(1)*y(2)(4)*x(1)(4)*x(3)(3)+y(1)(4)*y(2)(3)*x(2)(1)*x(3)(4)-y(1)(3)*y(2)(4)*x(2)(1)*x(3)(4) ----------- TeX output: S(\eps{2}{3}{1}{3}, \lam{1}{2}{3}{3}{4}{4}) = (y_{2, 3} y_{3, 4}) \del{1}{2}{1}{4} +(-y_{2, 4} y_{3, 1}) \del{1}{2}{3}{4} +(-y_{2, 3} y_{2, 4}) \del{1}{3}{1}{4} +(y_{2, 1} y_{2, 4}) \del{1}{3}{3}{4} +(y_{1, 4} y_{2, 3}) \del{2}{3}{1}{4} +(-y_{1, 1} y_{2, 4}) \del{2}{3}{3}{4} +(-y_{3, 4} x_{2, 4}+y_{2, 4} x_{3, 4}) \eps{1}{2}{1}{3} +(y_{3, 1} x_{2, 4}) \eps{1}{2}{3}{4} +(-y_{2, 1} x_{2, 4}) \eps{1}{3}{3}{4} +(-y_{1, 4} x_{2, 4}) \eps{2}{3}{1}{3} +(y_{1, 1} x_{2, 4}) \eps{2}{3}{3}{4} +(-x_{2, 4}) \lam{1}{2}{3}{1}{3}{4} ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,3,4 1,3,3 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: y(3)(1)*y(4)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,3 1,3 Quotient: -y(2)(3)*y(4)(1) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(1)(1)*y(2)(3) Lead Term of Product: y(1)(1)*y(2)(3)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(4)(1)*x(3)(3) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: -y(3)(1)*x(2)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: y(1)(1)*x(3)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(3)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(3)) - (-y(4)(1)*x(1)(3))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(1)(3)*x(2)(1)+y(3)(1)*y(4)(1)*x(1)(3)*x(2)(3)+y(2)(3)*y(4)(1)*x(1)(3)*x(3)(1)-y(2)(1)*y(4)(1)*x(1)(3)*x(3)(3)-y(1)(3)*y(4)(1)*x(2)(1)*x(3)(3)+y(1)(1)*y(4)(3)*x(2)(1)*x(3)(3)+y(1)(3)*y(3)(1)*x(2)(1)*x(4)(3)-y(1)(1)*y(3)(3)*x(2)(1)*x(4)(3) ----------- TeX output: S(\eps{2}{3}{1}{3}, \lam{1}{3}{4}{1}{3}{3}) = (y_{3, 1} y_{4, 3}) \del{1}{2}{1}{3} +(-y_{2, 3} y_{4, 1}) \del{1}{3}{1}{3} +(y_{1, 3} y_{3, 1}) \del{2}{4}{1}{3} +(-y_{1, 1} y_{2, 3}) \del{3}{4}{1}{3} +(y_{4, 1} x_{3, 3}) \eps{1}{2}{1}{3} +(-y_{3, 1} x_{2, 3}) \eps{1}{4}{1}{3} +(-y_{1, 1} x_{4, 3}) \eps{2}{3}{1}{3} +(y_{1, 1} x_{3, 3}) \eps{2}{4}{1}{3} ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,3,4 1,3,4 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(3)(1)*y(4)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(3)(1)*y(4)(1) Lead Term of Product: y(3)(1)*y(4)(1)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: -y(2)(3)*y(4)(1) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(2)(1)*y(4)(1) Lead Term of Product: -y(2)(1)*y(4)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(1)*y(3)(1) Lead Term of Product: y(1)(1)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(1)*y(2)(3) Lead Term of Product: y(1)(1)*y(2)(3)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(1)*y(2)(1) Lead Term of Product: -y(1)(1)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(4)(1)*x(3)(4) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(3)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(1)(4)*x(2)(1)+y(3)(1)*y(4)(1)*x(1)(4)*x(2)(3)+y(2)(3)*y(4)(1)*x(1)(4)*x(3)(1)-y(2)(1)*y(4)(1)*x(1)(4)*x(3)(3)-y(1)(3)*y(4)(1)*x(2)(1)*x(3)(4)+y(1)(1)*y(4)(3)*x(2)(1)*x(3)(4)+y(1)(3)*y(3)(1)*x(2)(1)*x(4)(4)-y(1)(1)*y(3)(3)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{1}{3}, \lam{1}{3}{4}{1}{3}{4}) = (y_{3, 1} y_{4, 3}) \del{1}{2}{1}{4} +(-y_{3, 1} y_{4, 1}) \del{1}{2}{3}{4} +(-y_{2, 3} y_{4, 1}) \del{1}{3}{1}{4} +(y_{2, 1} y_{4, 1}) \del{1}{3}{3}{4} +(y_{1, 3} y_{3, 1}) \del{2}{4}{1}{4} +(-y_{1, 1} y_{3, 1}) \del{2}{4}{3}{4} +(-y_{1, 1} y_{2, 3}) \del{3}{4}{1}{4} +(y_{1, 1} y_{2, 1}) \del{3}{4}{3}{4} +(y_{4, 1} x_{3, 4}) \eps{1}{2}{1}{3} +(-y_{3, 1} x_{2, 4}) \eps{1}{4}{1}{3} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{1}{3} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{1}{3} ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: y(3)(2)*y(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,3 1,3 Quotient: -y(2)(3)*y(4)(2) Lead Term of Product: y(2)(3)*y(4)(2)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(1)*y(4)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(1)*y(2)(3) Lead Term of Product: y(1)(1)*y(2)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(4)(2)*x(3)(3) Lead Term of Product: y(2)(3)*y(4)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(3)*x(2)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(2)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(3)*x(4)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(2)*x(4)(3) Lead Term of Product: -y(1)(2)*y(3)(3)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(1)(1)*x(3)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: -x(4)(3) Lead Term of Product: y(1)(3)*y(2)(2)*x(3)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(4)(2)*x(1)(3))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(3)*x(2)(1)+y(3)(1)*y(4)(2)*x(1)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(1)(3)*x(3)(1)-y(2)(1)*y(4)(2)*x(1)(3)*x(3)(3)-y(1)(3)*y(4)(2)*x(2)(1)*x(3)(3)+y(1)(2)*y(4)(3)*x(2)(1)*x(3)(3)+y(1)(3)*y(3)(2)*x(2)(1)*x(4)(3)-y(1)(2)*y(3)(3)*x(2)(1)*x(4)(3) ----------- TeX output: S(\eps{2}{3}{1}{3}, \lam{1}{3}{4}{2}{3}{3}) = (y_{3, 2} y_{4, 3}) \del{1}{2}{1}{3} +(-y_{2, 3} y_{4, 2}) \del{1}{3}{1}{3} +(y_{1, 2} y_{4, 3}) \del{2}{3}{1}{3} +(-y_{1, 1} y_{4, 3}) \del{2}{3}{2}{3} +(y_{1, 3} y_{3, 1}) \del{2}{4}{2}{3} +(-y_{1, 1} y_{2, 3}) \del{3}{4}{2}{3} +(y_{4, 2} x_{3, 3}) \eps{1}{2}{1}{3} +(-y_{4, 3} x_{2, 3}) \eps{1}{3}{1}{2} +(-y_{3, 1} x_{2, 3}) \eps{1}{4}{2}{3} +(y_{1, 3} x_{4, 3}) \eps{2}{3}{1}{2} +(-y_{1, 2} x_{4, 3}) \eps{2}{3}{1}{3} +(y_{1, 1} x_{3, 3}) \eps{2}{4}{2}{3} +(-x_{4, 3}) \pho{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,3,4 2,3,4 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(3)(2)*y(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: -y(2)(3)*y(4)(2) Lead Term of Product: y(2)(3)*y(4)(2)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(1)*y(4)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(1)*y(4)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(2)*y(3)(1) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(1)*y(2)(3) Lead Term of Product: y(1)(1)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(1)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(4)(2)*x(3)(4) Lead Term of Product: y(2)(3)*y(4)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(3)*x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(3)*x(4)(4) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: -x(4)(4) Lead Term of Product: y(1)(3)*y(2)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(4)*x(2)(1)+y(3)(1)*y(4)(2)*x(1)(4)*x(2)(3)+y(2)(3)*y(4)(2)*x(1)(4)*x(3)(1)-y(2)(1)*y(4)(2)*x(1)(4)*x(3)(3)-y(1)(3)*y(4)(2)*x(2)(1)*x(3)(4)+y(1)(2)*y(4)(3)*x(2)(1)*x(3)(4)+y(1)(3)*y(3)(2)*x(2)(1)*x(4)(4)-y(1)(2)*y(3)(3)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{1}{3}, \lam{1}{3}{4}{2}{3}{4}) = (y_{3, 2} y_{4, 3}) \del{1}{2}{1}{4} +(-y_{3, 1} y_{4, 2}) \del{1}{2}{3}{4} +(-y_{2, 3} y_{4, 2}) \del{1}{3}{1}{4} +(y_{2, 1} y_{4, 2}) \del{1}{3}{3}{4} +(y_{1, 2} y_{4, 3}) \del{2}{3}{1}{4} +(-y_{1, 1} y_{4, 3}) \del{2}{3}{2}{4} +(y_{1, 3} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{1, 2} y_{3, 1}) \del{2}{4}{3}{4} +(-y_{1, 1} y_{2, 3}) \del{3}{4}{2}{4} +(y_{1, 1} y_{2, 2}) \del{3}{4}{3}{4} +(y_{4, 2} x_{3, 4}) \eps{1}{2}{1}{3} +(-y_{4, 3} x_{2, 4}) \eps{1}{3}{1}{2} +(-y_{3, 1} x_{2, 4}) \eps{1}{4}{2}{3} +(y_{1, 3} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{1, 2} x_{4, 4}) \eps{2}{3}{1}{3} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{3} +(-x_{4, 4}) \pho{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 2,3,4 1,3,3 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(2)(1)*x(2)(3) Divisor: Delta 2,3 1,3 Quotient: -y(2)(3)*y(4)(1) Lead Term of Product: y(2)(3)*y(4)(1)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: y(2)(3)*y(3)(1) Lead Term of Product: -y(2)(3)*y(3)(1)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(2)(1)*y(2)(3) Lead Term of Product: y(2)(1)*y(2)(3)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(2)(1)*x(4)(3) Lead Term of Product: -y(2)(1)*y(3)(3)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(3)(1)*x(2)(3)+y(2)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(2)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(3)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(3)*x(4)(3)) - (-y(4)(1)*x(2)(3))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(2)(1)*x(2)(3)+y(3)(1)*y(4)(1)*x(2)(3)^2+y(2)(3)*y(4)(1)*x(2)(3)*x(3)(1)-y(2)(3)*y(4)(1)*x(2)(1)*x(3)(3)+y(2)(1)*y(4)(3)*x(2)(1)*x(3)(3)-y(2)(1)*y(4)(1)*x(2)(3)*x(3)(3)+y(2)(3)*y(3)(1)*x(2)(1)*x(4)(3)-y(2)(1)*y(3)(3)*x(2)(1)*x(4)(3) ----------- TeX output: S(\eps{2}{3}{1}{3}, \lam{2}{3}{4}{1}{3}{3}) = (-y_{2, 3} y_{4, 1}) \del{2}{3}{1}{3} +(y_{2, 3} y_{3, 1}) \del{2}{4}{1}{3} +(-y_{2, 1} y_{2, 3}) \del{3}{4}{1}{3} +(-y_{2, 1} x_{4, 3}) \eps{2}{3}{1}{3} +(-y_{3, 1} x_{2, 3}+y_{2, 1} x_{3, 3}) \eps{2}{4}{1}{3} ---------------------------------- Epsilon: 2,3 1,3 Lam: 2,3,4 1,3,4 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(2)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: -y(2)(3)*y(4)(1) Lead Term of Product: y(2)(3)*y(4)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(2)(1)*y(4)(1) Lead Term of Product: -y(2)(1)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(2)(3)*y(3)(1) Lead Term of Product: -y(2)(3)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(2)(1)*y(3)(1) Lead Term of Product: y(2)(1)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(2)(1)*y(2)(3) Lead Term of Product: y(2)(1)*y(2)(3)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(2)(1)^2 Lead Term of Product: -y(2)(1)^2*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(2)(1)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(3)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(3)*x(4)(4)) - (-y(4)(1)*x(2)(4))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(2)(1)*x(2)(4)+y(3)(1)*y(4)(1)*x(2)(3)*x(2)(4)+y(2)(3)*y(4)(1)*x(2)(4)*x(3)(1)-y(2)(1)*y(4)(1)*x(2)(4)*x(3)(3)-y(2)(3)*y(4)(1)*x(2)(1)*x(3)(4)+y(2)(1)*y(4)(3)*x(2)(1)*x(3)(4)+y(2)(3)*y(3)(1)*x(2)(1)*x(4)(4)-y(2)(1)*y(3)(3)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{1}{3}, \lam{2}{3}{4}{1}{3}{4}) = (-y_{2, 3} y_{4, 1}) \del{2}{3}{1}{4} +(y_{2, 1} y_{4, 1}) \del{2}{3}{3}{4} +(y_{2, 3} y_{3, 1}) \del{2}{4}{1}{4} +(-y_{2, 1} y_{3, 1}) \del{2}{4}{3}{4} +(-y_{2, 1} y_{2, 3}) \del{3}{4}{1}{4} +(y_{2, 1}^2) \del{3}{4}{3}{4} +(-y_{2, 1} x_{4, 4}) \eps{2}{3}{1}{3} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{2}{4}{1}{3} ---------------------------------- Epsilon: 2,3 1,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 2,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(2)(1)*x(2)(3) Divisor: Delta 2,3 1,3 Quotient: -y(2)(3)*y(4)(2)+y(2)(2)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(2)(3)*y(3)(1) Lead Term of Product: -y(2)(3)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(2)(1)*y(2)(3) Lead Term of Product: y(2)(1)*y(2)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(3)*x(2)(3)+y(2)(3)*x(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(2)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(2)(2)*x(4)(3) Lead Term of Product: -y(2)(2)*y(3)(3)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(3)(1)*x(2)(3)+y(2)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(2)(2)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(3)*y(4)(2)*x(2)(3)+y(3)(2)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(3)) - (-y(4)(2)*x(2)(3))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(2)(1)*x(2)(3)+y(3)(1)*y(4)(2)*x(2)(3)^2+y(2)(3)*y(4)(2)*x(2)(3)*x(3)(1)-y(2)(3)*y(4)(2)*x(2)(1)*x(3)(3)+y(2)(2)*y(4)(3)*x(2)(1)*x(3)(3)-y(2)(1)*y(4)(2)*x(2)(3)*x(3)(3)+y(2)(3)*y(3)(2)*x(2)(1)*x(4)(3)-y(2)(2)*y(3)(3)*x(2)(1)*x(4)(3) ----------- TeX output: S(\eps{2}{3}{1}{3}, \lam{2}{3}{4}{2}{3}{3}) = (-y_{2, 3} y_{4, 2}+y_{2, 2} y_{4, 3}) \del{2}{3}{1}{3} +(-y_{2, 1} y_{4, 3}) \del{2}{3}{2}{3} +(y_{2, 3} y_{3, 1}) \del{2}{4}{2}{3} +(-y_{2, 1} y_{2, 3}) \del{3}{4}{2}{3} +(-y_{4, 3} x_{2, 3}+y_{2, 3} x_{4, 3}) \eps{2}{3}{1}{2} +(-y_{2, 2} x_{4, 3}) \eps{2}{3}{1}{3} +(-y_{3, 1} x_{2, 3}+y_{2, 1} x_{3, 3}) \eps{2}{4}{2}{3} ---------------------------------- Epsilon: 2,3 1,3 Lam: 2,3,4 2,3,4 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(2)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: -y(2)(3)*y(4)(2)+y(2)(2)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(1)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(2)(3)*y(3)(1) Lead Term of Product: -y(2)(3)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(2)(2)*y(3)(1) Lead Term of Product: y(2)(2)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(1)*y(2)(3) Lead Term of Product: y(2)(1)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(2)(1)*y(2)(2) Lead Term of Product: -y(2)(1)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(3)*x(2)(4)+y(2)(3)*x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(3)*x(2)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(2)(2)*x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(2)(2)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(3)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(4)) - (-y(4)(2)*x(2)(4))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(2)(1)*x(2)(4)+y(3)(1)*y(4)(2)*x(2)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(2)(4)*x(3)(1)-y(2)(1)*y(4)(2)*x(2)(4)*x(3)(3)-y(2)(3)*y(4)(2)*x(2)(1)*x(3)(4)+y(2)(2)*y(4)(3)*x(2)(1)*x(3)(4)+y(2)(3)*y(3)(2)*x(2)(1)*x(4)(4)-y(2)(2)*y(3)(3)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{1}{3}, \lam{2}{3}{4}{2}{3}{4}) = (-y_{2, 3} y_{4, 2}+y_{2, 2} y_{4, 3}) \del{2}{3}{1}{4} +(-y_{2, 1} y_{4, 3}) \del{2}{3}{2}{4} +(y_{2, 1} y_{4, 2}) \del{2}{3}{3}{4} +(y_{2, 3} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{2, 2} y_{3, 1}) \del{2}{4}{3}{4} +(-y_{2, 1} y_{2, 3}) \del{3}{4}{2}{4} +(y_{2, 1} y_{2, 2}) \del{3}{4}{3}{4} +(-y_{4, 3} x_{2, 4}+y_{2, 3} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{2, 2} x_{4, 4}) \eps{2}{3}{1}{3} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{2}{4}{2}{3} ---------------------------------- Epsilon: 2,3 1,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: -y(3)(1)*y(4)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(3)(1)*y(4)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: -y(2)(4)*y(4)(1) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(1)*y(2)(4) Lead Term of Product: y(1)(1)*y(2)(4)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: y(4)(1)*x(3)(4) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,4 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,4 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(3)(4)*x(2)(1)-y(3)(1)*x(2)(4)-y(2)(4)*x(3)(1)+y(2)(1)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(4)(4)*x(1)(4)*x(2)(1)+y(3)(1)*y(4)(1)*x(1)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(1)(4)*x(3)(1)-y(2)(1)*y(4)(1)*x(1)(4)*x(3)(4)-y(1)(4)*y(4)(1)*x(2)(1)*x(3)(4)+y(1)(1)*y(4)(4)*x(2)(1)*x(3)(4)+y(1)(4)*y(3)(1)*x(2)(1)*x(4)(4)-y(1)(1)*y(3)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{1}{4}, \lam{1}{3}{4}{1}{4}{4}) = (y_{3, 1} y_{4, 4}) \del{1}{2}{1}{4} +(-y_{2, 4} y_{4, 1}) \del{1}{3}{1}{4} +(y_{1, 4} y_{3, 1}) \del{2}{4}{1}{4} +(-y_{1, 1} y_{2, 4}) \del{3}{4}{1}{4} +(y_{4, 1} x_{3, 4}) \eps{1}{2}{1}{4} +(-y_{3, 1} x_{2, 4}) \eps{1}{4}{1}{4} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{1}{4} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{1}{4} ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(3)(2)*y(4)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: -y(2)(4)*y(4)(2) Lead Term of Product: y(2)(4)*y(4)(2)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(2)*y(4)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(1)*y(4)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(1)*y(2)(4) Lead Term of Product: y(1)(1)*y(2)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: y(4)(2)*x(3)(4) Lead Term of Product: y(2)(4)*y(4)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(4)*x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,2,4 Quotient: -x(4)(4) Lead Term of Product: y(1)(4)*y(2)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(3)(4)*x(2)(1)-y(3)(1)*x(2)(4)-y(2)(4)*x(3)(1)+y(2)(1)*x(3)(4)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(1)(4)*x(2)(1)+y(3)(1)*y(4)(2)*x(1)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(1)(4)*x(3)(1)-y(2)(1)*y(4)(2)*x(1)(4)*x(3)(4)-y(1)(4)*y(4)(2)*x(2)(1)*x(3)(4)+y(1)(2)*y(4)(4)*x(2)(1)*x(3)(4)+y(1)(4)*y(3)(2)*x(2)(1)*x(4)(4)-y(1)(2)*y(3)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{1}{4}, \lam{1}{3}{4}{2}{4}{4}) = (y_{3, 2} y_{4, 4}) \del{1}{2}{1}{4} +(-y_{2, 4} y_{4, 2}) \del{1}{3}{1}{4} +(y_{1, 2} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{1, 1} y_{4, 4}) \del{2}{3}{2}{4} +(y_{1, 4} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{1, 1} y_{2, 4}) \del{3}{4}{2}{4} +(y_{4, 2} x_{3, 4}) \eps{1}{2}{1}{4} +(-y_{4, 4} x_{2, 4}) \eps{1}{3}{1}{2} +(-y_{3, 1} x_{2, 4}) \eps{1}{4}{2}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{1, 2} x_{4, 4}) \eps{2}{3}{1}{4} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{4} +(-x_{4, 4}) \pho{1}{2}{3}{1}{2}{4} ---------------------------------- Epsilon: 2,3 1,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(3)(3)*y(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,3 1,4 Quotient: -y(2)(4)*y(4)(3) Lead Term of Product: y(2)(4)*y(4)(3)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(3)*y(4)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(1)*y(4)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(1)*y(2)(4) Lead Term of Product: y(1)(1)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: