Epsilon: 1,2 1,2 Epsilon: 1,2 1,3 Lead Term of Spoly: -y(2)(1)*y(2)(3)*x(1)(2) Divisor: Epsilon 1,2 2,3 Quotient: -y(2)(1) Lead Term of Product: -y(2)(1)*y(2)(3)*x(1)(2) Lead term is well behaved Divisor: Rho 1,2,2 1,2,3 Quotient: -1 Lead Term of Product: y(1)(3)*y(2)(2)*x(2)(1) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(2))*(y(2)(3)*x(1)(1)-y(2)(1)*x(1)(3)-y(1)(3)*x(2)(1)+y(1)(1)*x(2)(3)) - (y(2)(3))*(y(2)(2)*x(1)(1)-y(2)(1)*x(1)(2)-y(1)(2)*x(2)(1)+y(1)(1)*x(2)(2)) ------- Rewrite: -y(2)(1)*y(2)(3)*x(1)(2)+y(2)(1)*y(2)(2)*x(1)(3)+y(1)(3)*y(2)(2)*x(2)(1)-y(1)(2)*y(2)(3)*x(2)(1)+y(1)(1)*y(2)(3)*x(2)(2)-y(1)(1)*y(2)(2)*x(2)(3) ----------- TeX output: S(\eps{1}{2}{1}{2}, \eps{1}{2}{1}{3}) = (-y_{2, 1}) \eps{1}{2}{2}{3} +(-1) \pho{1}{2}{2}{1}{2}{3} ---------------------------------- Epsilon: 1,2 1,2 Epsilon: 1,2 2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Epsilon: 1,3 1,2 Lead Term of Spoly: y(2)(2)*y(3)(1)*x(1)(2) Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(2) Lead Term of Product: -y(1)(2)*y(3)(2)*x(2)(1) Lead term is well behaved Divisor: Lam 1,2,3 1,2,2 Quotient: -1 Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(2))*(y(3)(2)*x(1)(1)-y(3)(1)*x(1)(2)-y(1)(2)*x(3)(1)+y(1)(1)*x(3)(2)) - (y(3)(2))*(y(2)(2)*x(1)(1)-y(2)(1)*x(1)(2)-y(1)(2)*x(2)(1)+y(1)(1)*x(2)(2)) ------- Rewrite: y(2)(2)*y(3)(1)*x(1)(2)-y(2)(1)*y(3)(2)*x(1)(2)-y(1)(2)*y(3)(2)*x(2)(1)+y(1)(1)*y(3)(2)*x(2)(2)+y(1)(2)*y(2)(2)*x(3)(1)-y(1)(1)*y(2)(2)*x(3)(2) ----------- TeX output: S(\eps{1}{2}{1}{2}, \eps{1}{3}{1}{2}) = (-y_{1, 2}) \eps{2}{3}{1}{2} +(-1) \lam{1}{2}{3}{1}{2}{2} ---------------------------------- Epsilon: 1,2 1,2 Epsilon: 1,3 1,3 Lead Term of Spoly: -y(2)(1)*y(3)(3)*x(1)(2) Divisor: Epsilon 1,3 2,3 Quotient: -y(2)(1) Lead Term of Product: -y(2)(1)*y(3)(3)*x(1)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(2) Lead Term of Product: -y(1)(2)*y(3)(3)*x(2)(1) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(1)(1) Lead Term of Product: y(1)(1)*y(3)(3)*x(2)(2) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: -1 Lead Term of Product: y(1)(3)*y(2)(2)*x(3)(1) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: -1 Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(2))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) - (y(3)(3))*(y(2)(2)*x(1)(1)-y(2)(1)*x(1)(2)-y(1)(2)*x(2)(1)+y(1)(1)*x(2)(2)) ------- Rewrite: -y(2)(1)*y(3)(3)*x(1)(2)+y(2)(2)*y(3)(1)*x(1)(3)-y(1)(2)*y(3)(3)*x(2)(1)+y(1)(1)*y(3)(3)*x(2)(2)+y(1)(3)*y(2)(2)*x(3)(1)-y(1)(1)*y(2)(2)*x(3)(3) ----------- TeX output: S(\eps{1}{2}{1}{2}, \eps{1}{3}{1}{3}) = (-y_{2, 1}) \eps{1}{3}{2}{3} +(-y_{1, 2}) \eps{2}{3}{1}{3} +(y_{1, 1}) \eps{2}{3}{2}{3} +(-1) \pho{1}{2}{3}{1}{2}{3} +(-1) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 1,2 1,2 Epsilon: 1,3 2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Epsilon: 2,3 1,2 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Epsilon: 2,3 1,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,2 Epsilon: 2,3 2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Epsilon: 1,2 2,3 Lead Term of Spoly: y(2)(2)*x(1)(1)*x(1)(3) Divisor: Delta 1,2 1,2 Quotient: y(1)(3) Lead Term of Product: -y(1)(3)*x(1)(2)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 1,3 Quotient: -y(1)(2) Lead Term of Product: y(1)(2)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,3 Quotient: y(1)(1) Lead Term of Product: -y(1)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: x(1)(3) Lead Term of Product: y(2)(2)*x(1)(1)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) - (x(1)(2))*(y(2)(3)*x(1)(1)-y(2)(1)*x(1)(3)-y(1)(3)*x(2)(1)+y(1)(1)*x(2)(3)) ------- Rewrite: y(2)(2)*x(1)(1)*x(1)(3)-y(2)(1)*x(1)(2)*x(1)(3)-y(1)(3)*x(1)(2)*x(2)(1)+y(1)(3)*x(1)(1)*x(2)(2)-y(1)(2)*x(1)(1)*x(2)(3)+y(1)(1)*x(1)(2)*x(2)(3) ----------- TeX output: S(\eps{1}{2}{1}{3}, \eps{1}{2}{2}{3}) = (y_{1, 