y(4)(3)*x(3)(4) Lead Term of Product: y(2)(4)*y(4)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(4)*x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(3)(4)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,3,4 Quotient: -x(4)(4) Lead Term of Product: y(1)(4)*y(2)(3)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(4)(3)*x(1)(4))*(y(3)(4)*x(2)(1)-y(3)(1)*x(2)(4)-y(2)(4)*x(3)(1)+y(2)(1)*x(3)(4)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(1)+y(3)(1)*y(4)(3)*x(1)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(1)(4)*x(3)(1)-y(2)(1)*y(4)(3)*x(1)(4)*x(3)(4)-y(1)(4)*y(4)(3)*x(2)(1)*x(3)(4)+y(1)(3)*y(4)(4)*x(2)(1)*x(3)(4)+y(1)(4)*y(3)(3)*x(2)(1)*x(4)(4)-y(1)(3)*y(3)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{1}{4}, \lam{1}{3}{4}{3}{4}{4}) = (y_{3, 3} y_{4, 4}) \del{1}{2}{1}{4} +(-y_{2, 4} y_{4, 3}) \del{1}{3}{1}{4} +(y_{1, 3} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{1, 1} y_{4, 4}) \del{2}{3}{3}{4} +(y_{1, 4} y_{3, 1}) \del{2}{4}{3}{4} +(-y_{1, 1} y_{2, 4}) \del{3}{4}{3}{4} +(y_{4, 3} x_{3, 4}) \eps{1}{2}{1}{4} +(-y_{4, 4} x_{2, 4}) \eps{1}{3}{1}{3} +(-y_{3, 1} x_{2, 4}) \eps{1}{4}{3}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{1}{3} +(-y_{1, 3} x_{4, 4}) \eps{2}{3}{1}{4} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{3}{4} +(-x_{4, 4}) \pho{1}{2}{3}{1}{3}{4} ---------------------------------- Epsilon: 2,3 1,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 2,3,4 1,4,4 Lead Term of Spoly: -y(3)(1)*y(4)(4)*x(2)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: -y(2)(4)*y(4)(1) Lead Term of Product: y(2)(4)*y(4)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(2)(4)*y(3)(1) Lead Term of Product: -y(2)(4)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(2)(1)*y(2)(4) Lead Term of Product: y(2)(1)*y(2)(4)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,4 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(2)(1)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(4)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(4)) - (-y(4)(1)*x(2)(4))*(y(3)(4)*x(2)(1)-y(3)(1)*x(2)(4)-y(2)(4)*x(3)(1)+y(2)(1)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(4)(4)*x(2)(1)*x(2)(4)+y(3)(1)*y(4)(1)*x(2)(4)^2+y(2)(4)*y(4)(1)*x(2)(4)*x(3)(1)-y(2)(4)*y(4)(1)*x(2)(1)*x(3)(4)+y(2)(1)*y(4)(4)*x(2)(1)*x(3)(4)-y(2)(1)*y(4)(1)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(1)*x(2)(1)*x(4)(4)-y(2)(1)*y(3)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{1}{4}, \lam{2}{3}{4}{1}{4}{4}) = (-y_{2, 4} y_{4, 1}) \del{2}{3}{1}{4} +(y_{2, 4} y_{3, 1}) \del{2}{4}{1}{4} +(-y_{2, 1} y_{2, 4}) \del{3}{4}{1}{4} +(-y_{2, 1} x_{4, 4}) \eps{2}{3}{1}{4} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{2}{4}{1}{4} ---------------------------------- Epsilon: 2,3 1,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 1,4 Lam: 2,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(2)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: -y(2)(4)*y(4)(2)+y(2)(2)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(2)(1)*y(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(2)(4)*y(3)(1) Lead Term of Product: -y(2)(4)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(1)*y(2)(4) Lead Term of Product: y(2)(1)*y(2)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(4)*x(2)(4)+y(2)(4)*x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(2)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(2)(2)*x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(2)(2)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(4)(2)*x(2)(4))*(y(3)(4)*x(2)(1)-y(3)(1)*x(2)(4)-y(2)(4)*x(3)(1)+y(2)(1)*x(3)(4)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(2)(1)*x(2)(4)+y(3)(1)*y(4)(2)*x(2)(4)^2+y(2)(4)*y(4)(2)*x(2)(4)*x(3)(1)-y(2)(4)*y(4)(2)*x(2)(1)*x(3)(4)+y(2)(2)*y(4)(4)*x(2)(1)*x(3)(4)-y(2)(1)*y(4)(2)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(2)*x(2)(1)*x(4)(4)-y(2)(2)*y(3)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{1}{4}, \lam{2}{3}{4}{2}{4}{4}) = (-y_{2, 4} y_{4, 2}+y_{2, 2} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{2, 1} y_{4, 4}) \del{2}{3}{2}{4} +(y_{2, 4} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{2, 1} y_{2, 4}) \del{3}{4}{2}{4} +(-y_{4, 4} x_{2, 4}+y_{2, 4} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{2, 2} x_{4, 4}) \eps{2}{3}{1}{4} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{2}{4}{2}{4} ---------------------------------- Epsilon: 2,3 1,4 Lam: 2,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(2)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: -y(2)(4)*y(4)(3)+y(2)(3)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(2)(1)*y(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(2)(4)*y(3)(1) Lead Term of Product: -y(2)(4)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(1)*y(2)(4) Lead Term of Product: y(2)(1)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(4)(4)*x(2)(4)+y(2)(4)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(2)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(2)(3)*x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(4)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(2)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(4)(3)*x(2)(4))*(y(3)(4)*x(2)(1)-y(3)(1)*x(2)(4)-y(2)(4)*x(3)(1)+y(2)(1)*x(3)(4)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(2)(1)*x(2)(4)+y(3)(1)*y(4)(3)*x(2)(4)^2+y(2)(4)*y(4)(3)*x(2)(4)*x(3)(1)-y(2)(4)*y(4)(3)*x(2)(1)*x(3)(4)+y(2)(3)*y(4)(4)*x(2)(1)*x(3)(4)-y(2)(1)*y(4)(3)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(3)*x(2)(1)*x(4)(4)-y(2)(3)*y(3)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{1}{4}, \lam{2}{3}{4}{3}{4}{4}) = (-y_{2, 4} y_{4, 3}+y_{2, 3} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{2, 1} y_{4, 4}) \del{2}{3}{3}{4} +(y_{2, 4} y_{3, 1}) \del{2}{4}{3}{4} +(-y_{2, 1} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{4, 4} x_{2, 4}+y_{2, 4} x_{4, 4}) \eps{2}{3}{1}{3} +(-y_{2, 3} x_{4, 4}) \eps{2}{3}{1}{4} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{2}{4}{3}{4} ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,3 3,4,4 Lead Term of Spoly: -y(2)(3)*y(3)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: y(2)(3)*y(3)(4) Lead Term of Product: -y(2)(3)*y(3)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(2)(4)*y(3)(2) Lead Term of Product: y(2)(4)*y(3)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(2)(3)*y(2)(4) Lead Term of Product: y(2)(3)*y(2)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(2)(2)*y(2)(4) Lead Term of Product: -y(2)(2)*y(2)(4)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(4)*y(2)(3) Lead Term of Product: -y(1)(4)*y(2)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(2)*y(2)(4) Lead Term of Product: y(1)(2)*y(2)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(4)*x(2)(4)+y(2)(4)*x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: y(3)(2)*x(2)(4) Lead Term of Product: y(2)(4)*y(3)(2)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(2)(2)*x(2)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(4)*x(2)(4) Lead Term of Product: -y(1)(4)*y(3)(3)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: y(1)(2)*x(2)(4) Lead Term of Product: y(1)(2)*y(3)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,3 2,3,4 Quotient: -x(2)(4) Lead Term of Product: y(2)(3)*y(3)(2)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(2)(4)*x(1)(4))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) ------- Rewrite: -y(2)(3)*y(3)(4)*x(1)(4)*x(2)(2)+y(2)(4)*y(3)(2)*x(1)(4)*x(2)(3)-y(1)(4)*y(3)(3)*x(2)(2)*x(2)(4)+y(1)(3)*y(3)(4)*x(2)(2)*x(2)(4)+y(2)(3)*y(2)(4)*x(1)(4)*x(3)(2)-y(2)(2)*y(2)(4)*x(1)(4)*x(3)(3)+y(1)(4)*y(2)(3)*x(2)(2)*x(3)(4)-y(1)(3)*y(2)(4)*x(2)(2)*x(3)(4) ----------- TeX output: S(\eps{2}{3}{2}{3}, \lam{1}{2}{3}{3}{4}{4}) = (y_{2, 3} y_{3, 4}) \del{1}{2}{2}{4} +(-y_{2, 4} y_{3, 2}) \del{1}{2}{3}{4} +(-y_{2, 3} y_{2, 4}) \del{1}{3}{2}{4} +(y_{2, 2} y_{2, 4}) \del{1}{3}{3}{4} +(y_{1, 4} y_{2, 3}) \del{2}{3}{2}{4} +(-y_{1, 2} y_{2, 4}) \del{2}{3}{3}{4} +(-y_{3, 4} x_{2, 4}+y_{2, 4} x_{3, 4}) \eps{1}{2}{2}{3} +(y_{3, 2} x_{2, 4}) \eps{1}{2}{3}{4} +(-y_{2, 2} x_{2, 4}) \eps{1}{3}{3}{4} +(-y_{1, 4} x_{2, 4}) \eps{2}{3}{2}{3} +(y_{1, 2} x_{2, 4}) \eps{2}{3}{3}{4} +(-x_{2, 4}) \lam{1}{2}{3}{2}{3}{4} ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,3,4 1,3,3 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: y(3)(1)*y(4)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: -y(2)(3)*y(4)(1) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(1)*y(2)(3) Lead Term of Product: y(1)(1)*y(2)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(1)*x(3)(3) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(2)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(1)(1)*x(3)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -x(2)(3) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(3)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(3)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(3)) - (-y(4)(1)*x(1)(3))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(1)(3)*x(2)(2)+y(3)(2)*y(4)(1)*x(1)(3)*x(2)(3)+y(2)(3)*y(4)(1)*x(1)(3)*x(3)(2)-y(2)(2)*y(4)(1)*x(1)(3)*x(3)(3)-y(1)(3)*y(4)(1)*x(2)(2)*x(3)(3)+y(1)(1)*y(4)(3)*x(2)(2)*x(3)(3)+y(1)(3)*y(3)(1)*x(2)(2)*x(4)(3)-y(1)(1)*y(3)(3)*x(2)(2)*x(4)(3) ----------- TeX output: S(\eps{2}{3}{2}{3}, \lam{1}{3}{4}{1}{3}{3}) = (y_{3, 1} y_{4, 3}) \del{1}{2}{2}{3} +(-y_{2, 3} y_{4, 1}) \del{1}{3}{2}{3} +(y_{1, 3} y_{3, 1}) \del{2}{4}{2}{3} +(-y_{1, 1} y_{2, 3}) \del{3}{4}{2}{3} +(y_{4, 1} x_{3, 3}) \eps{1}{2}{2}{3} +(-y_{3, 1} x_{2, 3}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{4, 3}) \eps{2}{3}{2}{3} +(y_{1, 1} x_{3, 3}) \eps{2}{4}{2}{3} +(-x_{2, 3}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,3,4 1,3,4 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: y(3)(1)*y(4)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(3)(2)*y(4)(1) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(2)(3)*y(4)(1) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(2)(2)*y(4)(1) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(1)*y(3)(2) Lead Term of Product: y(1)(1)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(1)*y(2)(3) Lead Term of Product: y(1)(1)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(1)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(1)*x(3)(4) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -x(2)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(3)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(1)(4)*x(2)(2)+y(3)(2)*y(4)(1)*x(1)(4)*x(2)(3)+y(2)(3)*y(4)(1)*x(1)(4)*x(3)(2)-y(2)(2)*y(4)(1)*x(1)(4)*x(3)(3)-y(1)(3)*y(4)(1)*x(2)(2)*x(3)(4)+y(1)(1)*y(4)(3)*x(2)(2)*x(3)(4)+y(1)(3)*y(3)(1)*x(2)(2)*x(4)(4)-y(1)(1)*y(3)(3)*x(2)(2)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{2}{3}, \lam{1}{3}{4}{1}{3}{4}) = (y_{3, 1} y_{4, 3}) \del{1}{2}{2}{4} +(-y_{3, 2} y_{4, 1}) \del{1}{2}{3}{4} +(-y_{2, 3} y_{4, 1}) \del{1}{3}{2}{4} +(y_{2, 2} y_{4, 1}) \del{1}{3}{3}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{2}{3}{3}{4} +(y_{1, 3} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{1, 1} y_{3, 2}) \del{2}{4}{3}{4} +(-y_{1, 1} y_{2, 3}) \del{3}{4}{2}{4} +(y_{1, 1} y_{2, 2}) \del{3}{4}{3}{4} +(y_{4, 1} x_{3, 4}) \eps{1}{2}{2}{3} +(-y_{3, 1} x_{2, 4}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{2}{3} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{3} +(-x_{2, 4}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: y(3)(2)*y(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: -y(2)(3)*y(4)(2) Lead Term of Product: y(2)(3)*y(4)(2)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(1)(3)*y(3)(2) Lead Term of Product: -y(1)(3)*y(3)(2)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(2)*y(2)(3) Lead Term of Product: y(1)(2)*y(2)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(2)*x(3)(3) Lead Term of Product: y(2)(3)*y(4)(2)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(2)*x(2)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(2)*x(4)(3) Lead Term of Product: -y(1)(2)*y(3)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(1)(2)*x(3)(3) Lead Term of Product: y(1)(2)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(4)(2)*x(1)(3))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(3)*x(2)(2)+y(3)(2)*y(4)(2)*x(1)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(1)(3)*x(3)(2)-y(2)(2)*y(4)(2)*x(1)(3)*x(3)(3)-y(1)(3)*y(4)(2)*x(2)(2)*x(3)(3)+y(1)(2)*y(4)(3)*x(2)(2)*x(3)(3)+y(1)(3)*y(3)(2)*x(2)(2)*x(4)(3)-y(1)(2)*y(3)(3)*x(2)(2)*x(4)(3) ----------- TeX output: S(\eps{2}{3}{2}{3}, \lam{1}{3}{4}{2}{3}{3}) = (y_{3, 2} y_{4, 3}) \del{1}{2}{2}{3} +(-y_{2, 3} y_{4, 2}) \del{1}{3}{2}{3} +(y_{1, 3} y_{3, 2}) \del{2}{4}{2}{3} +(-y_{1, 2} y_{2, 3}) \del{3}{4}{2}{3} +(y_{4, 2} x_{3, 3}) \eps{1}{2}{2}{3} +(-y_{3, 2} x_{2, 3}) \eps{1}{4}{2}{3} +(-y_{1, 2} x_{4, 3}) \eps{2}{3}{2}{3} +(y_{1, 2} x_{3, 3}) \eps{2}{4}{2}{3} ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,3,4 2,3,4 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: y(3)(2)*y(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(3)(2)*y(4)(2) Lead Term of Product: y(3)(2)*y(4)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(2)(3)*y(4)(2) Lead Term of Product: y(2)(3)*y(4)(2)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: y(2)(2)*y(4)(2) Lead Term of Product: -y(2)(2)*y(4)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(3)*y(3)(2) Lead Term of Product: -y(1)(3)*y(3)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(2)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(2)*y(2)(3) Lead Term of Product: y(1)(2)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(2)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(2)*x(3)(4) Lead Term of Product: y(2)(3)*y(4)(2)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(2)*x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(1)(2)*x(3)(4) Lead Term of Product: y(1)(2)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(4)*x(2)(2)+y(3)(2)*y(4)(2)*x(1)(4)*x(2)(3)+y(2)(3)*y(4)(2)*x(1)(4)*x(3)(2)-y(2)(2)*y(4)(2)*x(1)(4)*x(3)(3)-y(1)(3)*y(4)(2)*x(2)(2)*x(3)(4)+y(1)(2)*y(4)(3)*x(2)(2)*x(3)(4)+y(1)(3)*y(3)(2)*x(2)(2)*x(4)(4)-y(1)(2)*y(3)(3)*x(2)(2)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{2}{3}, \lam{1}{3}{4}{2}{3}{4}) = (y_{3, 2} y_{4, 3}) \del{1}{2}{2}{4} +(-y_{3, 2} y_{4, 2}) \del{1}{2}{3}{4} +(-y_{2, 3} y_{4, 2}) \del{1}{3}{2}{4} +(y_{2, 2} y_{4, 2}) \del{1}{3}{3}{4} +(y_{1, 3} y_{3, 2}) \del{2}{4}{2}{4} +(-y_{1, 2} y_{3, 2}) \del{2}{4}{3}{4} +(-y_{1, 2} y_{2, 3}) \del{3}{4}{2}{4} +(y_{1, 2} y_{2, 2}) \del{3}{4}{3}{4} +(y_{4, 2} x_{3, 4}) \eps{1}{2}{2}{3} +(-y_{3, 2} x_{2, 4}) \eps{1}{4}{2}{3} +(-y_{1, 2} x_{4, 4}) \eps{2}{3}{2}{3} +(y_{1, 2} x_{3, 4}) \eps{2}{4}{2}{3} ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 2,3,4 1,2,2 Lead Term of Spoly: -y(3)(1)*y(3)(3)*y(4)(2)*x(2)(2) Divisor: Epsilon 2,3 2,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(3)(3)*y(4)(2)*x(2)(2) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(2)*y(3)(1)+y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(2)*y(3)(1)*y(4)(3)*x(3)(2) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: -y(3)(2) Lead Term of Product: y(3)(2)^2*y(4)(1)*x(2)(3) Lead term is well behaved Divisor: Psi 2,3,4 1,2,3 Quotient: -x(3)(2) Lead Term of Product: y(2)(3)*y(3)(2)*y(4)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(3))*(-y(3)(2)*y(4)(1)*x(2)(2)+y(3)(1)*y(4)(2)*x(2)(2)+y(2)(2)*y(4)(1)*x(3)(2)-y(2)(1)*y(4)(2)*x(3)(2)-y(2)(2)*y(3)(1)*x(4)(2)+y(2)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(3)(3)*y(4)(2)*x(2)(2)+y(3)(2)^2*y(4)(1)*x(2)(3)+y(2)(3)*y(3)(2)*y(4)(1)*x(3)(2)-y(2)(2)*y(3)(3)*y(4)(1)*x(3)(2)+y(2)(1)*y(3)(3)*y(4)(2)*x(3)(2)-y(2)(2)*y(3)(2)*y(4)(1)*x(3)(3)+y(2)(2)*y(3)(1)*y(3)(3)*x(4)(2)-y(2)(1)*y(3)(2)*y(3)(3)*x(4)(2) ----------- TeX output: S(\eps{2}{3}{2}{3}, \lam{2}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \eps{2}{3}{2}{3} +(-y_{2, 2} y_{3, 1}+y_{2, 1} y_{3, 2}) \eps{3}{4}{2}{3} +(-y_{3, 2}) \lam{2}{3}{4}{1}{2}{3} +(-x_{3, 2}) \psi{2}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 2,3 2,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 2,3,4 1,3,3 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(2)(2)*x(2)(3) Divisor: Delta 2,3 2,3 Quotient: -y(2)(3)*y(4)(1) Lead Term of Product: y(2)(3)*y(4)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(2)(3)*y(3)(1) Lead Term of Product: -y(2)(3)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(2)(1)*y(2)(3) Lead Term of Product: y(2)(1)*y(2)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(2)(1)*x(4)(3) Lead Term of Product: -y(2)(1)*y(3)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(3)(1)*x(2)(3)+y(2)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(2)(2)*x(2)(3) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: -x(2)(3) Lead Term of Product: y(3)(2)*y(4)(1)*x(2)(3)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(3)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(3)*x(4)(3)) - (-y(4)(1)*x(2)(3))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(2)(2)*x(2)(3)+y(3)(2)*y(4)(1)*x(2)(3)^2+y(2)(3)*y(4)(1)*x(2)(3)*x(3)(2)-y(2)(3)*y(4)(1)*x(2)(2)*x(3)(3)+y(2)(1)*y(4)(3)*x(2)(2)*x(3)(3)-y(2)(2)*y(4)(1)*x(2)(3)*x(3)(3)+y(2)(3)*y(3)(1)*x(2)(2)*x(4)(3)-y(2)(1)*y(3)(3)*x(2)(2)*x(4)(3) ----------- TeX output: S(\eps{2}{3}{2}{3}, \lam{2}{3}{4}{1}{3}{3}) = (-y_{2, 3} y_{4, 1}) \del{2}{3}{2}{3} +(y_{2, 3} y_{3, 1}) \del{2}{4}{2}{3} +(-y_{2, 1} y_{2, 3}) \del{3}{4}{2}{3} +(-y_{2, 1} x_{4, 3}) \eps{2}{3}{2}{3} +(-y_{3, 1} x_{2, 3}+y_{2, 1} x_{3, 3}) \eps{2}{4}{2}{3} +(-x_{2, 3}) \lam{2}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 2,3 2,3 Lam: 2,3,4 1,3,4 Lead Term of Spoly: -y(3)(1)*y(4)(3)*x(2)(2)*x(2)(4) Divisor: Delta 2,3 2,4 Quotient: -y(2)(3)*y(4)(1) Lead Term of Product: y(2)(3)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(1)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(2)(3)*y(3)(1) Lead Term of Product: -y(2)(3)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(1)*y(2)(3) Lead Term of Product: y(2)(1)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(2)(1)*y(2)(2) Lead Term of Product: -y(2)(1)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: -x(2)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(2)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(3)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(3)*x(4)(4)) - (-y(4)(1)*x(2)(4))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) ------- Rewrite: -y(3)(1)*y(4)(3)*x(2)(2)*x(2)(4)+y(3)(2)*y(4)(1)*x(2)(3)*x(2)(4)+y(2)(3)*y(4)(1)*x(2)(4)*x(3)(2)-y(2)(2)*y(4)(1)*x(2)(4)*x(3)(3)-y(2)(3)*y(4)(1)*x(2)(2)*x(3)(4)+y(2)(1)*y(4)(3)*x(2)(2)*x(3)(4)+y(2)(3)*y(3)(1)*x(2)(2)*x(4)(4)-y(2)(1)*y(3)(3)*x(2)(2)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{2}{3}, \lam{2}{3}{4}{1}{3}{4}) = (-y_{2, 3} y_{4, 1}) \del{2}{3}{2}{4} +(y_{2, 1} y_{4, 2}) \del{2}{3}{3}{4} +(y_{2, 3} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{2, 1} y_{3, 2}) \del{2}{4}{3}{4} +(-y_{2, 1} y_{2, 3}) \del{3}{4}{2}{4} +(y_{2, 1} y_{2, 2}) \del{3}{4}{3}{4} +(-y_{2, 1} x_{4, 4}) \eps{2}{3}{2}{3} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{2}{4}{2}{3} +(-x_{2, 4}) \lam{2}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 2,3 2,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 2,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(2)(2)*x(2)(3) Divisor: Delta 2,3 2,3 Quotient: -y(2)(3)*y(4)(2) Lead Term of Product: y(2)(3)*y(4)(2)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(2)(3)*y(3)(2) Lead Term of Product: -y(2)(3)*y(3)(2)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(2)(2)*y(2)(3) Lead Term of Product: y(2)(2)*y(2)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(2)(2)*x(4)(3) Lead Term of Product: -y(2)(2)*y(3)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(3)(2)*x(2)(3)+y(2)(2)*x(3)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(2)(2)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(3)*y(4)(2)*x(2)(3)+y(3)(2)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(3)) - (-y(4)(2)*x(2)(3))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(2)(2)*x(2)(3)+y(3)(2)*y(4)(2)*x(2)(3)^2+y(2)(3)*y(4)(2)*x(2)(3)*x(3)(2)-y(2)(3)*y(4)(2)*x(2)(2)*x(3)(3)+y(2)(2)*y(4)(3)*x(2)(2)*x(3)(3)-y(2)(2)*y(4)(2)*x(2)(3)*x(3)(3)+y(2)(3)*y(3)(2)*x(2)(2)*x(4)(3)-y(2)(2)*y(3)(3)*x(2)(2)*x(4)(3) ----------- TeX output: S(\eps{2}{3}{2}{3}, \lam{2}{3}{4}{2}{3}{3}) = (-y_{2, 3} y_{4, 2}) \del{2}{3}{2}{3} +(y_{2, 3} y_{3, 2}) \del{2}{4}{2}{3} +(-y_{2, 2} y_{2, 3}) \del{3}{4}{2}{3} +(-y_{2, 2} x_{4, 3}) \eps{2}{3}{2}{3} +(-y_{3, 2} x_{2, 3}+y_{2, 2} x_{3, 3}) \eps{2}{4}{2}{3} ---------------------------------- Epsilon: 2,3 2,3 Lam: 2,3,4 2,3,4 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(2)(2)*x(2)(4) Divisor: Delta 2,3 2,4 Quotient: -y(2)(3)*y(4)(2) Lead Term of Product: y(2)(3)*y(4)(2)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(2)(2)*y(4)(2) Lead Term of Product: -y(2)(2)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(2)(3)*y(3)(2) Lead Term of Product: -y(2)(3)*y(3)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(2)(2)*y(3)(2) Lead Term of Product: y(2)(2)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(2)*y(2)(3) Lead Term of Product: y(2)(2)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(2)(2)^2 Lead Term of Product: -y(2)(2)^2*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(2)(2)*x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(3)(2)*x(2)(4)+y(2)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(3)*x(2)(2)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(3)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(4)) - (-y(4)(2)*x(2)(4))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(2)(2)*x(2)(4)+y(3)(2)*y(4)(2)*x(2)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(2)(4)*x(3)(2)-y(2)(2)*y(4)(2)*x(2)(4)*x(3)(3)-y(2)(3)*y(4)(2)*x(2)(2)*x(3)(4)+y(2)(2)*y(4)(3)*x(2)(2)*x(3)(4)+y(2)(3)*y(3)(2)*x(2)(2)*x(4)(4)-y(2)(2)*y(3)(3)*x(2)(2)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{2}{3}, \lam{2}{3}{4}{2}{3}{4}) = (-y_{2, 3} y_{4, 2}) \del{2}{3}{2}{4} +(y_{2, 2} y_{4, 2}) \del{2}{3}{3}{4} +(y_{2, 3} y_{3, 2}) \del{2}{4}{2}{4} +(-y_{2, 2} y_{3, 2}) \del{2}{4}{3}{4} +(-y_{2, 2} y_{2, 3}) \del{3}{4}{2}{4} +(y_{2, 2}^2) \del{3}{4}{3}{4} +(-y_{2, 2} x_{4, 4}) \eps{2}{3}{2}{3} +(-y_{3, 2} x_{2, 4}+y_{2, 2} x_{3, 4}) \eps{2}{4}{2}{3} ---------------------------------- Epsilon: 2,3 2,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: -y(3)(1)*y(4)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: y(3)(1)*y(4)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(2)(4)*y(4)(1) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(1)*y(2)(4) Lead Term of Product: y(1)(1)*y(2)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: y(4)(1)*x(3)(4) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(3)(4)*x(2)(2)-y(3)(2)*x(2)(4)-y(2)(4)*x(3)(2)+y(2)(2)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(4)(4)*x(1)(4)*x(2)(2)+y(3)(2)*y(4)(1)*x(1)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(1)(4)*x(3)(2)-y(2)(2)*y(4)(1)*x(1)(4)*x(3)(4)-y(1)(4)*y(4)(1)*x(2)(2)*x(3)(4)+y(1)(1)*y(4)(4)*x(2)(2)*x(3)(4)+y(1)(4)*y(3)(1)*x(2)(2)*x(4)(4)-y(1)(1)*y(3)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{2}{4}, \lam{1}{3}{4}{1}{4}{4}) = (y_{3, 1} y_{4, 4}) \del{1}{2}{2}{4} +(-y_{2, 4} y_{4, 1}) \del{1}{3}{2}{4} +(y_{1, 4} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{1, 1} y_{2, 4}) \del{3}{4}{2}{4} +(y_{4, 1} x_{3, 4}) \eps{1}{2}{2}{4} +(-y_{3, 1} x_{2, 4}) \eps{1}{4}{2}{4} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{2}{4} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{4} +(-x_{2, 4}) \lam{1}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: y(3)(2)*y(4)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(2)(4)*y(4)(2) Lead Term of Product: y(2)(4)*y(4)(2)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(4)*y(3)(2) Lead Term of Product: -y(1)(4)*y(3)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(2)*y(2)(4) Lead Term of Product: y(1)(2)*y(2)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: y(4)(2)*x(3)(4) Lead Term of Product: y(2)(4)*y(4)(2)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(3)(2)*x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: y(1)(2)*x(3)(4) Lead Term of Product: y(1)(2)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(3)(4)*x(2)(2)-y(3)(2)*x(2)(4)-y(2)(4)*x(3)(2)+y(2)(2)*x(3)(4)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(1)(4)*x(2)(2)+y(3)(2)*y(4)(2)*x(1)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(1)(4)*x(3)(2)-y(2)(2)*y(4)(2)*x(1)(4)*x(3)(4)-y(1)(4)*y(4)(2)*x(2)(2)*x(3)(4)+y(1)(2)*y(4)(4)*x(2)(2)*x(3)(4)+y(1)(4)*y(3)(2)*x(2)(2)*x(4)(4)-y(1)(2)*y(3)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{2}{4}, \lam{1}{3}{4}{2}{4}{4}) = (y_{3, 2} y_{4, 4}) \del{1}{2}{2}{4} +(-y_{2, 4} y_{4, 2}) \del{1}{3}{2}{4} +(y_{1, 4} y_{3, 2}) \del{2}{4}{2}{4} +(-y_{1, 2} y_{2, 4}) \del{3}{4}{2}{4} +(y_{4, 2} x_{3, 4}) \eps{1}{2}{2}{4} +(-y_{3, 2} x_{2, 4}) \eps{1}{4}{2}{4} +(-y_{1, 2} x_{4, 4}) \eps{2}{3}{2}{4} +(y_{1, 2} x_{3, 4}) \eps{2}{4}{2}{4} ---------------------------------- Epsilon: 2,3 2,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: y(3)(3)*y(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(2)(4)*y(4)(3) Lead Term of Product: y(2)(4)*y(4)(3)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(3)*y(4)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(2)*y(4)(4) Lead Term of Product: y(1)(2)*y(4)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(4)*y(3)(2) Lead Term of Product: -y(1)(4)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(2)*y(2)(4) Lead Term of Product: y(1)(2)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: y(4)(3)*x(3)(4) Lead Term of Product: y(2)(4)*y(4)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(4)*x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(2)*x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(1)(2)*x(3)(4) Lead Term of Product: y(1)(2)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 2,3,4 Quotient: -x(4)(4) Lead Term of Product: y(1)(4)*y(2)(3)*x(3)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(4)(3)*x(1)(4))*(y(3)(4)*x(2)(2)-y(3)(2)*x(2)(4)-y(2)(4)*x(3)(2)+y(2)(2)*x(3)(4)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(2)+y(3)(2)*y(4)(3)*x(1)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(1)(4)*x(3)(2)-y(2)(2)*y(4)(3)*x(1)(4)*x(3)(4)-y(1)(4)*y(4)(3)*x(2)(2)*x(3)(4)+y(1)(3)*y(4)(4)*x(2)(2)*x(3)(4)+y(1)(4)*y(3)(3)*x(2)(2)*x(4)(4)-y(1)(3)*y(3)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{2}{4}, \lam{1}{3}{4}{3}{4}{4}) = (y_{3, 3} y_{4, 4}) \del{1}{2}{2}{4} +(-y_{2, 4} y_{4, 3}) \del{1}{3}{2}{4} +(y_{1, 3} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{1, 2} y_{4, 4}) \del{2}{3}{3}{4} +(y_{1, 4} y_{3, 2}) \del{2}{4}{3}{4} +(-y_{1, 2} y_{2, 4}) \del{3}{4}{3}{4} +(y_{4, 3} x_{3, 4}) \eps{1}{2}{2}{4} +(-y_{4, 4} x_{2, 4}) \eps{1}{3}{2}{3} +(-y_{3, 2} x_{2, 4}) \eps{1}{4}{3}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{2}{3} +(-y_{1, 3} x_{4, 4}) \eps{2}{3}{2}{4} +(y_{1, 2} x_{3, 4}) \eps{2}{4}{3}{4} +(-x_{4, 4}) \pho{1}{2}{3}{2}{3}{4} ---------------------------------- Epsilon: 2,3 2,4 Lam: 2,3,4 1,2,2 Lead Term of Spoly: -y(3)(1)*y(3)(4)*y(4)(2)*x(2)(2) Divisor: Epsilon 2,3 2,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(3)(4)*y(4)(2)*x(2)(2) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(2)(2)*y(3)(1)+y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(2)*y(3)(1)*y(4)(4)*x(3)(2) Lead term is well behaved Divisor: Lam 2,3,4 1,2,4 Quotient: -y(3)(2) Lead Term of Product: y(3)(2)^2*y(4)(1)*x(2)(4) Lead term is well behaved Divisor: Psi 2,3,4 1,2,4 Quotient: -x(3)(2) Lead Term of Product: y(2)(4)*y(3)(2)*y(4)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(3)(2)*y(4)(1)*x(2)(2)+y(3)(1)*y(4)(2)*x(2)(2)+y(2)(2)*y(4)(1)*x(3)(2)-y(2)(1)*y(4)(2)*x(3)(2)-y(2)(2)*y(3)(1)*x(4)(2)+y(2)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(y(3)(4)*x(2)(2)-y(3)(2)*x(2)(4)-y(2)(4)*x(3)(2)+y(2)(2)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(3)(4)*y(4)(2)*x(2)(2)+y(3)(2)^2*y(4)(1)*x(2)(4)+y(2)(4)*y(3)(2)*y(4)(1)*x(3)(2)-y(2)(2)*y(3)(4)*y(4)(1)*x(3)(2)+y(2)(1)*y(3)(4)*y(4)(2)*x(3)(2)-y(2)(2)*y(3)(2)*y(4)(1)*x(3)(4)+y(2)(2)*y(3)(1)*y(3)(4)*x(4)(2)-y(2)(1)*y(3)(2)*y(3)(4)*x(4)(2) ----------- TeX output: S(\eps{2}{3}{2}{4}, \lam{2}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \eps{2}{3}{2}{4} +(-y_{2, 2} y_{3, 1}+y_{2, 1} y_{3, 2}) \eps{3}{4}{2}{4} +(-y_{3, 2}) \lam{2}{3}{4}{1}{2}{4} +(-x_{3, 2}) \psi{2}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 2,3 2,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 2,3,4 1,4,4 Lead Term of Spoly: -y(3)(1)*y(4)(4)*x(2)(2)*x(2)(4) Divisor: Delta 2,3 2,4 Quotient: -y(2)(4)*y(4)(1) Lead Term of Product: y(2)(4)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(2)(4)*y(3)(1) Lead Term of Product: -y(2)(4)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(1)*y(2)(4) Lead Term of Product: y(2)(1)*y(2)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,2,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(2)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(4)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(4)) - (-y(4)(1)*x(2)(4))*(y(3)(4)*x(2)(2)-y(3)(2)*x(2)(4)-y(2)(4)*x(3)(2)+y(2)(2)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(4)(4)*x(2)(2)*x(2)(4)+y(3)(2)*y(4)(1)*x(2)(4)^2+y(2)(4)*y(4)(1)*x(2)(4)*x(3)(2)-y(2)(4)*y(4)(1)*x(2)(2)*x(3)(4)+y(2)(1)*y(4)(4)*x(2)(2)*x(3)(4)-y(2)(2)*y(4)(1)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(1)*x(2)(2)*x(4)(4)-y(2)(1)*y(3)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{2}{4}, \lam{2}{3}{4}{1}{4}{4}) = (-y_{2, 4} y_{4, 1}) \del{2}{3}{2}{4} +(y_{2, 4} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{2, 1} y_{2, 4}) \del{3}{4}{2}{4} +(-y_{2, 1} x_{4, 4}) \eps{2}{3}{2}{4} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{2}{4}{2}{4} +(-x_{2, 4}) \lam{2}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 2,3 2,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 2,4 Lam: 2,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(2)(2)*x(2)(4) Divisor: Delta 2,3 2,4 Quotient: -y(2)(4)*y(4)(2) Lead Term of Product: y(2)(4)*y(4)(2)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(2)(4)*y(3)(2) Lead Term of Product: -y(2)(4)*y(3)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(2)*y(2)(4) Lead Term of Product: y(2)(2)*y(2)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(2)(2)*x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(3)(2)*x(2)(4)+y(2)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(2)(2)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(4)(2)*x(2)(4))*(y(3)(4)*x(2)(2)-y(3)(2)*x(2)(4)-y(2)(4)*x(3)(2)+y(2)(2)*x(3)(4)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(2)(2)*x(2)(4)+y(3)(2)*y(4)(2)*x(2)(4)^2+y(2)(4)*y(4)(2)*x(2)(4)*x(3)(2)-y(2)(4)*y(4)(2)*x(2)(2)*x(3)(4)+y(2)(2)*y(4)(4)*x(2)(2)*x(3)(4)-y(2)(2)*y(4)(2)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(2)*x(2)(2)*x(4)(4)-y(2)(2)*y(3)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{2}{4}, \lam{2}{3}{4}{2}{4}{4}) = (-y_{2, 4} y_{4, 2}) \del{2}{3}{2}{4} +(y_{2, 4} y_{3, 2}) \del{2}{4}{2}{4} +(-y_{2, 2} y_{2, 4}) \del{3}{4}{2}{4} +(-y_{2, 2} x_{4, 4}) \eps{2}{3}{2}{4} +(-y_{3, 2} x_{2, 4}+y_{2, 2} x_{3, 4}) \eps{2}{4}{2}{4} ---------------------------------- Epsilon: 2,3 2,4 Lam: 2,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(2)(2)*x(2)(4) Divisor: Delta 2,3 2,4 Quotient: -y(2)(4)*y(4)(3)+y(2)(3)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(2)(2)*y(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(2)(4)*y(3)(2) Lead Term of Product: -y(2)(4)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(2)*y(2)(4) Lead Term of Product: y(2)(2)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(4)(4)*x(2)(4)+y(2)(4)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(2)(3)*x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(3)(2)*x(2)(4)+y(2)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(2)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(4)(3)*x(2)(4))*(y(3)(4)*x(2)(2)-y(3)(2)*x(2)(4)-y(2)(4)*x(3)(2)+y(2)(2)*x(3)(4)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(2)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(2)(4)^2+y(2)(4)*y(4)(3)*x(2)(4)*x(3)(2)-y(2)(4)*y(4)(3)*x(2)(2)*x(3)(4)+y(2)(3)*y(4)(4)*x(2)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(3)*x(2)(2)*x(4)(4)-y(2)(3)*y(3)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{2}{4}, \lam{2}{3}{4}{3}{4}{4}) = (-y_{2, 4} y_{4, 3}+y_{2, 3} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{2, 2} y_{4, 4}) \del{2}{3}{3}{4} +(y_{2, 4} y_{3, 2}) \del{2}{4}{3}{4} +(-y_{2, 2} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{4, 4} x_{2, 4}+y_{2, 4} x_{4, 4}) \eps{2}{3}{2}{3} +(-y_{2, 3} x_{4, 4}) \eps{2}{3}{2}{4} +(-y_{3, 2} x_{2, 4}+y_{2, 2} x_{3, 4}) \eps{2}{4}{3}{4} ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: -y(3)(1)*y(4)(4)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: y(3)(1)*y(4)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(2)(4)*y(4)(1) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(1)*y(2)(4) Lead Term of Product: y(1)(1)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: y(4)(1)*x(3)(4) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,3,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(3))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(4)(1)*x(1)(4))*(y(3)(4)*x(2)(3)-y(3)(3)*x(2)(4)-y(2)(4)*x(3)(3)+y(2)(3)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(4)(4)*x(1)(4)*x(2)(3)+y(3)(3)*y(4)(1)*x(1)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(1)(4)*x(3)(3)-y(2)(3)*y(4)(1)*x(1)(4)*x(3)(4)-y(1)(4)*y(4)(1)*x(2)(3)*x(3)(4)+y(1)(1)*y(4)(4)*x(2)(3)*x(3)(4)+y(1)(4)*y(3)(1)*x(2)(3)*x(4)(4)-y(1)(1)*y(3)(4)*x(2)(3)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{3}{4}, \lam{1}{3}{4}{1}{4}{4}) = (y_{3, 1} y_{4, 4}) \del{1}{2}{3}{4} +(-y_{2, 4} y_{4, 1}) \del{1}{3}{3}{4} +(y_{1, 4} y_{3, 1}) \del{2}{4}{3}{4} +(-y_{1, 1} y_{2, 4}) \del{3}{4}{3}{4} +(y_{4, 1} x_{3, 4}) \eps{1}{2}{3}{4} +(-y_{3, 1} x_{2, 4}) \eps{1}{4}{3}{4} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{3}{4} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{3}{4} +(-x_{2, 4}) \lam{1}{3}{4}{1}{3}{4} ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: y(3)(2)*y(4)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(2)(4)*y(4)(2) Lead Term of Product: y(2)(4)*y(4)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(4)*y(3)(2) Lead Term of Product: -y(1)(4)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(2)*y(2)(4) Lead Term of Product: y(1)(2)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: y(4)(2)*x(3)(4) Lead Term of Product: y(2)(4)*y(4)(2)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(2)*x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(1)(2)*x(3)(4) Lead Term of Product: y(1)(2)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 2,3,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(3)*y(4)(2)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(3))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(4)(2)*x(1)(4))*(y(3)(4)*x(2)(3)-y(3)(3)*x(2)(4)-y(2)(4)*x(3)(3)+y(2)(3)*x(3)(4)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(1)(4)*x(2)(3)+y(3)(3)*y(4)(2)*x(1)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(1)(4)*x(3)(3)-y(2)(3)*y(4)(2)*x(1)(4)*x(3)(4)-y(1)(4)*y(4)(2)*x(2)(3)*x(3)(4)+y(1)(2)*y(4)(4)*x(2)(3)*x(3)(4)+y(1)(4)*y(3)(2)*x(2)(3)*x(4)(4)-y(1)(2)*y(3)(4)*x(2)(3)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{3}{4}, \lam{1}{3}{4}{2}{4}{4}) = (y_{3, 2} y_{4, 4}) \del{1}{2}{3}{4} +(-y_{2, 4} y_{4, 2}) \del{1}{3}{3}{4} +(y_{1, 4} y_{3, 2}) \del{2}{4}{3}{4} +(-y_{1, 2} y_{2, 4}) \del{3}{4}{3}{4} +(y_{4, 2} x_{3, 4}) \eps{1}{2}{3}{4} +(-y_{3, 2} x_{2, 4}) \eps{1}{4}{3}{4} +(-y_{1, 2} x_{4, 4}) \eps{2}{3}{3}{4} +(y_{1, 2} x_{3, 4}) \eps{2}{4}{3}{4} +(-x_{2, 4}) \lam{1}{3}{4}{2}{3}{4} ---------------------------------- Epsilon: 2,3 3,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: y(3)(3)*y(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(2)(4)*y(4)(3) Lead Term of Product: y(2)(4)*y(4)(3)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(4)*y(3)(3) Lead Term of Product: -y(1)(4)*y(3)(3)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(3)*y(2)(4) Lead Term of Product: y(1)(3)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: y(4)(3)*x(3)(4) Lead Term of Product: y(2)(4)*y(4)(3)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(3)*x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(1)(3)*x(3)(4) Lead Term of Product: y(1)(3)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(3))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(4)(3)*x(1)(4))*(y(3)(4)*x(2)(3)-y(3)(3)*x(2)(4)-y(2)(4)*x(3)(3)+y(2)(3)*x(3)(4)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(3)+y(3)(3)*y(4)(3)*x(1)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(1)(4)*x(3)(3)-y(2)(3)*y(4)(3)*x(1)(4)*x(3)(4)-y(1)(4)*y(4)(3)*x(2)(3)*x(3)(4)+y(1)(3)*y(4)(4)*x(2)(3)*x(3)(4)+y(1)(4)*y(3)(3)*x(2)(3)*x(4)(4)-y(1)(3)*y(3)(4)*x(2)(3)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{3}{4}, \lam{1}{3}{4}{3}{4}{4}) = (y_{3, 3} y_{4, 4}) \del{1}{2}{3}{4} +(-y_{2, 4} y_{4, 3}) \del{1}{3}{3}{4} +(y_{1, 4} y_{3, 3}) \del{2}{4}{3}{4} +(-y_{1, 3} y_{2, 4}) \del{3}{4}{3}{4} +(y_{4, 3} x_{3, 4}) \eps{1}{2}{3}{4} +(-y_{3, 3} x_{2, 4}) \eps{1}{4}{3}{4} +(-y_{1, 3} x_{4, 4}) \eps{2}{3}{3}{4} +(y_{1, 3} x_{3, 4}) \eps{2}{4}{3}{4} ---------------------------------- Epsilon: 2,3 3,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 2,3,4 1,2,3 Lead Term of Spoly: -y(3)(1)*y(3)(4)*y(4)(2)*x(2)(3) Divisor: Epsilon 2,3 3,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(3)(4)*y(4)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(2)*y(3)(1)+y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(2)*y(3)(1)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 2,3,4 1,2,4 Quotient: -y(3)(3) Lead Term of Product: y(3)(2)*y(3)(3)*y(4)(1)*x(2)(4) Lead term is well behaved Divisor: Psi 2,3,4 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*y(4)(1)*x(3)(4) Lead term is well behaved Divisor: Psi 2,3,4 1,2,4 Quotient: -x(3)(3) Lead Term of Product: y(2)(4)*y(3)(2)*y(4)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(3)(2)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(2)*x(2)(3)+y(2)(2)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(2)*x(3)(3)-y(2)(2)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(y(3)(4)*x(2)(3)-y(3)(3)*x(2)(4)-y(2)(4)*x(3)(3)+y(2)(3)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(3)(4)*y(4)(2)*x(2)(3)+y(3)(2)*y(3)(3)*y(4)(1)*x(2)(4)+y(2)(4)*y(3)(2)*y(4)(1)*x(3)(3)-y(2)(2)*y(3)(4)*y(4)(1)*x(3)(3)+y(2)(1)*y(3)(4)*y(4)(2)*x(3)(3)-y(2)(3)*y(3)(2)*y(4)(1)*x(3)(4)+y(2)(2)*y(3)(1)*y(3)(4)*x(4)(3)-y(2)(1)*y(3)(2)*y(3)(4)*x(4)(3) ----------- TeX output: S(\eps{2}{3}{3}{4}, \lam{2}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \eps{2}{3}{3}{4} +(-y_{2, 2} y_{3, 1}+y_{2, 1} y_{3, 2}) \eps{3}{4}{3}{4} +(-y_{3, 3}) \lam{2}{3}{4}{1}{2}{4} +(x_{3, 4}) \psi{2}{3}{4}{1}{2}{3} +(-x_{3, 3}) \psi{2}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 2,3 3,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 2,3,4 1,3,3 Lead Term of Spoly: -y(3)(1)*y(3)(4)*y(4)(3)*x(2)(3) Divisor: Epsilon 2,3 3,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: -y(3)(1)*y(3)(4)*y(4)(3)*x(2)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(3)*y(3)(1)+y(2)(1)*y(3)(3) Lead Term of Product: -y(2)(3)*y(3)(1)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 2,3,4 1,3,4 Quotient: -y(3)(3) Lead Term of Product: y(3)(3)^2*y(4)(1)*x(2)(4) Lead term is well behaved Divisor: Psi 2,3,4 1,3,4 Quotient: -x(3)(3) Lead Term of Product: y(2)(4)*y(3)(3)*y(4)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(3)(3)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(y(3)(4)*x(2)(3)-y(3)(3)*x(2)(4)-y(2)(4)*x(3)(3)+y(2)(3)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(3)(4)*y(4)(3)*x(2)(3)+y(3)(3)^2*y(4)(1)*x(2)(4)+y(2)(4)*y(3)(3)*y(4)(1)*x(3)(3)-y(2)(3)*y(3)(4)*y(4)(1)*x(3)(3)+y(2)(1)*y(3)(4)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(3)*y(4)(1)*x(3)(4)+y(2)(3)*y(3)(1)*y(3)(4)*x(4)(3)-y(2)(1)*y(3)(3)*y(3)(4)*x(4)(3) ----------- TeX output: S(\eps{2}{3}{3}{4}, \lam{2}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \eps{2}{3}{3}{4} +(-y_{2, 3} y_{3, 1}+y_{2, 1} y_{3, 3}) \eps{3}{4}{3}{4} +(-y_{3, 3}) \lam{2}{3}{4}{1}{3}{4} +(-x_{3, 3}) \psi{2}{3}{4}{1}{3}{4} ---------------------------------- Epsilon: 2,3 3,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 2,3,4 1,4,4 Lead Term of Spoly: -y(3)(1)*y(4)(4)*x(2)(3)*x(2)(4) Divisor: Delta 2,3 3,4 Quotient: -y(2)(4)*y(4)(1) Lead Term of Product: y(2)(4)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(2)(4)*y(3)(1) Lead Term of Product: -y(2)(4)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(1)*y(2)(4) Lead Term of Product: y(2)(1)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,3,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(2)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(3))*(-y(3)(4)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(4)) - (-y(4)(1)*x(2)(4))*(y(3)(4)*x(2)(3)-y(3)(3)*x(2)(4)-y(2)(4)*x(3)(3)+y(2)(3)*x(3)(4)) ------- Rewrite: -y(3)(1)*y(4)(4)*x(2)(3)*x(2)(4)+y(3)(3)*y(4)(1)*x(2)(4)^2+y(2)(4)*y(4)(1)*x(2)(4)*x(3)(3)-y(2)(4)*y(4)(1)*x(2)(3)*x(3)(4)+y(2)(1)*y(4)(4)*x(2)(3)*x(3)(4)-y(2)(3)*y(4)(1)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(1)*x(2)(3)*x(4)(4)-y(2)(1)*y(3)(4)*x(2)(3)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{3}{4}, \lam{2}{3}{4}{1}{4}{4}) = (-y_{2, 4} y_{4, 1}) \del{2}{3}{3}{4} +(y_{2, 4} y_{3, 1}) \del{2}{4}{3}{4} +(-y_{2, 1} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{2, 1} x_{4, 4}) \eps{2}{3}{3}{4} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{2}{4}{3}{4} +(-x_{2, 4}) \lam{2}{3}{4}{1}{3}{4} ---------------------------------- Epsilon: 2,3 3,4 Lam: 2,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(3)(4)*y(4)(3)*x(2)(3) Divisor: Epsilon 2,3 3,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: -y(3)(2)*y(3)(4)*y(4)(3)*x(2)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(3)*y(3)(2)+y(2)(2)*y(3)(3) Lead Term of Product: -y(2)(3)*y(3)(2)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 2,3,4 2,3,4 Quotient: -y(3)(3) Lead Term of Product: y(3)(3)^2*y(4)(2)*x(2)(4) Lead term is well behaved Divisor: Psi 2,3,4 2,3,4 Quotient: -x(3)(3) Lead Term of Product: y(2)(4)*y(3)(3)*y(4)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(4))*(-y(3)(3)*y(4)(2)*x(2)(3)+y(3)(2)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(y(3)(4)*x(2)(3)-y(3)(3)*x(2)(4)-y(2)(4)*x(3)(3)+y(2)(3)*x(3)(4)) ------- Rewrite: -y(3)(2)*y(3)(4)*y(4)(3)*x(2)(3)+y(3)(3)^2*y(4)(2)*x(2)(4)+y(2)(4)*y(3)(3)*y(4)(2)*x(3)(3)-y(2)(3)*y(3)(4)*y(4)(2)*x(3)(3)+y(2)(2)*y(3)(4)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(3)*y(4)(2)*x(3)(4)+y(2)(3)*y(3)(2)*y(3)(4)*x(4)(3)-y(2)(2)*y(3)(3)*y(3)(4)*x(4)(3) ----------- TeX output: S(\eps{2}{3}{3}{4}, \lam{2}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \eps{2}{3}{3}{4} +(-y_{2, 3} y_{3, 2}+y_{2, 2} y_{3, 3}) \eps{3}{4}{3}{4} +(-y_{3, 3}) \lam{2}{3}{4}{2}{3}{4} +(-x_{3, 3}) \psi{2}{3}{4}{2}{3}{4} ---------------------------------- Epsilon: 2,3 3,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,3 3,4 Lam: 2,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(2)(3)*x(2)(4) Divisor: Delta 2,3 3,4 Quotient: -y(2)(4)*y(4)(2) Lead Term of Product: y(2)(4)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(2)(4)*y(3)(2) Lead Term of Product: -y(2)(4)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(2)*y(2)(4) Lead Term of Product: y(2)(2)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(2)(2)*x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(3)(2)*x(2)(4)+y(2)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Lam 2,3,4 2,3,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(3)*y(4)(2)*x(2)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(3))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(4)(2)*x(2)(4))*(y(3)(4)*x(2)(3)-y(3)(3)*x(2)(4)-y(2)(4)*x(3)(3)+y(2)(3)*x(3)(4)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(2)(3)*x(2)(4)+y(3)(3)*y(4)(2)*x(2)(4)^2+y(2)(4)*y(4)(2)*x(2)(4)*x(3)(3)-y(2)(4)*y(4)(2)*x(2)(3)*x(3)(4)+y(2)(2)*y(4)(4)*x(2)(3)*x(3)(4)-y(2)(3)*y(4)(2)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(2)*x(2)(3)*x(4)(4)-y(2)(2)*y(3)(4)*x(2)(3)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{3}{4}, \lam{2}{3}{4}{2}{4}{4}) = (-y_{2, 4} y_{4, 2}) \del{2}{3}{3}{4} +(y_{2, 4} y_{3, 2}) \del{2}{4}{3}{4} +(-y_{2, 2} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{2, 2} x_{4, 4}) \eps{2}{3}{3}{4} +(-y_{3, 2} x_{2, 4}+y_{2, 2} x_{3, 4}) \eps{2}{4}{3}{4} +(-x_{2, 4}) \lam{2}{3}{4}{2}{3}{4} ---------------------------------- Epsilon: 2,3 3,4 Lam: 2,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(2)(3)*x(2)(4) Divisor: Delta 2,3 3,4 Quotient: -y(2)(4)*y(4)(3) Lead Term of Product: y(2)(4)*y(4)(3)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(2)(4)*y(3)(3) Lead Term of Product: -y(2)(4)*y(3)(3)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(3)*y(2)(4) Lead Term of Product: y(2)(3)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(2)(3)*x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(3)(3)*x(2)(4)+y(2)(3)*x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(2)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(3))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(4)(3)*x(2)(4))*(y(3)(4)*x(2)(3)-y(3)(3)*x(2)(4)-y(2)(4)*x(3)(3)+y(2)(3)*x(3)(4)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(2)(3)*x(2)(4)+y(3)(3)*y(4)(3)*x(2)(4)^2+y(2)(4)*y(4)(3)*x(2)(4)*x(3)(3)-y(2)(4)*y(4)(3)*x(2)(3)*x(3)(4)+y(2)(3)*y(4)(4)*x(2)(3)*x(3)(4)-y(2)(3)*y(4)(3)*x(2)(4)*x(3)(4)+y(2)(4)*y(3)(3)*x(2)(3)*x(4)(4)-y(2)(3)*y(3)(4)*x(2)(3)*x(4)(4) ----------- TeX output: S(\eps{2}{3}{3}{4}, \lam{2}{3}{4}{3}{4}{4}) = (-y_{2, 4} y_{4, 3}) \del{2}{3}{3}{4} +(y_{2, 4} y_{3, 3}) \del{2}{4}{3}{4} +(-y_{2, 3} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{2, 3} x_{4, 4}) \eps{2}{3}{3}{4} +(-y_{3, 3} x_{2, 4}+y_{2, 3} x_{3, 4}) \eps{2}{4}{3}{4} ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,4 2,3,3 Lead Term of Spoly: -y(2)(2)*y(4)(3)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: y(2)(2)*y(4)(3) Lead Term of Product: -y(2)(2)*y(4)(3)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,3 Quotient: -y(2)(3)*y(4)(1) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 1,3 Quotient: -y(2)(2)*y(2)(3) Lead Term of Product: y(2)(2)*y(2)(3)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: y(2)(1)*y(2)(3) Lead Term of Product: -y(2)(1)*y(2)(3)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: y(1)(3)*y(2)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(1)*y(2)(3) Lead Term of Product: y(1)(1)*y(2)(3)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(3)*x(2)(3)+y(2)(3)*x(4)(3) Lead Term of Product: -y(2)(2)*y(4)(3)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(1)*x(2)(3) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(2)(1)*x(2)(3) Lead Term of Product: -y(2)(1)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(3)*x(2)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(1)(1)*x(2)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(2)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: -x(2)(3) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(3)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(2)(3)*y(4)(2)*x(1)(3)+y(2)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(3)) - (-y(2)(3)*x(1)(3))*(y(4)(2)*x(2)(1)-y(4)(1)*x(2)(2)-y(2)(2)*x(4)(1)+y(2)(1)*x(4)(2)) ------- Rewrite: -y(2)(2)*y(4)(3)*x(1)(3)*x(2)(1)+y(2)(3)*y(4)(1)*x(1)(3)*x(2)(2)-y(1)(3)*y(4)(2)*x(2)(1)*x(2)(3)+y(1)(2)*y(4)(3)*x(2)(1)*x(2)(3)+y(2)(2)*y(2)(3)*x(1)(3)*x(4)(1)-y(2)(1)*y(2)(3)*x(1)(3)*x(4)(2)+y(1)(3)*y(2)(2)*x(2)(1)*x(4)(3)-y(1)(2)*y(2)(3)*x(2)(1)*x(4)(3) ----------- TeX output: S(\eps{2}{4}{1}{2}, \lam{1}{2}{4}{2}{3}{3}) = (y_{2, 2} y_{4, 3}) \del{1}{2}{1}{3} +(-y_{2, 3} y_{4, 1}) \del{1}{2}{2}{3} +(-y_{2, 2} y_{2, 3}) \del{1}{4}{1}{3} +(y_{2, 1} y_{2, 3}) \del{1}{4}{2}{3} +(y_{1, 3} y_{2, 2}) \del{2}{4}{1}{3} +(-y_{1, 1} y_{2, 3}) \del{2}{4}{2}{3} +(-y_{4, 3} x_{2, 3}+y_{2, 3} x_{4, 3}) \eps{1}{2}{1}{2} +(y_{4, 1} x_{2, 3}) \eps{1}{2}{2}{3} +(-y_{2, 1} x_{2, 3}) \eps{1}{4}{2}{3} +(-y_{1, 3} x_{2, 3}) \eps{2}{4}{1}{2} +(y_{1, 1} x_{2, 3}) \eps{2}{4}{2}{3} +(-x_{2, 3}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,4 2,3,4 Lead Term of Spoly: -y(2)(2)*y(4)(3)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(2)(2)*y(4)(3) Lead Term of Product: -y(2)(2)*y(4)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(2)(3)*y(4)(1) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(2)(2)*y(2)(3) Lead Term of Product: y(2)(2)*y(2)(3)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(2)(1)*y(2)(3) Lead Term of Product: -y(2)(1)*y(2)(3)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(1)(3)*y(2)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(1)*y(2)(3) Lead Term of Product: y(1)(1)*y(2)(3)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(3)*x(2)(4)+y(2)(3)*x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(1)*x(2)(4) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(2)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(3)*x(2)(4) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(1)(1)*x(2)(4) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: -x(2)(4) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(2)(3)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(4)) - (-y(2)(3)*x(1)(4))*(y(4)(2)*x(2)(1)-y(4)(1)*x(2)(2)-y(2)(2)*x(4)(1)+y(2)(1)*x(4)(2)) ------- Rewrite: -y(2)(2)*y(4)(3)*x(1)(4)*x(2)(1)+y(2)(3)*y(4)(1)*x(1)(4)*x(2)(2)-y(1)(3)*y(4)(2)*x(2)(1)*x(2)(4)+y(1)(2)*y(4)(3)*x(2)(1)*x(2)(4)+y(2)(2)*y(2)(3)*x(1)(4)*x(4)(1)-y(2)(1)*y(2)(3)*x(1)(4)*x(4)(2)+y(1)(3)*y(2)(2)*x(2)(1)*x(4)(4)-y(1)(2)*y(2)(3)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{1}{2}, \lam{1}{2}{4}{2}{3}{4}) = (y_{2, 2} y_{4, 3}) \del{1}{2}{1}{4} +(-y_{2, 3} y_{4, 1}) \del{1}{2}{2}{4} +(-y_{2, 2} y_{2, 3}) \del{1}{4}{1}{4} +(y_{2, 1} y_{2, 3}) \del{1}{4}{2}{4} +(y_{1, 3} y_{2, 2}) \del{2}{4}{1}{4} +(-y_{1, 1} y_{2, 3}) \del{2}{4}{2}{4} +(-y_{4, 3} x_{2, 4}+y_{2, 3} x_{4, 4}) \eps{1}{2}{1}{2} +(y_{4, 1} x_{2, 4}) \eps{1}{2}{2}{3} +(-y_{2, 1} x_{2, 4}) \eps{1}{4}{2}{3} +(-y_{1, 3} x_{2, 4}) \eps{2}{4}{1}{2} +(y_{1, 1} x_{2, 4}) \eps{2}{4}{2}{3} +(-x_{2, 4}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,4 2,4,4 Lead Term of Spoly: -y(2)(2)*y(4)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(2)(2)*y(4)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(2)(4)*y(4)(1) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(2)(2)*y(2)(4) Lead Term of Product: y(2)(2)*y(2)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(2)(1)*y(2)(4) Lead Term of Product: -y(2)(1)*y(2)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(1)(4)*y(2)(2) Lead Term of Product: -y(1)(4)*y(2)(2)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(1)*y(2)(4) Lead Term of Product: y(1)(1)*y(2)(4)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(4)*x(2)(4)+y(2)(4)*x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: y(4)(1)*x(2)(4) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(2)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(4)*x(2)(4) Lead Term of Product: -y(1)(4)*y(4)(2)*x(2)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: y(1)(1)*x(2)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: -x(2)(4) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(2)(4)*x(1)(4))*(y(4)(2)*x(2)(1)-y(4)(1)*x(2)(2)-y(2)(2)*x(4)(1)+y(2)(1)*x(4)(2)) ------- Rewrite: -y(2)(2)*y(4)(4)*x(1)(4)*x(2)(1)+y(2)(4)*y(4)(1)*x(1)(4)*x(2)(2)-y(1)(4)*y(4)(2)*x(2)(1)*x(2)(4)+y(1)(2)*y(4)(4)*x(2)(1)*x(2)(4)+y(2)(2)*y(2)(4)*x(1)(4)*x(4)(1)-y(2)(1)*y(2)(4)*x(1)(4)*x(4)(2)+y(1)(4)*y(2)(2)*x(2)(1)*x(4)(4)-y(1)(2)*y(2)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{1}{2}, \lam{1}{2}{4}{2}{4}{4}) = (y_{2, 2} y_{4, 4}) \del{1}{2}{1}{4} +(-y_{2, 4} y_{4, 1}) \del{1}{2}{2}{4} +(-y_{2, 2} y_{2, 4}) \del{1}{4}{1}{4} +(y_{2, 1} y_{2, 4}) \del{1}{4}{2}{4} +(y_{1, 4} y_{2, 2}) \del{2}{4}{1}{4} +(-y_{1, 1} y_{2, 4}) \del{2}{4}{2}{4} +(-y_{4, 4} x_{2, 4}+y_{2, 4} x_{4, 4}) \eps{1}{2}{1}{2} +(y_{4, 1} x_{2, 4}) \eps{1}{2}{2}{4} +(-y_{2, 1} x_{2, 4}) \eps{1}{4}{2}{4} +(-y_{1, 4} x_{2, 4}) \eps{2}{4}{1}{2} +(y_{1, 1} x_{2, 4}) \eps{2}{4}{2}{4} +(-x_{2, 4}) \lam{1}{2}{4}{1}{2}{4} ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: y(3)(2)*y(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,3 Quotient: -y(3)(3)*y(4)(1) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 1,3 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: y(2)(1)*y(3)(3) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(3)*y(4)(1)-y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: y(1)(3)*y(2)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(3)*y(2)(1)-y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(3)(3)*x(4)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(3)*x(2)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(4)(1)*x(2)(3) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(2)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(3)*x(4)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(3)*x(3)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(1)(1)*x(3)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -x(2)(3) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(3)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*x(1)(3))*(y(4)(2)*x(2)(1)-y(4)(1)*x(2)(2)-y(2)(2)*x(4)(1)+y(2)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(3)*x(2)(1)+y(3)(3)*y(4)(1)*x(1)(3)*x(2)(2)-y(1)(3)*y(4)(2)*x(2)(1)*x(3)(3)+y(1)(2)*y(4)(3)*x(2)(1)*x(3)(3)+y(2)(2)*y(3)(3)*x(1)(3)*x(4)(1)-y(2)(1)*y(3)(3)*x(1)(3)*x(4)(2)+y(1)(3)*y(3)(2)*x(2)(1)*x(4)(3)-y(1)(2)*y(3)(3)*x(2)(1)*x(4)(3) ----------- TeX output: S(\eps{2}{4}{1}{2}, \lam{1}{3}{4}{2}{3}{3}) = (y_{3, 2} y_{4, 3}) \del{1}{2}{1}{3} +(-y_{3, 3} y_{4, 1}) \del{1}{2}{2}{3} +(-y_{2, 2} y_{3, 3}) \del{1}{4}{1}{3} +(y_{2, 1} y_{3, 3}) \del{1}{4}{2}{3} +(y_{1, 2} y_{4, 3}) \del{2}{3}{1}{3} +(-y_{1, 3} y_{4, 1}-y_{1, 1} y_{4, 3}) \del{2}{3}{2}{3} +(y_{1, 3} y_{3, 1}) \del{2}{4}{2}{3} +(y_{1, 3} y_{2, 2}) \del{3}{4}{1}{3} +(-y_{1, 3} y_{2, 1}-y_{1, 1} y_{2, 3}) \del{3}{4}{2}{3} +(y_{3, 3} x_{4, 3}) \eps{1}{2}{1}{2} +(-y_{4, 3} x_{2, 3}) \eps{1}{3}{1}{2} +(y_{4, 1} x_{2, 3}) \eps{1}{3}{2}{3} +(-y_{3, 1} x_{2, 3}) \eps{1}{4}{2}{3} +(y_{1, 3} x_{4, 3}) \eps{2}{3}{1}{2} +(-y_{1, 1} x_{4, 3}) \eps{2}{3}{2}{3} +(-y_{1, 3} x_{3, 3}) \eps{2}{4}{1}{2} +(y_{1, 1} x_{3, 3}) \eps{2}{4}{2}{3} +(-x_{2, 3}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,3,4 2,3,4 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(3)(2)*y(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(3)(3)*y(4)(1) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(2)(1)*y(3)(3) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(3)*y(4)(1)-y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(3)*y(3)(1) Lead Term of Product: -y(1)(3)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(1)*y(3)(2) Lead Term of Product: y(1)(1)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(3)*y(2)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(3)*y(2)(1)-y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(1)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(3)(3)*x(4)(4) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(3)*x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(4)(1)*x(2)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(3)*x(4)(4) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(3)*x(3)(4) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -x(2)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*x(1)(4))*(y(4)(2)*x(2)(1)-y(4)(1)*x(2)(2)-y(2)(2)*x(4)(1)+y(2)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(4)*x(2)(1)+y(3)(3)*y(4)(1)*x(1)(4)*x(2)(2)-y(1)(3)*y(4)(2)*x(2)(1)*x(3)(4)+y(1)(2)*y(4)(3)*x(2)(1)*x(3)(4)+y(2)(2)*y(3)(3)*x(1)(4)*x(4)(1)-y(2)(1)*y(3)(3)*x(1)(4)*x(4)(2)+y(1)(3)*y(3)(2)*x(2)(1)*x(4)(4)-y(1)(2)*y(3)(3)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{1}{2}, \lam{1}{3}{4}{2}{3}{4}) = (y_{3, 2} y_{4, 3}) \del{1}{2}{1}{4} +(-y_{3, 3} y_{4, 1}) \del{1}{2}{2}{4} +(-y_{2, 2} y_{3, 3}) \del{1}{4}{1}{4} +(y_{2, 1} y_{3, 3}) \del{1}{4}{2}{4} +(y_{1, 2} y_{4, 3}) \del{2}{3}{1}{4} +(-y_{1, 3} y_{4, 1}-y_{1, 1} y_{4, 3}) \del{2}{3}{2}{4} +(y_{1, 1} y_{4, 2}) \del{2}{3}{3}{4} +(y_{1, 3} y_{3, 1}) \del{2}{4}{2}{4} +(-y_{1, 1} y_{3, 2}) \del{2}{4}{3}{4} +(y_{1, 3} y_{2, 2}) \del{3}{4}{1}{4} +(-y_{1, 3} y_{2, 1}-y_{1, 1} y_{2, 3}) \del{3}{4}{2}{4} +(y_{1, 1} y_{2, 2}) \del{3}{4}{3}{4} +(y_{3, 3} x_{4, 4}) \eps{1}{2}{1}{2} +(-y_{4, 3} x_{2, 4}) \eps{1}{3}{1}{2} +(y_{4, 1} x_{2, 4}) \eps{1}{3}{2}{3} +(-y_{3, 1} x_{2, 4}) \eps{1}{4}{2}{3} +(y_{1, 3} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{2}{3} +(-y_{1, 3} x_{3, 4}) \eps{2}{4}{1}{2} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{3} +(-x_{2, 4}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(3)(2)*y(4)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,4 Quotient: -y(3)(4)*y(4)(1) Lead Term of Product: y(3)(4)*y(4)(1)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(2)(2)*y(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(2)(1)*y(3)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(2)*y(4)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(4)*y(4)(1)-y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(4)*y(2)(2) Lead Term of Product: -y(1)(4)*y(2)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(4)*y(2)(1)-y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(3)(4)*x(4)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(4)*x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: y(4)(1)*x(2)(4) Lead Term of Product: y(3)(4)*y(4)(1)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(2)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(1)(4))*(y(4)(2)*x(2)(1)-y(4)(1)*x(2)(2)-y(2)(2)*x(4)(1)+y(2)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(1)(4)*x(2)(1)+y(3)(4)*y(4)(1)*x(1)(4)*x(2)(2)-y(1)(4)*y(4)(2)*x(2)(1)*x(3)(4)+y(1)(2)*y(4)(4)*x(2)(1)*x(3)(4)+y(2)(2)*y(3)(4)*x(1)(4)*x(4)(1)-y(2)(1)*y(3)(4)*x(1)(4)*x(4)(2)+y(1)(4)*y(3)(2)*x(2)(1)*x(4)(4)-y(1)(2)*y(3)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{1}{2}, \lam{1}{3}{4}{2}{4}{4}) = (y_{3, 2} y_{4, 4}) \del{1}{2}{1}{4} +(-y_{3, 4} y_{4, 1}) \del{1}{2}{2}{4} +(-y_{2, 2} y_{3, 4}) \del{1}{4}{1}{4} +(y_{2, 1} y_{3, 4}) \del{1}{4}{2}{4} +(y_{1, 2} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{1, 4} y_{4, 1}-y_{1, 1} y_{4, 4}) \del{2}{3}{2}{4} +(y_{1, 4} y_{3, 1}) \del{2}{4}{2}{4} +(y_{1, 4} y_{2, 2}) \del{3}{4}{1}{4} +(-y_{1, 4} y_{2, 1}-y_{1, 1} y_{2, 4}) \del{3}{4}{2}{4} +(y_{3, 4} x_{4, 4}) \eps{1}{2}{1}{2} +(-y_{4, 4} x_{2, 4}) \eps{1}{3}{1}{2} +(y_{4, 1} x_{2, 4}) \eps{1}{3}{2}{4} +(-y_{3, 1} x_{2, 4}) \eps{1}{4}{2}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{2}{4} +(-y_{1, 4} x_{3, 4}) \eps{2}{4}{1}{2} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{4} +(-x_{2, 4}) \lam{1}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 2,4 1,2 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,2 Lam: 2,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(2)(1)*x(2)(3) Divisor: Delta 2,3 1,3 Quotient: y(2)(2)*y(4)(3) Lead Term of Product: -y(2)(2)*y(4)(3)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(2)(3)*y(4)(1)-y(2)(1)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(2)(3)*y(3)(1)+y(2)(1)*y(3)(3) Lead Term of Product: -y(2)(3)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: y(2)(2)*y(2)(3) Lead Term of Product: -y(2)(2)*y(2)(3)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -2*y(2)(1)*y(2)(3) Lead Term of Product: 2*y(2)(1)*y(2)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(3)*x(2)(3)+y(2)(3)*x(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(2)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(4)(1)*x(2)(3)-y(2)(1)*x(4)(3) Lead Term of Product: y(3)(3)*y(4)(1)*x(2)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(2)(3)*x(3)(3) Lead Term of Product: -y(2)(3)*y(4)(2)*x(2)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(3)(1)*x(2)(3)+y(2)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(2)(2)*x(2)(3) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: -x(2)(3) Lead Term of Product: y(3)(2)*y(4)(1)*x(2)(3)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(3)*y(4)(2)*x(2)(3)+y(3)(2)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*x(2)(3))*(y(4)(2)*x(2)(1)-y(4)(1)*x(2)(2)-y(2)(2)*x(4)(1)+y(2)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(2)(1)*x(2)(3)+y(3)(3)*y(4)(1)*x(2)(2)*x(2)(3)-y(2)(3)*y(4)(2)*x(2)(1)*x(3)(3)+y(2)(2)*y(4)(3)*x(2)(1)*x(3)(3)+y(2)(2)*y(3)(3)*x(2)(3)*x(4)(1)-y(2)(1)*y(3)(3)*x(2)(3)*x(4)(2)+y(2)(3)*y(3)(2)*x(2)(1)*x(4)(3)-y(2)(2)*y(3)(3)*x(2)(1)*x(4)(3) ----------- TeX output: S(\eps{2}{4}{1}{2}, \lam{2}{3}{4}{2}{3}{3}) = (y_{2, 2} y_{4, 3}) \del{2}{3}{1}{3} +(-y_{2, 3} y_{4, 1}-y_{2, 1} y_{4, 3}) \del{2}{3}{2}{3} +(-y_{2, 2} y_{3, 3}) \del{2}{4}{1}{3} +(y_{2, 3} y_{3, 1}+y_{2, 1} y_{3, 3}) \del{2}{4}{2}{3} +(y_{2, 2} y_{2, 3}) \del{3}{4}{1}{3} +(-2 y_{2, 1} y_{2, 3}) \del{3}{4}{2}{3} +(-y_{4, 3} x_{2, 3}+y_{2, 3} x_{4, 3}) \eps{2}{3}{1}{2} +(y_{4, 1} x_{2, 3}-y_{2, 1} x_{4, 3}) \eps{2}{3}{2}{3} +(-y_{2, 3} x_{3, 3}) \eps{2}{4}{1}{2} +(-y_{3, 1} x_{2, 3}+y_{2, 1} x_{3, 3}) \eps{2}{4}{2}{3} +(-x_{2, 3}) \lam{2}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 2,4 1,2 Lam: 2,3,4 2,3,4 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(2)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: y(2)(2)*y(4)(3) Lead Term of Product: -y(2)(2)*y(4)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(2)(3)*y(4)(1)-y(2)(1)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(1)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(2)(3)*y(3)(1)+y(2)(1)*y(3)(3) Lead Term of Product: -y(2)(3)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(2)(2)*y(2)(3) Lead Term of Product: -y(2)(2)*y(2)(3)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -2*y(2)(1)*y(2)(3) Lead Term of Product: 2*y(2)(1)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(2)(1)*y(2)(2) Lead Term of Product: -y(2)(1)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(3)*x(2)(4)+y(2)(3)*x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(3)*x(2)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(4)(1)*x(2)(4)-y(2)(1)*x(4)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(2)(3)*x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: -x(2)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(2)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(3)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*x(2)(4))*(y(4)(2)*x(2)(1)-y(4)(1)*x(2)(2)-y(2)(2)*x(4)(1)+y(2)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(2)(1)*x(2)(4)+y(3)(3)*y(4)(1)*x(2)(2)*x(2)(4)-y(2)(3)*y(4)(2)*x(2)(1)*x(3)(4)+y(2)(2)*y(4)(3)*x(2)(1)*x(3)(4)+y(2)(2)*y(3)(3)*x(2)(4)*x(4)(1)-y(2)(1)*y(3)(3)*x(2)(4)*x(4)(2)+y(2)(3)*y(3)(2)*x(2)(1)*x(4)(4)-y(2)(2)*y(3)(3)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{1}{2}, \lam{2}{3}{4}{2}{3}{4}) = (y_{2, 2} y_{4, 3}) \del{2}{3}{1}{4} +(-y_{2, 3} y_{4, 1}-y_{2, 1} y_{4, 3}) \del{2}{3}{2}{4} +(y_{2, 1} y_{4, 2}) \del{2}{3}{3}{4} +(-y_{2, 2} y_{3, 3}) \del{2}{4}{1}{4} +(y_{2, 3} y_{3, 1}+y_{2, 1} y_{3, 3}) \del{2}{4}{2}{4} +(-y_{2, 1} y_{3, 2}) \del{2}{4}{3}{4} +(y_{2, 2} y_{2, 3}) \del{3}{4}{1}{4} +(-2 y_{2, 1} y_{2, 3}) \del{3}{4}{2}{4} +(y_{2, 1} y_{2, 2}) \del{3}{4}{3}{4} +(-y_{4, 3} x_{2, 4}+y_{2, 3} x_{4, 4}) \eps{2}{3}{1}{2} +(y_{4, 1} x_{2, 4}-y_{2, 1} x_{4, 4}) \eps{2}{3}{2}{3} +(-y_{2, 3} x_{3, 4}) \eps{2}{4}{1}{2} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{2}{4}{2}{3} +(-x_{2, 4}) \lam{2}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 2,4 1,2 Lam: 2,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(2)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: y(2)(2)*y(4)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(2)(4)*y(4)(1)-y(2)(1)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(2)(2)*y(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(2)(4)*y(3)(1)+y(2)(1)*y(3)(4) Lead Term of Product: -y(2)(4)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(2)(2)*y(2)(4) Lead Term of Product: -y(2)(2)*y(2)(4)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -2*y(2)(1)*y(2)(4) Lead Term of Product: 2*y(2)(1)*y(2)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(4)*x(2)(4)+y(2)(4)*x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(2)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: y(4)(1)*x(2)(4)-y(2)(1)*x(4)(4) Lead Term of Product: y(3)(4)*y(4)(1)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(2)(4)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,2,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(2)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(2)(4))*(y(4)(2)*x(2)(1)-y(4)(1)*x(2)(2)-y(2)(2)*x(4)(1)+y(2)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(2)(1)*x(2)(4)+y(3)(4)*y(4)(1)*x(2)(2)*x(2)(4)-y(2)(4)*y(4)(2)*x(2)(1)*x(3)(4)+y(2)(2)*y(4)(4)*x(2)(1)*x(3)(4)+y(2)(2)*y(3)(4)*x(2)(4)*x(4)(1)-y(2)(1)*y(3)(4)*x(2)(4)*x(4)(2)+y(2)(4)*y(3)(2)*x(2)(1)*x(4)(4)-y(2)(2)*y(3)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{1}{2}, \lam{2}{3}{4}{2}{4}{4}) = (y_{2, 2} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{2, 4} y_{4, 1}-y_{2, 1} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{2, 2} y_{3, 4}) \del{2}{4}{1}{4} +(y_{2, 4} y_{3, 1}+y_{2, 1} y_{3, 4}) \del{2}{4}{2}{4} +(y_{2, 2} y_{2, 4}) \del{3}{4}{1}{4} +(-2 y_{2, 1} y_{2, 4}) \del{3}{4}{2}{4} +(-y_{4, 4} x_{2, 4}+y_{2, 4} x_{4, 4}) \eps{2}{3}{1}{2} +(y_{4, 1} x_{2, 4}-y_{2, 1} x_{4, 4}) \eps{2}{3}{2}{4} +(-y_{2, 4} x_{3, 4}) \eps{2}{4}{1}{2} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{2}{4}{2}{4} +(-x_{2, 4}) \lam{2}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 2,4 1,2 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,2,4 3,4,4 Lead Term of Spoly: -y(2)(3)*y(4)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(2)(3)*y(4)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(2)(4)*y(4)(1) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(2)(3)*y(2)(4) Lead Term of Product: y(2)(3)*y(2)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(2)(1)*y(2)(4) Lead Term of Product: -y(2)(1)*y(2)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: y(1)(4)*y(2)(3) Lead Term of Product: -y(1)(4)*y(2)(3)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(1)*y(2)(4) Lead Term of Product: y(1)(1)*y(2)(4)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(4)*x(2)(4)+y(2)(4)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: y(4)(1)*x(2)(4) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(1)*x(2)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(1)(4)*x(2)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(2)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(1)(1)*x(2)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,3,4 Quotient: -x(2)(4) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*x(1)(4))*(y(4)(3)*x(2)(1)-y(4)(1)*x(2)(3)-y(2)(3)*x(4)(1)+y(2)(1)*x(4)(3)) ------- Rewrite: -y(2)(3)*y(4)(4)*x(1)(4)*x(2)(1)+y(2)(4)*y(4)(1)*x(1)(4)*x(2)(3)-y(1)(4)*y(4)(3)*x(2)(1)*x(2)(4)+y(1)(3)*y(4)(4)*x(2)(1)*x(2)(4)+y(2)(3)*y(2)(4)*x(1)(4)*x(4)(1)-y(2)(1)*y(2)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(2)(3)*x(2)(1)*x(4)(4)-y(1)(3)*y(2)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{1}{3}, \lam{1}{2}{4}{3}{4}{4}) = (y_{2, 3} y_{4, 4}) \del{1}{2}{1}{4} +(-y_{2, 4} y_{4, 1}) \del{1}{2}{3}{4} +(-y_{2, 3} y_{2, 4}) \del{1}{4}{1}{4} +(y_{2, 1} y_{2, 4}) \del{1}{4}{3}{4} +(y_{1, 4} y_{2, 3}) \del{2}{4}{1}{4} +(-y_{1, 1} y_{2, 4}) \del{2}{4}{3}{4} +(-y_{4, 4} x_{2, 4}+y_{2, 4} x_{4, 4}) \eps{1}{2}{1}{3} +(y_{4, 1} x_{2, 4}) \eps{1}{2}{3}{4} +(-y_{2, 1} x_{2, 4}) \eps{1}{4}{3}{4} +(-y_{1, 4} x_{2, 4}) \eps{2}{4}{1}{3} +(y_{1, 1} x_{2, 4}) \eps{2}{4}{3}{4} +(-x_{2, 4}) \lam{1}{2}{4}{1}{3}{4} ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 1,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: y(3)(3)*y(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(3)(4)*y(4)(1) Lead Term of Product: y(3)(4)*y(4)(1)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(2)(3)*y(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(2)(1)*y(3)(4) Lead Term of Product: -y(2)(1)*y(3)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(3)*y(4)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(4)(1)-y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(4)*y(3)(1) Lead Term of Product: -y(1)(4)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(4)*y(2)(3) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(2)(1)-y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(3)(4)*x(4)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(4)*x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(4)(1)*x(2)(4) Lead Term of Product: y(3)(4)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,3,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(1)(4))*(y(4)(3)*x(2)(1)-y(4)(1)*x(2)(3)-y(2)(3)*x(4)(1)+y(2)(1)*x(4)(3)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(1)+y(3)(4)*y(4)(1)*x(1)(4)*x(2)(3)-y(1)(4)*y(4)(3)*x(2)(1)*x(3)(4)+y(1)(3)*y(4)(4)*x(2)(1)*x(3)(4)+y(2)(3)*y(3)(4)*x(1)(4)*x(4)(1)-y(2)(1)*y(3)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(3)(3)*x(2)(1)*x(4)(4)-y(1)(3)*y(3)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{1}{3}, \lam{1}{3}{4}{3}{4}{4}) = (y_{3, 3} y_{4, 4}) \del{1}{2}{1}{4} +(-y_{3, 4} y_{4, 1}) \del{1}{2}{3}{4} +(-y_{2, 3} y_{3, 4}) \del{1}{4}{1}{4} +(y_{2, 1} y_{3, 4}) \del{1}{4}{3}{4} +(y_{1, 3} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{1, 4} y_{4, 1}-y_{1, 1} y_{4, 4}) \del{2}{3}{3}{4} +(y_{1, 4} y_{3, 1}) \del{2}{4}{3}{4} +(y_{1, 4} y_{2, 3}) \del{3}{4}{1}{4} +(-y_{1, 4} y_{2, 1}-y_{1, 1} y_{2, 4}) \del{3}{4}{3}{4} +(y_{3, 4} x_{4, 4}) \eps{1}{2}{1}{3} +(-y_{4, 4} x_{2, 4}) \eps{1}{3}{1}{3} +(y_{4, 1} x_{2, 4}) \eps{1}{3}{3}{4} +(-y_{3, 1} x_{2, 4}) \eps{1}{4}{3}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{1}{3} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{3}{4} +(-y_{1, 4} x_{3, 4}) \eps{2}{4}{1}{3} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{3}{4} +(-x_{2, 4}) \lam{1}{3}{4}{1}{3}{4} ---------------------------------- Epsilon: 2,4 1,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,3 Lam: 2,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(2)(1)*x(2)(4) Divisor: Delta 2,3 1,4 Quotient: y(2)(3)*y(4)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(2)(4)*y(4)(1)-y(2)(1)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(2)(3)*y(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(2)(4)*y(3)(1)+y(2)(1)*y(3)(4) Lead Term of Product: -y(2)(4)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(2)(3)*y(2)(4) Lead Term of Product: -y(2)(3)*y(2)(4)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -2*y(2)(1)*y(2)(4) Lead Term of Product: 2*y(2)(1)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(4)(4)*x(2)(4)+y(2)(4)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(2)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: y(4)(1)*x(2)(4)-y(2)(1)*x(4)(4) Lead Term of Product: y(3)(4)*y(4)(1)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(2)(4)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(3)(1)*x(2)(4)+y(2)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,3,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(2)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(2)(4))*(y(4)(3)*x(2)(1)-y(4)(1)*x(2)(3)-y(2)(3)*x(4)(1)+y(2)(1)*x(4)(3)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(2)(1)*x(2)(4)+y(3)(4)*y(4)(1)*x(2)(3)*x(2)(4)-y(2)(4)*y(4)(3)*x(2)(1)*x(3)(4)+y(2)(3)*y(4)(4)*x(2)(1)*x(3)(4)+y(2)(3)*y(3)(4)*x(2)(4)*x(4)(1)-y(2)(1)*y(3)(4)*x(2)(4)*x(4)(3)+y(2)(4)*y(3)(3)*x(2)(1)*x(4)(4)-y(2)(3)*y(3)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{1}{3}, \lam{2}{3}{4}{3}{4}{4}) = (y_{2, 3} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{2, 4} y_{4, 1}-y_{2, 1} y_{4, 4}) \del{2}{3}{3}{4} +(-y_{2, 3} y_{3, 4}) \del{2}{4}{1}{4} +(y_{2, 4} y_{3, 1}+y_{2, 1} y_{3, 4}) \del{2}{4}{3}{4} +(y_{2, 3} y_{2, 4}) \del{3}{4}{1}{4} +(-2 y_{2, 1} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{4, 4} x_{2, 4}+y_{2, 4} x_{4, 4}) \eps{2}{3}{1}{3} +(y_{4, 1} x_{2, 4}-y_{2, 1} x_{4, 4}) \eps{2}{3}{3}{4} +(-y_{2, 4} x_{3, 4}) \eps{2}{4}{1}{3} +(-y_{3, 1} x_{2, 4}+y_{2, 1} x_{3, 4}) \eps{2}{4}{3}{4} +(-x_{2, 4}) \lam{2}{3}{4}{1}{3}{4} ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 1,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,2,4 3,4,4 Lead Term of Spoly: -y(2)(3)*y(4)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: y(2)(3)*y(4)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(2)(4)*y(4)(2) Lead Term of Product: y(2)(4)*y(4)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: -y(2)(3)*y(2)(4) Lead Term of Product: y(2)(3)*y(2)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(2)(2)*y(2)(4) Lead Term of Product: -y(2)(2)*y(2)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(4)*y(2)(3) Lead Term of Product: -y(1)(4)*y(2)(3)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(2)*y(2)(4) Lead Term of Product: y(1)(2)*y(2)(4)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(4)*x(2)(4)+y(2)(4)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: y(4)(2)*x(2)(4) Lead Term of Product: y(2)(4)*y(4)(2)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(2)*x(2)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(4)*x(2)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(1)(2)*x(2)(4) Lead Term of Product: y(1)(2)*y(4)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,4 2,3,4 Quotient: -x(2)(4) Lead Term of Product: y(2)(3)*y(4)(2)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*x(1)(4))*(y(4)(3)*x(2)(2)-y(4)(2)*x(2)(3)-y(2)(3)*x(4)(2)+y(2)(2)*x(4)(3)) ------- Rewrite: -y(2)(3)*y(4)(4)*x(1)(4)*x(2)(2)+y(2)(4)*y(4)(2)*x(1)(4)*x(2)(3)-y(1)(4)*y(4)(3)*x(2)(2)*x(2)(4)+y(1)(3)*y(4)(4)*x(2)(2)*x(2)(4)+y(2)(3)*y(2)(4)*x(1)(4)*x(4)(2)-y(2)(2)*y(2)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(2)(3)*x(2)(2)*x(4)(4)-y(1)(3)*y(2)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{2}{3}, \lam{1}{2}{4}{3}{4}{4}) = (y_{2, 3} y_{4, 4}) \del{1}{2}{2}{4} +(-y_{2, 4} y_{4, 2}) \del{1}{2}{3}{4} +(-y_{2, 3} y_{2, 4}) \del{1}{4}{2}{4} +(y_{2, 2} y_{2, 4}) \del{1}{4}{3}{4} +(y_{1, 4} y_{2, 3}) \del{2}{4}{2}{4} +(-y_{1, 2} y_{2, 4}) \del{2}{4}{3}{4} +(-y_{4, 4} x_{2, 4}+y_{2, 4} x_{4, 4}) \eps{1}{2}{2}{3} +(y_{4, 2} x_{2, 4}) \eps{1}{2}{3}{4} +(-y_{2, 2} x_{2, 4}) \eps{1}{4}{3}{4} +(-y_{1, 4} x_{2, 4}) \eps{2}{4}{2}{3} +(y_{1, 2} x_{2, 4}) \eps{2}{4}{3}{4} +(-x_{2, 4}) \lam{1}{2}{4}{2}{3}{4} ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 1,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: y(3)(3)*y(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,2 3,4 Quotient: -y(3)(4)*y(4)(2) Lead Term of Product: y(3)(4)*y(4)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: -y(2)(3)*y(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(2)(2)*y(3)(4) Lead Term of Product: -y(2)(2)*y(3)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(3)*y(4)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(4)(2)-y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(4)*y(3)(2) Lead Term of Product: -y(1)(4)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(4)*y(2)(3) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(2)(2)-y(1)(2)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(3)(4)*x(4)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(4)*x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(4)(2)*x(2)(4) Lead Term of Product: y(3)(4)*y(4)(2)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(2)*x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(1)(2)*x(3)(4) Lead Term of Product: y(1)(2)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 2,3,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(3)*y(4)(2)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(1)(4))*(y(4)(3)*x(2)(2)-y(4)(2)*x(2)(3)-y(2)(3)*x(4)(2)+y(2)(2)*x(4)(3)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(4)*x(2)(2)+y(3)(4)*y(4)(2)*x(1)(4)*x(2)(3)-y(1)(4)*y(4)(3)*x(2)(2)*x(3)(4)+y(1)(3)*y(4)(4)*x(2)(2)*x(3)(4)+y(2)(3)*y(3)(4)*x(1)(4)*x(4)(2)-y(2)(2)*y(3)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(3)(3)*x(2)(2)*x(4)(4)-y(1)(3)*y(3)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{2}{3}, \lam{1}{3}{4}{3}{4}{4}) = (y_{3, 3} y_{4, 4}) \del{1}{2}{2}{4} +(-y_{3, 4} y_{4, 2}) \del{1}{2}{3}{4} +(-y_{2, 3} y_{3, 4}) \del{1}{4}{2}{4} +(y_{2, 2} y_{3, 4}) \del{1}{4}{3}{4} +(y_{1, 3} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{1, 4} y_{4, 2}-y_{1, 2} y_{4, 4}) \del{2}{3}{3}{4} +(y_{1, 4} y_{3, 2}) \del{2}{4}{3}{4} +(y_{1, 4} y_{2, 3}) \del{3}{4}{2}{4} +(-y_{1, 4} y_{2, 2}-y_{1, 2} y_{2, 4}) \del{3}{4}{3}{4} +(y_{3, 4} x_{4, 4}) \eps{1}{2}{2}{3} +(-y_{4, 4} x_{2, 4}) \eps{1}{3}{2}{3} +(y_{4, 2} x_{2, 4}) \eps{1}{3}{3}{4} +(-y_{3, 2} x_{2, 4}) \eps{1}{4}{3}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{2}{3} +(-y_{1, 2} x_{4, 4}) \eps{2}{3}{3}{4} +(-y_{1, 4} x_{3, 4}) \eps{2}{4}{2}{3} +(y_{1, 2} x_{3, 4}) \eps{2}{4}{3}{4} +(-x_{2, 4}) \lam{1}{3}{4}{2}{3}{4} ---------------------------------- Epsilon: 2,4 2,3 Lam: 2,3,4 1,2,2 Lead Term of Spoly: -y(3)(1)*y(4)(2)*y(4)(3)*x(2)(2) Divisor: Epsilon 2,4 2,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(4)(2)*y(4)(3)*x(2)(2) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(2)*y(4)(1)+y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(2)*y(4)(1)*y(4)(3)*x(3)(2) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: -y(4)(2) Lead Term of Product: y(3)(2)*y(4)(1)*y(4)(2)*x(2)(3) Lead term is well behaved Divisor: Psi 2,3,4 1,2,3 Quotient: -x(4)(2) Lead Term of Product: y(2)(3)*y(3)(2)*y(4)(1)*x(4)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(3))*(-y(3)(2)*y(4)(1)*x(2)(2)+y(3)(1)*y(4)(2)*x(2)(2)+y(2)(2)*y(4)(1)*x(3)(2)-y(2)(1)*y(4)(2)*x(3)(2)-y(2)(2)*y(3)(1)*x(4)(2)+y(2)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(y(4)(3)*x(2)(2)-y(4)(2)*x(2)(3)-y(2)(3)*x(4)(2)+y(2)(2)*x(4)(3)) ------- Rewrite: -y(3)(1)*y(4)(2)*y(4)(3)*x(2)(2)+y(3)(2)*y(4)(1)*y(4)(2)*x(2)(3)-y(2)(2)*y(4)(1)*y(4)(3)*x(3)(2)+y(2)(1)*y(4)(2)*y(4)(3)*x(3)(2)+y(2)(3)*y(3)(2)*y(4)(1)*x(4)(2)+y(2)(2)*y(3)(1)*y(4)(3)*x(4)(2)-y(2)(1)*y(3)(2)*y(4)(3)*x(4)(2)-y(2)(2)*y(3)(2)*y(4)(1)*x(4)(3) ----------- TeX output: S(\eps{2}{4}{2}{3}, \lam{2}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \eps{2}{4}{2}{3} +(-y_{2, 2} y_{4, 1}+y_{2, 1} y_{4, 2}) \eps{3}{4}{2}{3} +(-y_{4, 2}) \lam{2}{3}{4}{1}{2}{3} +(-x_{4, 2}) \psi{2}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 2,4 2,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,3 Lam: 2,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(2)(2)*x(2)(4) Divisor: Delta 2,3 2,4 Quotient: y(2)(3)*y(4)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(2)(4)*y(4)(2)-y(2)(2)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(2)(3)*y(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(2)(4)*y(3)(2)+y(2)(2)*y(3)(4) Lead Term of Product: -y(2)(4)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(2)(3)*y(2)(4) Lead Term of Product: -y(2)(3)*y(2)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -2*y(2)(2)*y(2)(4) Lead Term of Product: 2*y(2)(2)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(4)(4)*x(2)(4)+y(2)(4)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: y(4)(2)*x(2)(4)-y(2)(2)*x(4)(4) Lead Term of Product: y(3)(4)*y(4)(2)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(2)(4)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(3)(2)*x(2)(4)+y(2)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Lam 2,3,4 2,3,4 Quotient: -x(2)(4) Lead Term of Product: y(3)(3)*y(4)(2)*x(2)(4)^2 Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(2))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(2)(4))*(y(4)(3)*x(2)(2)-y(4)(2)*x(2)(3)-y(2)(3)*x(4)(2)+y(2)(2)*x(4)(3)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(2)(2)*x(2)(4)+y(3)(4)*y(4)(2)*x(2)(3)*x(2)(4)-y(2)(4)*y(4)(3)*x(2)(2)*x(3)(4)+y(2)(3)*y(4)(4)*x(2)(2)*x(3)(4)+y(2)(3)*y(3)(4)*x(2)(4)*x(4)(2)-y(2)(2)*y(3)(4)*x(2)(4)*x(4)(3)+y(2)(4)*y(3)(3)*x(2)(2)*x(4)(4)-y(2)(3)*y(3)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{2}{3}, \lam{2}{3}{4}{3}{4}{4}) = (y_{2, 3} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{2, 4} y_{4, 2}-y_{2, 2} y_{4, 4}) \del{2}{3}{3}{4} +(-y_{2, 3} y_{3, 4}) \del{2}{4}{2}{4} +(y_{2, 4} y_{3, 2}+y_{2, 2} y_{3, 4}) \del{2}{4}{3}{4} +(y_{2, 3} y_{2, 4}) \del{3}{4}{2}{4} +(-2 y_{2, 2} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{4, 4} x_{2, 4}+y_{2, 4} x_{4, 4}) \eps{2}{3}{2}{3} +(y_{4, 2} x_{2, 4}-y_{2, 2} x_{4, 4}) \eps{2}{3}{3}{4} +(-y_{2, 4} x_{3, 4}) \eps{2}{4}{2}{3} +(-y_{3, 2} x_{2, 4}+y_{2, 2} x_{3, 4}) \eps{2}{4}{3}{4} +(-x_{2, 4}) \lam{2}{3}{4}{2}{3}{4} ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 2,3,4 1,2,2 Lead Term of Spoly: -y(3)(1)*y(4)(2)*y(4)(4)*x(2)(2) Divisor: Epsilon 2,4 2,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(4)(2)*y(4)(4)*x(2)(2) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(2)(2)*y(4)(1)+y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(2)*y(4)(1)*y(4)(4)*x(3)(2) Lead term is well behaved Divisor: Lam 2,3,4 1,2,4 Quotient: -y(4)(2) Lead Term of Product: y(3)(2)*y(4)(1)*y(4)(2)*x(2)(4) Lead term is well behaved Divisor: Psi 2,3,4 1,2,4 Quotient: -x(4)(2) Lead Term of Product: y(2)(4)*y(3)(2)*y(4)(1)*x(4)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(3)(2)*y(4)(1)*x(2)(2)+y(3)(1)*y(4)(2)*x(2)(2)+y(2)(2)*y(4)(1)*x(3)(2)-y(2)(1)*y(4)(2)*x(3)(2)-y(2)(2)*y(3)(1)*x(4)(2)+y(2)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(y(4)(4)*x(2)(2)-y(4)(2)*x(2)(4)-y(2)(4)*x(4)(2)+y(2)(2)*x(4)(4)) ------- Rewrite: -y(3)(1)*y(4)(2)*y(4)(4)*x(2)(2)+y(3)(2)*y(4)(1)*y(4)(2)*x(2)(4)-y(2)(2)*y(4)(1)*y(4)(4)*x(3)(2)+y(2)(1)*y(4)(2)*y(4)(4)*x(3)(2)+y(2)(4)*y(3)(2)*y(4)(1)*x(4)(2)+y(2)(2)*y(3)(1)*y(4)(4)*x(4)(2)-y(2)(1)*y(3)(2)*y(4)(4)*x(4)(2)-y(2)(2)*y(3)(2)*y(4)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{2}{4}, \lam{2}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \eps{2}{4}{2}{4} +(-y_{2, 2} y_{4, 1}+y_{2, 1} y_{4, 2}) \eps{3}{4}{2}{4} +(-y_{4, 2}) \lam{2}{3}{4}{1}{2}{4} +(-x_{4, 2}) \psi{2}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 2,4 2,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 2,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 2,3,4 1,2,3 Lead Term of Spoly: -y(3)(1)*y(4)(2)*y(4)(4)*x(2)(3) Divisor: Epsilon 2,4 3,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: -y(3)(1)*y(4)(2)*y(4)(4)*x(2)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(2)*y(4)(1)+y(2)(1)*y(4)(2) Lead Term of Product: -y(2)(2)*y(4)(1)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 2,3,4 1,2,4 Quotient: -y(4)(3) Lead Term of Product: y(3)(2)*y(4)(1)*y(4)(3)*x(2)(4) Lead term is well behaved Divisor: Psi 2,3,4 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*y(4)(1)*x(4)(4) Lead term is well behaved Divisor: Psi 2,3,4 1,2,4 Quotient: -x(4)(3) Lead Term of Product: y(2)(4)*y(3)(2)*y(4)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(3)(2)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(2)*x(2)(3)+y(2)(2)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(2)*x(3)(3)-y(2)(2)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(y(4)(4)*x(2)(3)-y(4)(3)*x(2)(4)-y(2)(4)*x(4)(3)+y(2)(3)*x(4)(4)) ------- Rewrite: -y(3)(1)*y(4)(2)*y(4)(4)*x(2)(3)+y(3)(2)*y(4)(1)*y(4)(3)*x(2)(4)-y(2)(2)*y(4)(1)*y(4)(4)*x(3)(3)+y(2)(1)*y(4)(2)*y(4)(4)*x(3)(3)+y(2)(4)*y(3)(2)*y(4)(1)*x(4)(3)+y(2)(2)*y(3)(1)*y(4)(4)*x(4)(3)-y(2)(1)*y(3)(2)*y(4)(4)*x(4)(3)-y(2)(3)*y(3)(2)*y(4)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{3}{4}, \lam{2}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \eps{2}{4}{3}{4} +(-y_{2, 2} y_{4, 1}+y_{2, 1} y_{4, 2}) \eps{3}{4}{3}{4} +(-y_{4, 3}) \lam{2}{3}{4}{1}{2}{4} +(x_{4, 4}) \psi{2}{3}{4}{1}{2}{3} +(-x_{4, 3}) \psi{2}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 2,4 3,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 2,3,4 1,3,3 Lead Term of Spoly: -y(3)(1)*y(4)(3)*y(4)(4)*x(2)(3) Divisor: Epsilon 2,4 3,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*y(4)(4)*x(2)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(3)*y(4)(1)+y(2)(1)*y(4)(3) Lead Term of Product: -y(2)(3)*y(4)(1)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 2,3,4 1,3,4 Quotient: -y(4)(3) Lead Term of Product: y(3)(3)*y(4)(1)*y(4)(3)*x(2)(4) Lead term is well behaved Divisor: Psi 2,3,4 1,3,4 Quotient: -x(4)(3) Lead Term of Product: y(2)(4)*y(3)(3)*y(4)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(3)(3)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(y(4)(4)*x(2)(3)-y(4)(3)*x(2)(4)-y(2)(4)*x(4)(3)+y(2)(3)*x(4)(4)) ------- Rewrite: -y(3)(1)*y(4)(3)*y(4)(4)*x(2)(3)+y(3)(3)*y(4)(1)*y(4)(3)*x(2)(4)-y(2)(3)*y(4)(1)*y(4)(4)*x(3)(3)+y(2)(1)*y(4)(3)*y(4)(4)*x(3)(3)+y(2)(4)*y(3)(3)*y(4)(1)*x(4)(3)+y(2)(3)*y(3)(1)*y(4)(4)*x(4)(3)-y(2)(1)*y(3)(3)*y(4)(4)*x(4)(3)-y(2)(3)*y(3)(3)*y(4)(1)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{3}{4}, \lam{2}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \eps{2}{4}{3}{4} +(-y_{2, 3} y_{4, 1}+y_{2, 1} y_{4, 3}) \eps{3}{4}{3}{4} +(-y_{4, 3}) \lam{2}{3}{4}{1}{3}{4} +(-x_{4, 3}) \psi{2}{3}{4}{1}{3}{4} ---------------------------------- Epsilon: 2,4 3,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 2,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*y(4)(4)*x(2)(3) Divisor: Epsilon 2,4 3,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*y(4)(4)*x(2)(3) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(3)*y(4)(2)+y(2)(2)*y(4)(3) Lead Term of Product: -y(2)(3)*y(4)(2)*y(4)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 2,3,4 2,3,4 Quotient: -y(4)(3) Lead Term of Product: y(3)(3)*y(4)(2)*y(4)(3)*x(2)(4) Lead term is well behaved Divisor: Psi 2,3,4 2,3,4 Quotient: -x(4)(3) Lead Term of Product: y(2)(4)*y(3)(3)*y(4)(2)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(4)(4))*(-y(3)(3)*y(4)(2)*x(2)(3)+y(3)(2)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(y(4)(4)*x(2)(3)-y(4)(3)*x(2)(4)-y(2)(4)*x(4)(3)+y(2)(3)*x(4)(4)) ------- Rewrite: -y(3)(2)*y(4)(3)*y(4)(4)*x(2)(3)+y(3)(3)*y(4)(2)*y(4)(3)*x(2)(4)-y(2)(3)*y(4)(2)*y(4)(4)*x(3)(3)+y(2)(2)*y(4)(3)*y(4)(4)*x(3)(3)+y(2)(4)*y(3)(3)*y(4)(2)*x(4)(3)+y(2)(3)*y(3)(2)*y(4)(4)*x(4)(3)-y(2)(2)*y(3)(3)*y(4)(4)*x(4)(3)-y(2)(3)*y(3)(3)*y(4)(2)*x(4)(4) ----------- TeX output: S(\eps{2}{4}{3}{4}, \lam{2}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \eps{2}{4}{3}{4} +(-y_{2, 3} y_{4, 2}+y_{2, 2} y_{4, 3}) \eps{3}{4}{3}{4} +(-y_{4, 3}) \lam{2}{3}{4}{2}{3}{4} +(-x_{4, 3}) \psi{2}{3}{4}{2}{3}{4} ---------------------------------- Epsilon: 2,4 3,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 2,4 3,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,4 2,3,3 Lead Term of Spoly: -y(2)(2)*y(4)(3)*x(1)(3)*x(3)(1) Divisor: Delta 1,3 1,3 Quotient: y(2)(2)*y(4)(3) Lead Term of Product: -y(2)(2)*y(4)(3)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: -y(2)(3)*y(4)(1) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 1,3 Quotient: -y(2)(3)*y(3)(2) Lead Term of Product: y(2)(3)*y(3)(2)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: y(2)(3)*y(3)(1) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: y(1)(3)*y(4)(2)-y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: y(1)(3)*y(2)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(1)*y(2)(3) Lead Term of Product: y(1)(1)*y(2)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(3)*x(3)(3) Lead Term of Product: -y(2)(2)*y(4)(3)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(3)(2)*x(4)(3) Lead Term of Product: y(2)(3)*y(3)(2)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(1)*x(3)(3)-y(3)(1)*x(4)(3) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(2)(1)*x(3)(3) Lead Term of Product: -y(2)(1)*y(4)(3)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(3)*x(4)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(3)*x(3)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(1)(1)*x(3)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: -x(4)(3) Lead Term of Product: y(1)(3)*y(2)(2)*x(3)(1)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: x(4)(3) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(3)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: -x(3)(3) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(3)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(1))*(-y(2)(3)*y(4)(2)*x(1)(3)+y(2)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(3)) - (-y(2)(3)*x(1)(3))*(y(4)(2)*x(3)(1)-y(4)(1)*x(3)(2)-y(3)(2)*x(4)(1)+y(3)(1)*x(4)(2)) ------- Rewrite: -y(2)(2)*y(4)(3)*x(1)(3)*x(3)(1)-y(1)(3)*y(4)(2)*x(2)(3)*x(3)(1)+y(1)(2)*y(4)(3)*x(2)(3)*x(3)(1)+y(2)(3)*y(4)(1)*x(1)(3)*x(3)(2)+y(2)(3)*y(3)(2)*x(1)(3)*x(4)(1)-y(2)(3)*y(3)(1)*x(1)(3)*x(4)(2)+y(1)(3)*y(2)(2)*x(3)(1)*x(4)(3)-y(1)(2)*y(2)(3)*x(3)(1)*x(4)(3) ----------- TeX output: S(\eps{3}{4}{1}{2}, \lam{1}{2}{4}{2}{3}{3}) = (y_{2, 2} y_{4, 3}) \del{1}{3}{1}{3} +(-y_{2, 3} y_{4, 1}) \del{1}{3}{2}{3} +(-y_{2, 3} y_{3, 2}) \del{1}{4}{1}{3} +(y_{2, 3} y_{3, 1}) \del{1}{4}{2}{3} +(y_{1, 3} y_{4, 2}-y_{1, 2} y_{4, 3}) \del{2}{3}{1}{3} +(y_{1, 3} y_{2, 2}) \del{3}{4}{1}{3} +(-y_{1, 1} y_{2, 3}) \del{3}{4}{2}{3} +(-y_{4, 3} x_{3, 3}) \eps{1}{2}{1}{2} +(y_{3, 2} x_{4, 3}) \eps{1}{2}{1}{3} +(y_{4, 1} x_{3, 3}-y_{3, 1} x_{4, 3}) \eps{1}{2}{2}{3} +(-y_{2, 1} x_{3, 3}) \eps{1}{4}{2}{3} +(y_{1, 3} x_{4, 3}) \eps{2}{3}{1}{2} +(-y_{1, 3} x_{3, 3}) \eps{2}{4}{1}{2} +(y_{1, 1} x_{3, 3}) \eps{2}{4}{2}{3} +(-x_{4, 3}) \pho{1}{2}{3}{1}{2}{3} +(x_{4, 3}) \lam{1}{2}{3}{1}{2}{3} +(-x_{3, 3}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,4 2,3,4 Lead Term of Spoly: -y(2)(2)*y(4)(3)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: y(2)(2)*y(4)(3) Lead Term of Product: -y(2)(2)*y(4)(3)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(2)(3)*y(4)(1) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(2)(3)*y(3)(2) Lead Term of Product: y(2)(3)*y(3)(2)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(2)(3)*y(3)(1) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(3)*y(4)(2)-y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(3)*y(2)(2) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(1)*y(2)(3) Lead Term of Product: y(1)(1)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(3)*x(3)(4) Lead Term of Product: -y(2)(2)*y(4)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(3)(2)*x(4)(4) Lead Term of Product: y(2)(3)*y(3)(2)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(1)*x(3)(4)-y(3)(1)*x(4)(4) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(2)(1)*x(3)(4) Lead Term of Product: -y(2)(1)*y(4)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(3)*x(4)(4) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(3)*x(3)(4) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: -x(4)(4) Lead Term of Product: y(1)(3)*y(2)(2)*x(3)(1)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: -x(3)(4) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(1))*(-y(2)(3)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(4)) - (-y(2)(3)*x(1)(4))*(y(4)(2)*x(3)(1)-y(4)(1)*x(3)(2)-y(3)(2)*x(4)(1)+y(3)(1)*x(4)(2)) ------- Rewrite: -y(2)(2)*y(4)(3)*x(1)(4)*x(3)(1)-y(1)(3)*y(4)(2)*x(2)(4)*x(3)(1)+y(1)(2)*y(4)(3)*x(2)(4)*x(3)(1)+y(2)(3)*y(4)(1)*x(1)(4)*x(3)(2)+y(2)(3)*y(3)(2)*x(1)(4)*x(4)(1)-y(2)(3)*y(3)(1)*x(1)(4)*x(4)(2)+y(1)(3)*y(2)(2)*x(3)(1)*x(4)(4)-y(1)(2)*y(2)(3)*x(3)(1)*x(4)(4) ----------- TeX output: S(\eps{3}{4}{1}{2}, \lam{1}{2}{4}{2}{3}{4}) = (y_{2, 2} y_{4, 3}) \del{1}{3}{1}{4} +(-y_{2, 3} y_{4, 1}) \del{1}{3}{2}{4} +(-y_{2, 3} y_{3, 2}) \del{1}{4}{1}{4} +(y_{2, 3} y_{3, 1}) \del{1}{4}{2}{4} +(y_{1, 3} y_{4, 2}-y_{1, 2} y_{4, 3}) \del{2}{3}{1}{4} +(y_{1, 3} y_{2, 2}) \del{3}{4}{1}{4} +(-y_{1, 1} y_{2, 3}) \del{3}{4}{2}{4} +(-y_{4, 3} x_{3, 4}) \eps{1}{2}{1}{2} +(y_{3, 2} x_{4, 4}) \eps{1}{2}{1}{3} +(y_{4, 1} x_{3, 4}-y_{3, 1} x_{4, 4}) \eps{1}{2}{2}{3} +(-y_{2, 1} x_{3, 4}) \eps{1}{4}{2}{3} +(y_{1, 3} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{1, 3} x_{3, 4}) \eps{2}{4}{1}{2} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{3} +(-x_{4, 4}) \pho{1}{2}{3}{1}{2}{3} +(x_{4, 4}) \lam{1}{2}{3}{1}{2}{3} +(-x_{3, 4}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,4 2,4,4 Lead Term of Spoly: -y(2)(2)*y(4)(4)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: y(2)(2)*y(4)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(2)(4)*y(4)(1) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(2)(4)*y(3)(2) Lead Term of Product: y(2)(4)*y(3)(2)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(2)(4)*y(3)(1) Lead Term of Product: -y(2)(4)*y(3)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(4)*y(4)(2)-y(1)(2)*y(4)(4) Lead Term of Product: -y(1)(4)*y(4)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(4)*y(2)(2) Lead Term of Product: -y(1)(4)*y(2)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(1)*y(2)(4) Lead Term of Product: y(1)(1)*y(2)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(4)*x(3)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: y(3)(2)*x(4)(4) Lead Term of Product: y(2)(4)*y(3)(2)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: y(4)(1)*x(3)(4)-y(3)(1)*x(4)(4) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(2)(1)*x(3)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(2)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,2,4 Quotient: -x(4)(4) Lead Term of Product: y(1)(4)*y(2)(2)*x(3)(1)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(4)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: -x(3)(4) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(1))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(2)(4)*x(1)(4))*(y(4)(2)*x(3)(1)-y(4)(1)*x(3)(2)-y(3)(2)*x(4)(1)+y(3)(1)*x(4)(2)) ------- Rewrite: -y(2)(2)*y(4)(4)*x(1)(4)*x(3)(1)-y(1)(4)*y(4)(2)*x(2)(4)*x(3)(1)+y(1)(2)*y(4)(4)*x(2)(4)*x(3)(1)+y(2)(4)*y(4)(1)*x(1)(4)*x(3)(2)+y(2)(4)*y(3)(2)*x(1)(4)*x(4)(1)-y(2)(4)*y(3)(1)*x(1)(4)*x(4)(2)+y(1)(4)*y(2)(2)*x(3)(1)*x(4)(4)-y(1)(2)*y(2)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\eps{3}{4}{1}{2}, \lam{1}{2}{4}{2}{4}{4}) = (y_{2, 2} y_{4, 4}) \del{1}{3}{1}{4} +(-y_{2, 4} y_{4, 1}) \del{1}{3}{2}{4} +(-y_{2, 4} y_{3, 2}) \del{1}{4}{1}{4} +(y_{2, 4} y_{3, 1}) \del{1}{4}{2}{4} +(y_{1, 4} y_{4, 2}-y_{1, 2} y_{4, 4}) \del{2}{3}{1}{4} +(y_{1, 4} y_{2, 2}) \del{3}{4}{1}{4} +(-y_{1, 1} y_{2, 4}) \del{3}{4}{2}{4} +(-y_{4, 4} x_{3, 4}) \eps{1}{2}{1}{2} +(y_{3, 2} x_{4, 4}) \eps{1}{2}{1}{4} +(y_{4, 1} x_{3, 4}-y_{3, 1} x_{4, 4}) \eps{1}{2}{2}{4} +(-y_{2, 1} x_{3, 4}) \eps{1}{4}{2}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{1, 4} x_{3, 4}) \eps{2}{4}{1}{2} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{4} +(-x_{4, 4}) \pho{1}{2}{3}{1}{2}{4} +(x_{4, 4}) \lam{1}{2}{3}{1}{2}{4} +(-x_{3, 4}) \lam{1}{2}{4}{1}{2}{4} ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(3)*x(3)(1) Divisor: Delta 1,3 1,3 Quotient: y(3)(2)*y(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: -y(3)(3)*y(4)(1) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 1,3 Quotient: -y(3)(2)*y(3)(3) Lead Term of Product: y(3)(2)*y(3)(3)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: y(3)(1)*y(3)(3) Lead Term of Product: -y(3)(1)*y(3)(3)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: y(1)(3)*y(3)(2) Lead Term of Product: -y(1)(3)*y(3)(2)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(1)*y(3)(3) Lead Term of Product: y(1)(1)*y(3)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(3)*x(3)(3)+y(3)(3)*x(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(4)(1)*x(3)(3) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(1)(3)*x(3)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*x(3)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: y(1)(1)*x(3)(3) Lead Term of Product: y(1)(1)*y(4)(3)*x(3)(2)*x(3)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -x(3)(3) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(3)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(1))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*x(1)(3))*(y(4)(2)*x(3)(1)-y(4)(1)*x(3)(2)-y(3)(2)*x(4)(1)+y(3)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(3)*x(3)(1)+y(3)(3)*y(4)(1)*x(1)(3)*x(3)(2)-y(1)(3)*y(4)(2)*x(3)(1)*x(3)(3)+y(1)(2)*y(4)(3)*x(3)(1)*x(3)(3)+y(3)(2)*y(3)(3)*x(1)(3)*x(4)(1)-y(3)(1)*y(3)(3)*x(1)(3)*x(4)(2)+y(1)(3)*y(3)(2)*x(3)(1)*x(4)(3)-y(1)(2)*y(3)(3)*x(3)(1)*x(4)(3) ----------- TeX output: S(\eps{3}{4}{1}{2}, \lam{1}{3}{4}{2}{3}{3}) = (y_{3, 2} y_{4, 3}) \del{1}{3}{1}{3} +(-y_{3, 3} y_{4, 1}) \del{1}{3}{2}{3} +(-y_{3, 2} y_{3, 3}) \del{1}{4}{1}{3} +(y_{3, 1} y_{3, 3}) \del{1}{4}{2}{3} +(y_{1, 3} y_{3, 2}) \del{3}{4}{1}{3} +(-y_{1, 1} y_{3, 3}) \del{3}{4}{2}{3} +(-y_{4, 3} x_{3, 3}+y_{3, 3} x_{4, 3}) \eps{1}{3}{1}{2} +(y_{4, 1} x_{3, 3}) \eps{1}{3}{2}{3} +(-y_{3, 1} x_{3, 3}) \eps{1}{4}{2}{3} +(-y_{1, 3} x_{3, 3}) \eps{3}{4}{1}{2} +(y_{1, 1} x_{3, 3}) \eps{3}{4}{2}{3} +(-x_{3, 3}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,3,4 2,3,4 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: y(3)(2)*y(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(3)(3)*y(4)(1) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(3)(2)*y(3)(3) Lead Term of Product: y(3)(2)*y(3)(3)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(3)(1)*y(3)(3) Lead Term of Product: -y(3)(1)*y(3)(3)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(3)*y(3)(2) Lead Term of Product: -y(1)(3)*y(3)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(1)*y(3)(3) Lead Term of Product: y(1)(1)*y(3)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(3)*x(3)(4)+y(3)(3)*x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(4)(1)*x(3)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: -y(3)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(1)(3)*x(3)(4) Lead Term of Product: -y(1)(3)*y(4)(2)*x(3)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(3)*x(3)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: -x(3)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(1))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*x(1)(4))*(y(4)(2)*x(3)(1)-y(4)(1)*x(3)(2)-y(3)(2)*x(4)(1)+y(3)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(1)(4)*x(3)(1)+y(3)(3)*y(4)(1)*x(1)(4)*x(3)(2)-y(1)(3)*y(4)(2)*x(3)(1)*x(3)(4)+y(1)(2)*y(4)(3)*x(3)(1)*x(3)(4)+y(3)(2)*y(3)(3)*x(1)(4)*x(4)(1)-y(3)(1)*y(3)(3)*x(1)(4)*x(4)(2)+y(1)(3)*y(3)(2)*x(3)(1)*x(4)(4)-y(1)(2)*y(3)(3)*x(3)(1)*x(4)(4) ----------- TeX output: S(\eps{3}{4}{1}{2}, \lam{1}{3}{4}{2}{3}{4}) = (y_{3, 2} y_{4, 3}) \del{1}{3}{1}{4} +(-y_{3, 3} y_{4, 1}) \del{1}{3}{2}{4} +(-y_{3, 2} y_{3, 3}) \del{1}{4}{1}{4} +(y_{3, 1} y_{3, 3}) \del{1}{4}{2}{4} +(y_{1, 3} y_{3, 2}) \del{3}{4}{1}{4} +(-y_{1, 1} y_{3, 3}) \del{3}{4}{2}{4} +(-y_{4, 3} x_{3, 4}+y_{3, 3} x_{4, 4}) \eps{1}{3}{1}{2} +(y_{4, 1} x_{3, 4}) \eps{1}{3}{2}{3} +(-y_{3, 1} x_{3, 4}) \eps{1}{4}{2}{3} +(-y_{1, 3} x_{3, 4}) \eps{3}{4}{1}{2} +(y_{1, 1} x_{3, 4}) \eps{3}{4}{2}{3} +(-x_{3, 4}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: y(3)(2)*y(4)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(3)(4)*y(4)(1) Lead Term of Product: y(3)(4)*y(4)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(3)(2)*y(3)(4) Lead Term of Product: y(3)(2)*y(3)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(3)(1)*y(3)(4) Lead Term of Product: -y(3)(1)*y(3)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(4)*y(3)(2) Lead Term of Product: -y(1)(4)*y(3)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(1)*y(3)(4) Lead Term of Product: y(1)(1)*y(3)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(4)*x(3)(4)+y(3)(4)*x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: y(4)(1)*x(3)(4) Lead Term of Product: y(3)(4)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: -y(3)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(2)*x(3)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(3)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,4 Quotient: -x(3)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(1))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(1)(4))*(y(4)(2)*x(3)(1)-y(4)(1)*x(3)(2)-y(3)(2)*x(4)(1)+y(3)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(1)(4)*x(3)(1)+y(3)(4)*y(4)(1)*x(1)(4)*x(3)(2)-y(1)(4)*y(4)(2)*x(3)(1)*x(3)(4)+y(1)(2)*y(4)(4)*x(3)(1)*x(3)(4)+y(3)(2)*y(3)(4)*x(1)(4)*x(4)(1)-y(3)(1)*y(3)(4)*x(1)(4)*x(4)(2)+y(1)(4)*y(3)(2)*x(3)(1)*x(4)(4)-y(1)(2)*y(3)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\eps{3}{4}{1}{2}, \lam{1}{3}{4}{2}{4}{4}) = (y_{3, 2} y_{4, 4}) \del{1}{3}{1}{4} +(-y_{3, 4} y_{4, 1}) \del{1}{3}{2}{4} +(-y_{3, 2} y_{3, 4}) \del{1}{4}{1}{4} +(y_{3, 1} y_{3, 4}) \del{1}{4}{2}{4} +(y_{1, 4} y_{3, 2}) \del{3}{4}{1}{4} +(-y_{1, 1} y_{3, 4}) \del{3}{4}{2}{4} +(-y_{4, 4} x_{3, 4}+y_{3, 4} x_{4, 4}) \eps{1}{3}{1}{2} +(y_{4, 1} x_{3, 4}) \eps{1}{3}{2}{4} +(-y_{3, 1} x_{3, 4}) \eps{1}{4}{2}{4} +(-y_{1, 4} x_{3, 4}) \eps{3}{4}{1}{2} +(y_{1, 1} x_{3, 4}) \eps{3}{4}{2}{4} +(-x_{3, 4}) \lam{1}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 3,4 1,2 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,2 Lam: 2,3,4 2,3,3 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(2)(3)*x(3)(1) Divisor: Delta 2,3 1,3 Quotient: y(3)(2)*y(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(3)(3)*y(4)(1) Lead Term of Product: y(3)(3)*y(4)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(3)(2)*y(3)(3) Lead Term of Product: y(3)(2)*y(3)(3)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(3)(1)*y(3)(3) Lead Term of Product: -y(3)(1)*y(3)(3)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: y(2)(3)*y(3)(2) Lead Term of Product: -y(2)(3)*y(3)(2)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(3)*x(3)(3)+y(3)(3)*x(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(2)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(4)(1)*x(3)(3) Lead Term of Product: y(3)(3)*y(4)(1)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(3)(1)*x(3)(3) Lead Term of Product: -y(3)(1)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(2)(3)*x(3)(3) Lead Term of Product: -y(2)(3)*y(4)(2)*x(3)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: y(2)(1)*x(3)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(3)(2)*x(3)(3) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: -x(3)(3) Lead Term of Product: y(3)(2)*y(4)(1)*x(2)(3)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(1))*(-y(3)(3)*y(4)(2)*x(2)(3)+y(3)(2)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*x(2)(3))*(y(4)(2)*x(3)(1)-y(4)(1)*x(3)(2)-y(3)(2)*x(4)(1)+y(3)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(2)(3)*x(3)(1)+y(3)(3)*y(4)(1)*x(2)(3)*x(3)(2)-y(2)(3)*y(4)(2)*x(3)(1)*x(3)(3)+y(2)(2)*y(4)(3)*x(3)(1)*x(3)(3)+y(3)(2)*y(3)(3)*x(2)(3)*x(4)(1)-y(3)(1)*y(3)(3)*x(2)(3)*x(4)(2)+y(2)(3)*y(3)(2)*x(3)(1)*x(4)(3)-y(2)(2)*y(3)(3)*x(3)(1)*x(4)(3) ----------- TeX output: S(\eps{3}{4}{1}{2}, \lam{2}{3}{4}{2}{3}{3}) = (y_{3, 2} y_{4, 3}) \del{2}{3}{1}{3} +(-y_{3, 3} y_{4, 1}) \del{2}{3}{2}{3} +(-y_{3, 2} y_{3, 3}) \del{2}{4}{1}{3} +(y_{3, 1} y_{3, 3}) \del{2}{4}{2}{3} +(y_{2, 3} y_{3, 2}) \del{3}{4}{1}{3} +(-y_{2, 1} y_{3, 3}) \del{3}{4}{2}{3} +(-y_{4, 3} x_{3, 3}+y_{3, 3} x_{4, 3}) \eps{2}{3}{1}{2} +(y_{4, 1} x_{3, 3}) \eps{2}{3}{2}{3} +(-y_{3, 1} x_{3, 3}) \eps{2}{4}{2}{3} +(-y_{2, 3} x_{3, 3}) \eps{3}{4}{1}{2} +(y_{2, 1} x_{3, 3}) \eps{3}{4}{2}{3} +(-x_{3, 3}) \lam{2}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 3,4 1,2 Lam: 2,3,4 2,3,4 Lead Term of Spoly: -y(3)(2)*y(4)(3)*x(2)(4)*x(3)(1) Divisor: Delta 2,3 1,4 Quotient: y(3)(2)*y(4)(3) Lead Term of Product: -y(3)(2)*y(4)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(3)(3)*y(4)(1) Lead Term of Product: y(3)(3)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(3)(2)*y(3)(3) Lead Term of Product: y(3)(2)*y(3)(3)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(3)(1)*y(3)(3) Lead Term of Product: -y(3)(1)*y(3)(3)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(2)(3)*y(3)(2) Lead Term of Product: -y(2)(3)*y(3)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(3)*x(3)(4)+y(3)(3)*x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(3)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(4)(1)*x(3)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(3)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(2)(3)*x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(3)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(4)(3)*x(3)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: -x(3)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(2)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(1))*(-y(3)(3)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*x(2)(4))*(y(4)(2)*x(3)(1)-y(4)(1)*x(3)(2)-y(3)(2)*x(4)(1)+y(3)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(3)*x(2)(4)*x(3)(1)+y(3)(3)*y(4)(1)*x(2)(4)*x(3)(2)-y(2)(3)*y(4)(2)*x(3)(1)*x(3)(4)+y(2)(2)*y(4)(3)*x(3)(1)*x(3)(4)+y(3)(2)*y(3)(3)*x(2)(4)*x(4)(1)-y(3)(1)*y(3)(3)*x(2)(4)*x(4)(2)+y(2)(3)*y(3)(2)*x(3)(1)*x(4)(4)-y(2)(2)*y(3)(3)*x(3)(1)*x(4)(4) ----------- TeX output: S(\eps{3}{4}{1}{2}, \lam{2}{3}{4}{2}{3}{4}) = (y_{3, 2} y_{4, 3}) \del{2}{3}{1}{4} +(-y_{3, 3} y_{4, 1}) \del{2}{3}{2}{4} +(-y_{3, 2} y_{3, 3}) \del{2}{4}{1}{4} +(y_{3, 1} y_{3, 3}) \del{2}{4}{2}{4} +(y_{2, 3} y_{3, 2}) \del{3}{4}{1}{4} +(-y_{2, 1} y_{3, 3}) \del{3}{4}{2}{4} +(-y_{4, 3} x_{3, 4}+y_{3, 3} x_{4, 4}) \eps{2}{3}{1}{2} +(y_{4, 1} x_{3, 4}) \eps{2}{3}{2}{3} +(-y_{3, 1} x_{3, 4}) \eps{2}{4}{2}{3} +(-y_{2, 3} x_{3, 4}) \eps{3}{4}{1}{2} +(y_{2, 1} x_{3, 4}) \eps{3}{4}{2}{3} +(-x_{3, 4}) \lam{2}{3}{4}{1}{2}{3} ---------------------------------- Epsilon: 3,4 1,2 Lam: 2,3,4 2,4,4 Lead Term of Spoly: -y(3)(2)*y(4)(4)*x(2)(4)*x(3)(1) Divisor: Delta 2,3 1,4 Quotient: y(3)(2)*y(4)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(3)(4)*y(4)(1) Lead Term of Product: y(3)(4)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(3)(2)*y(3)(4) Lead Term of Product: y(3)(2)*y(3)(4)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(3)(1)*y(3)(4) Lead Term of Product: -y(3)(1)*y(3)(4)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(2)(4)*y(3)(2) Lead Term of Product: -y(2)(4)*y(3)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(1)*y(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(4)*x(3)(4)+y(3)(4)*x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: y(4)(1)*x(3)(4) Lead Term of Product: y(3)(4)*y(4)(1)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(3)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(2)(4)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(3)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(3)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,2,4 Quotient: -x(3)(4) Lead Term of Product: y(3)(2)*y(4)(1)*x(2)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(1))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(2)(4))*(y(4)(2)*x(3)(1)-y(4)(1)*x(3)(2)-y(3)(2)*x(4)(1)+y(3)(1)*x(4)(2)) ------- Rewrite: -y(3)(2)*y(4)(4)*x(2)(4)*x(3)(1)+y(3)(4)*y(4)(1)*x(2)(4)*x(3)(2)-y(2)(4)*y(4)(2)*x(3)(1)*x(3)(4)+y(2)(2)*y(4)(4)*x(3)(1)*x(3)(4)+y(3)(2)*y(3)(4)*x(2)(4)*x(4)(1)-y(3)(1)*y(3)(4)*x(2)(4)*x(4)(2)+y(2)(4)*y(3)(2)*x(3)(1)*x(4)(4)-y(2)(2)*y(3)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\eps{3}{4}{1}{2}, \lam{2}{3}{4}{2}{4}{4}) = (y_{3, 2} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{3, 4} y_{4, 1}) \del{2}{3}{2}{4} +(-y_{3, 2} y_{3, 4}) \del{2}{4}{1}{4} +(y_{3, 1} y_{3, 4}) \del{2}{4}{2}{4} +(y_{2, 4} y_{3, 2}) \del{3}{4}{1}{4} +(-y_{2, 1} y_{3, 4}) \del{3}{4}{2}{4} +(-y_{4, 4} x_{3, 4}+y_{3, 4} x_{4, 4}) \eps{2}{3}{1}{2} +(y_{4, 1} x_{3, 4}) \eps{2}{3}{2}{4} +(-y_{3, 1} x_{3, 4}) \eps{2}{4}{2}{4} +(-y_{2, 4} x_{3, 4}) \eps{3}{4}{1}{2} +(y_{2, 1} x_{3, 4}) \eps{3}{4}{2}{4} +(-x_{3, 4}) \lam{2}{3}{4}{1}{2}{4} ---------------------------------- Epsilon: 3,4 1,2 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,2,4 3,4,4 Lead Term of Spoly: -y(2)(3)*y(4)(4)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: y(2)(3)*y(4)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(2)(4)*y(4)(1) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(2)(4)*y(3)(3) Lead Term of Product: y(2)(4)*y(3)(3)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(2)(4)*y(3)(1) Lead Term of Product: -y(2)(4)*y(3)(1)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(4)*y(4)(3)-y(1)(3)*y(4)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(4)*y(2)(3) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(1)*y(2)(4) Lead Term of Product: y(1)(1)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(4)*x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: y(3)(3)*x(4)(4) Lead Term of Product: y(2)(4)*y(3)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: y(4)(1)*x(3)(4)-y(3)(1)*x(4)(4) Lead Term of Product: y(2)(4)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(1)*x(3)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,3,4 Quotient: -x(4)(4) Lead Term of Product: y(1)(4)*y(2)(3)*x(3)(1)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,3,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(4)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,3,4 Quotient: -x(3)(4) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(1))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*x(1)(4))*(y(4)(3)*x(3)(1)-y(4)(1)*x(3)(3)-y(3)(3)*x(4)(1)+y(3)(1)*x(4)(3)) ------- Rewrite: -y(2)(3)*y(4)(4)*x(1)(4)*x(3)(1)-y(1)(4)*y(4)(3)*x(2)(4)*x(3)(1)+y(1)(3)*y(4)(4)*x(2)(4)*x(3)(1)+y(2)(4)*y(4)(1)*x(1)(4)*x(3)(3)+y(2)(4)*y(3)(3)*x(1)(4)*x(4)(1)-y(2)(4)*y(3)(1)*x(1)(4)*x(4)(3)+y(1)(4)*y(2)(3)*x(3)(1)*x(4)(4)-y(1)(3)*y(2)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\eps{3}{4}{1}{3}, \lam{1}{2}{4}{3}{4}{4}) = (y_{2, 3} y_{4, 4}) \del{1}{3}{1}{4} +(-y_{2, 4} y_{4, 1}) \del{1}{3}{3}{4} +(-y_{2, 4} y_{3, 3}) \del{1}{4}{1}{4} +(y_{2, 4} y_{3, 1}) \del{1}{4}{3}{4} +(y_{1, 4} y_{4, 3}-y_{1, 3} y_{4, 4}) \del{2}{3}{1}{4} +(y_{1, 4} y_{2, 3}) \del{3}{4}{1}{4} +(-y_{1, 1} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{4, 4} x_{3, 4}) \eps{1}{2}{1}{3} +(y_{3, 3} x_{4, 4}) \eps{1}{2}{1}{4} +(y_{4, 1} x_{3, 4}-y_{3, 1} x_{4, 4}) \eps{1}{2}{3}{4} +(-y_{2, 1} x_{3, 4}) \eps{1}{4}{3}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{1}{3} +(-y_{1, 4} x_{3, 4}) \eps{2}{4}{1}{3} +(y_{1, 1} x_{3, 4}) \eps{2}{4}{3}{4} +(-x_{4, 4}) \pho{1}{2}{3}{1}{3}{4} +(x_{4, 4}) \lam{1}{2}{3}{1}{3}{4} +(-x_{3, 4}) \lam{1}{2}{4}{1}{3}{4} ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 1,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: y(3)(3)*y(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(3)(4)*y(4)(1) Lead Term of Product: y(3)(4)*y(4)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 1,4 Quotient: -y(3)(3)*y(3)(4) Lead Term of Product: y(3)(3)*y(3)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(3)(1)*y(3)(4) Lead Term of Product: -y(3)(1)*y(3)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(4)*y(3)(3) Lead Term of Product: -y(1)(4)*y(3)(3)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(1)*y(3)(4) Lead Term of Product: y(1)(1)*y(3)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(4)*x(3)(4)+y(3)(4)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(4)(1)*x(3)(4) Lead Term of Product: y(3)(4)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,3 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(3)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: y(1)(1)*x(3)(4) Lead Term of Product: y(1)(1)*y(4)(4)*x(3)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,3,4 Quotient: -x(3)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(1))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(1)(4))*(y(4)(3)*x(3)(1)-y(4)(1)*x(3)(3)-y(3)(3)*x(4)(1)+y(3)(1)*x(4)(3)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(4)*x(3)(1)+y(3)(4)*y(4)(1)*x(1)(4)*x(3)(3)-y(1)(4)*y(4)(3)*x(3)(1)*x(3)(4)+y(1)(3)*y(4)(4)*x(3)(1)*x(3)(4)+y(3)(3)*y(3)(4)*x(1)(4)*x(4)(1)-y(3)(1)*y(3)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(3)(3)*x(3)(1)*x(4)(4)-y(1)(3)*y(3)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\eps{3}{4}{1}{3}, \lam{1}{3}{4}{3}{4}{4}) = (y_{3, 3} y_{4, 4}) \del{1}{3}{1}{4} +(-y_{3, 4} y_{4, 1}) \del{1}{3}{3}{4} +(-y_{3, 3} y_{3, 4}) \del{1}{4}{1}{4} +(y_{3, 1} y_{3, 4}) \del{1}{4}{3}{4} +(y_{1, 4} y_{3, 3}) \del{3}{4}{1}{4} +(-y_{1, 1} y_{3, 4}) \del{3}{4}{3}{4} +(-y_{4, 4} x_{3, 4}+y_{3, 4} x_{4, 4}) \eps{1}{3}{1}{3} +(y_{4, 1} x_{3, 4}) \eps{1}{3}{3}{4} +(-y_{3, 1} x_{3, 4}) \eps{1}{4}{3}{4} +(-y_{1, 4} x_{3, 4}) \eps{3}{4}{1}{3} +(y_{1, 1} x_{3, 4}) \eps{3}{4}{3}{4} +(-x_{3, 4}) \lam{1}{3}{4}{1}{3}{4} ---------------------------------- Epsilon: 3,4 1,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,3 Lam: 2,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(2)(4)*x(3)(1) Divisor: Delta 2,3 1,4 Quotient: y(3)(3)*y(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(3)(4)*y(4)(1) Lead Term of Product: y(3)(4)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(3)(3)*y(3)(4) Lead Term of Product: y(3)(3)*y(3)(4)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(3)(1)*y(3)(4) Lead Term of Product: -y(3)(1)*y(3)(4)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(2)(4)*y(3)(3) Lead Term of Product: -y(2)(4)*y(3)(3)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(1)*y(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(4)(4)*x(3)(4)+y(3)(4)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: y(4)(1)*x(3)(4) Lead Term of Product: y(3)(4)*y(4)(1)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(3)(1)*x(3)(4) Lead Term of Product: -y(3)(1)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,3 Quotient: -y(2)(4)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(3)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(3)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,3,4 Quotient: -x(3)(4) Lead Term of Product: y(3)(3)*y(4)(1)*x(2)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(1))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(2)(4))*(y(4)(3)*x(3)(1)-y(4)(1)*x(3)(3)-y(3)(3)*x(4)(1)+y(3)(1)*x(4)(3)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(2)(4)*x(3)(1)+y(3)(4)*y(4)(1)*x(2)(4)*x(3)(3)-y(2)(4)*y(4)(3)*x(3)(1)*x(3)(4)+y(2)(3)*y(4)(4)*x(3)(1)*x(3)(4)+y(3)(3)*y(3)(4)*x(2)(4)*x(4)(1)-y(3)(1)*y(3)(4)*x(2)(4)*x(4)(3)+y(2)(4)*y(3)(3)*x(3)(1)*x(4)(4)-y(2)(3)*y(3)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\eps{3}{4}{1}{3}, \lam{2}{3}{4}{3}{4}{4}) = (y_{3, 3} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{3, 4} y_{4, 1}) \del{2}{3}{3}{4} +(-y_{3, 3} y_{3, 4}) \del{2}{4}{1}{4} +(y_{3, 1} y_{3, 4}) \del{2}{4}{3}{4} +(y_{2, 4} y_{3, 3}) \del{3}{4}{1}{4} +(-y_{2, 1} y_{3, 4}) \del{3}{4}{3}{4} +(-y_{4, 4} x_{3, 4}+y_{3, 4} x_{4, 4}) \eps{2}{3}{1}{3} +(y_{4, 1} x_{3, 4}) \eps{2}{3}{3}{4} +(-y_{3, 1} x_{3, 4}) \eps{2}{4}{3}{4} +(-y_{2, 4} x_{3, 4}) \eps{3}{4}{1}{3} +(y_{2, 1} x_{3, 4}) \eps{3}{4}{3}{4} +(-x_{3, 4}) \lam{2}{3}{4}{1}{3}{4} ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 1,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,2,4 3,4,4 Lead Term of Spoly: -y(2)(3)*y(4)(4)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: y(2)(3)*y(4)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(2)(4)*y(4)(2) Lead Term of Product: y(2)(4)*y(4)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: -y(2)(4)*y(3)(3) Lead Term of Product: y(2)(4)*y(3)(3)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(2)(4)*y(3)(2) Lead Term of Product: -y(2)(4)*y(3)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(4)*y(4)(3)-y(1)(3)*y(4)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(4)*y(2)(3) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(2)*y(2)(4) Lead Term of Product: y(1)(2)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(4)*x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: y(3)(3)*x(4)(4) Lead Term of Product: y(2)(4)*y(3)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: y(4)(2)*x(3)(4)-y(3)(2)*x(4)(4) Lead Term of Product: y(2)(4)*y(4)(2)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(2)(2)*x(3)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(1)(4)*x(4)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(1)(2)*x(3)(4) Lead Term of Product: y(1)(2)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 2,3,4 Quotient: -x(4)(4) Lead Term of Product: y(1)(4)*y(2)(3)*x(3)(2)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,3 2,3,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(4)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 2,3,4 Quotient: -x(3)(4) Lead Term of Product: y(2)(3)*y(4)(2)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(2))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*x(1)(4))*(y(4)(3)*x(3)(2)-y(4)(2)*x(3)(3)-y(3)(3)*x(4)(2)+y(3)(2)*x(4)(3)) ------- Rewrite: -y(2)(3)*y(4)(4)*x(1)(4)*x(3)(2)-y(1)(4)*y(4)(3)*x(2)(4)*x(3)(2)+y(1)(3)*y(4)(4)*x(2)(4)*x(3)(2)+y(2)(4)*y(4)(2)*x(1)(4)*x(3)(3)+y(2)(4)*y(3)(3)*x(1)(4)*x(4)(2)-y(2)(4)*y(3)(2)*x(1)(4)*x(4)(3)+y(1)(4)*y(2)(3)*x(3)(2)*x(4)(4)-y(1)(3)*y(2)(4)*x(3)(2)*x(4)(4) ----------- TeX output: S(\eps{3}{4}{2}{3}, \lam{1}{2}{4}{3}{4}{4}) = (y_{2, 3} y_{4, 4}) \del{1}{3}{2}{4} +(-y_{2, 4} y_{4, 2}) \del{1}{3}{3}{4} +(-y_{2, 4} y_{3, 3}) \del{1}{4}{2}{4} +(y_{2, 4} y_{3, 2}) \del{1}{4}{3}{4} +(y_{1, 4} y_{4, 3}-y_{1, 3} y_{4, 4}) \del{2}{3}{2}{4} +(y_{1, 4} y_{2, 3}) \del{3}{4}{2}{4} +(-y_{1, 2} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{4, 4} x_{3, 4}) \eps{1}{2}{2}{3} +(y_{3, 3} x_{4, 4}) \eps{1}{2}{2}{4} +(y_{4, 2} x_{3, 4}-y_{3, 2} x_{4, 4}) \eps{1}{2}{3}{4} +(-y_{2, 2} x_{3, 4}) \eps{1}{4}{3}{4} +(y_{1, 4} x_{4, 4}) \eps{2}{3}{2}{3} +(-y_{1, 4} x_{3, 4}) \eps{2}{4}{2}{3} +(y_{1, 2} x_{3, 4}) \eps{2}{4}{3}{4} +(-x_{4, 4}) \pho{1}{2}{3}{2}{3}{4} +(x_{4, 4}) \lam{1}{2}{3}{2}{3}{4} +(-x_{3, 4}) \lam{1}{2}{4}{2}{3}{4} ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 1,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: y(3)(3)*y(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(3)(4)*y(4)(2) Lead Term of Product: y(3)(4)*y(4)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: -y(3)(3)*y(3)(4) Lead Term of Product: y(3)(3)*y(3)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(3)(2)*y(3)(4) Lead Term of Product: -y(3)(2)*y(3)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(4)*y(3)(3) Lead Term of Product: -y(1)(4)*y(3)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(2)*y(3)(4) Lead Term of Product: y(1)(2)*y(3)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(4)*x(3)(4)+y(3)(4)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(4)(2)*x(3)(4) Lead Term of Product: y(3)(4)*y(4)(2)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: -y(3)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(4)*x(3)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(3)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: y(1)(2)*x(3)(4) Lead Term of Product: y(1)(2)*y(4)(4)*x(3)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 2,3,4 Quotient: -x(3)(4) Lead Term of Product: y(3)(3)*y(4)(2)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(2))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(1)(4))*(y(4)(3)*x(3)(2)-y(4)(2)*x(3)(3)-y(3)(3)*x(4)(2)+y(3)(2)*x(4)(3)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(1)(4)*x(3)(2)+y(3)(4)*y(4)(2)*x(1)(4)*x(3)(3)-y(1)(4)*y(4)(3)*x(3)(2)*x(3)(4)+y(1)(3)*y(4)(4)*x(3)(2)*x(3)(4)+y(3)(3)*y(3)(4)*x(1)(4)*x(4)(2)-y(3)(2)*y(3)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(3)(3)*x(3)(2)*x(4)(4)-y(1)(3)*y(3)(4)*x(3)(2)*x(4)(4) ----------- TeX output: S(\eps{3}{4}{2}{3}, \lam{1}{3}{4}{3}{4}{4}) = (y_{3, 3} y_{4, 4}) \del{1}{3}{2}{4} +(-y_{3, 4} y_{4, 2}) \del{1}{3}{3}{4} +(-y_{3, 3} y_{3, 4}) \del{1}{4}{2}{4} +(y_{3, 2} y_{3, 4}) \del{1}{4}{3}{4} +(y_{1, 4} y_{3, 3}) \del{3}{4}{2}{4} +(-y_{1, 2} y_{3, 4}) \del{3}{4}{3}{4} +(-y_{4, 4} x_{3, 4}+y_{3, 4} x_{4, 4}) \eps{1}{3}{2}{3} +(y_{4, 2} x_{3, 4}) \eps{1}{3}{3}{4} +(-y_{3, 2} x_{3, 4}) \eps{1}{4}{3}{4} +(-y_{1, 4} x_{3, 4}) \eps{3}{4}{2}{3} +(y_{1, 2} x_{3, 4}) \eps{3}{4}{3}{4} +(-x_{3, 4}) \lam{1}{3}{4}{2}{3}{4} ---------------------------------- Epsilon: 3,4 2,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,3 Lam: 2,3,4 3,4,4 Lead Term of Spoly: -y(3)(3)*y(4)(4)*x(2)(4)*x(3)(2) Divisor: Delta 2,3 2,4 Quotient: y(3)(3)*y(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(3)(4)*y(4)(2) Lead Term of Product: y(3)(4)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(3)(3)*y(3)(4) Lead Term of Product: y(3)(3)*y(3)(4)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(3)(2)*y(3)(4) Lead Term of Product: -y(3)(2)*y(3)(4)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(2)(4)*y(3)(3) Lead Term of Product: -y(2)(4)*y(3)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(2)*y(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(4)(4)*x(3)(4)+y(3)(4)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: y(4)(2)*x(3)(4) Lead Term of Product: y(3)(4)*y(4)(2)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(3)(2)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(4)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(3)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: y(2)(2)*x(3)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(3)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 2,3,4 2,3,4 Quotient: -x(3)(4) Lead Term of Product: y(3)(3)*y(4)(2)*x(2)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(3)(2))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*x(2)(4))*(y(4)(3)*x(3)(2)-y(4)(2)*x(3)(3)-y(3)(3)*x(4)(2)+y(3)(2)*x(4)(3)) ------- Rewrite: -y(3)(3)*y(4)(4)*x(2)(4)*x(3)(2)+y(3)(4)*y(4)(2)*x(2)(4)*x(3)(3)-y(2)(4)*y(4)(3)*x(3)(2)*x(3)(4)+y(2)(3)*y(4)(4)*x(3)(2)*x(3)(4)+y(3)(3)*y(3)(4)*x(2)(4)*x(4)(2)-y(3)(2)*y(3)(4)*x(2)(4)*x(4)(3)+y(2)(4)*y(3)(3)*x(3)(2)*x(4)(4)-y(2)(3)*y(3)(4)*x(3)(2)*x(4)(4) ----------- TeX output: S(\eps{3}{4}{2}{3}, \lam{2}{3}{4}{3}{4}{4}) = (y_{3, 3} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{3, 4} y_{4, 2}) \del{2}{3}{3}{4} +(-y_{3, 3} y_{3, 4}) \del{2}{4}{2}{4} +(y_{3, 2} y_{3, 4}) \del{2}{4}{3}{4} +(y_{2, 4} y_{3, 3}) \del{3}{4}{2}{4} +(-y_{2, 2} y_{3, 4}) \del{3}{4}{3}{4} +(-y_{4, 4} x_{3, 4}+y_{3, 4} x_{4, 4}) \eps{2}{3}{2}{3} +(y_{4, 2} x_{3, 4}) \eps{2}{3}{3}{4} +(-y_{3, 2} x_{3, 4}) \eps{2}{4}{3}{4} +(-y_{2, 4} x_{3, 4}) \eps{3}{4}{2}{3} +(y_{2, 2} x_{3, 4}) \eps{3}{4}{3}{4} +(-x_{3, 4}) \lam{2}{3}{4}{2}{3}{4} ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 2,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Epsilon: 3,4 3,4 Lam: 2,3,4 3,4,4 Relatively Prime ----------------------------------