3}) \del{1}{2}{1}{2} +(-y_{1, 2}) \del{1}{2}{1}{3} +(y_{1, 1}) \del{1}{2}{2}{3} +(x_{1, 3}) \eps{1}{2}{1}{2} ---------------------------------- Epsilon: 1,2 1,3 Epsilon: 1,3 1,2 Lead Term of Spoly: y(2)(3)*y(3)(1)*x(1)(2) Divisor: Epsilon 1,2 2,3 Quotient: y(3)(1) Lead Term of Product: y(2)(3)*y(3)(1)*x(1)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(3) Lead Term of Product: -y(1)(3)*y(3)(2)*x(2)(1) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: 1 Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(1) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: -1 Lead Term of Product: y(2)(2)*y(3)(1)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(3))*(y(3)(2)*x(1)(1)-y(3)(1)*x(1)(2)-y(1)(2)*x(3)(1)+y(1)(1)*x(3)(2)) - (y(3)(2))*(y(2)(3)*x(1)(1)-y(2)(1)*x(1)(3)-y(1)(3)*x(2)(1)+y(1)(1)*x(2)(3)) ------- Rewrite: y(2)(3)*y(3)(1)*x(1)(2)-y(2)(1)*y(3)(2)*x(1)(3)-y(1)(3)*y(3)(2)*x(2)(1)+y(1)(1)*y(3)(2)*x(2)(3)+y(1)(2)*y(2)(3)*x(3)(1)-y(1)(1)*y(2)(3)*x(3)(2) ----------- TeX output: S(\eps{1}{2}{1}{3}, \eps{1}{3}{1}{2}) = (y_{3, 1}) \eps{1}{2}{2}{3} +(-y_{1, 3}) \eps{2}{3}{1}{2} +(1) \pho{1}{2}{3}{1}{2}{3} +(-1) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Epsilon: 1,2 1,3 Epsilon: 1,3 1,3 Lead Term of Spoly: y(2)(3)*y(3)(1)*x(1)(3) Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(3) Lead Term of Product: -y(1)(3)*y(3)(3)*x(2)(1) Lead term is well behaved Divisor: Lam 1,2,3 1,3,3 Quotient: -1 Lead Term of Product: y(2)(3)*y(3)(1)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(3))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) - (y(3)(3))*(y(2)(3)*x(1)(1)-y(2)(1)*x(1)(3)-y(1)(3)*x(2)(1)+y(1)(1)*x(2)(3)) ------- Rewrite: y(2)(3)*y(3)(1)*x(1)(3)-y(2)(1)*y(3)(3)*x(1)(3)-y(1)(3)*y(3)(3)*x(2)(1)+y(1)(1)*y(3)(3)*x(2)(3)+y(1)(3)*y(2)(3)*x(3)(1)-y(1)(1)*y(2)(3)*x(3)(3) ----------- TeX output: S(\eps{1}{2}{1}{3}, \eps{1}{3}{1}{3}) = (-y_{1, 3}) \eps{2}{3}{1}{3} +(-1) \lam{1}{2}{3}{1}{3}{3} ---------------------------------- Epsilon: 1,2 1,3 Epsilon: 1,3 2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Epsilon: 2,3 1,2 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Epsilon: 2,3 1,3 Relatively Prime ---------------------------------- Epsilon: 1,2 1,3 Epsilon: 2,3 2,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Epsilon: 1,3 1,2 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Epsilon: 1,3 1,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Epsilon: 1,3 2,3 Lead Term of Spoly: y(2)(3)*y(3)(2)*x(1)(3) Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(3) Lead Term of Product: -y(1)(3)*y(3)(3)*x(2)(2) Lead term is well behaved Divisor: Lam 1,2,3 2,3,3 Quotient: -1 Lead Term of Product: y(2)(3)*y(3)(2)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(2)(3))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) - (y(3)(3))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) ------- Rewrite: y(2)(3)*y(3)(2)*x(1)(3)-y(2)(2)*y(3)(3)*x(1)(3)-y(1)(3)*y(3)(3)*x(2)(2)+y(1)(2)*y(3)(3)*x(2)(3)+y(1)(3)*y(2)(3)*x(3)(2)-y(1)(2)*y(2)(3)*x(3)(3) ----------- TeX output: S(\eps{1}{2}{2}{3}, \eps{1}{3}{2}{3}) = (-y_{1, 3}) \eps{2}{3}{2}{3} +(-1) \lam{1}{2}{3}{2}{3}{3} ---------------------------------- Epsilon: 1,2 2,3 Epsilon: 2,3 1,2 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Epsilon: 2,3 1,3 Relatively Prime ---------------------------------- Epsilon: 1,2 2,3 Epsilon: 2,3 2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Epsilon: 1,3 1,3 Lead Term of Spoly: -y(3)(1)*y(3)(3)*x(1)(2) Divisor: Epsilon 1,3 2,3 Quotient: -y(3)(1) Lead Term of Product: -y(3)(1)*y(3)(3)*x(1)(2) Lead term is well behaved Divisor: Rho 1,3,3 1,2,3 Quotient: -1 Lead Term of Product: y(1)(3)*y(3)(2)*x(3)(1) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(2))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) - (y(3)(3))*(y(3)(2)*x(1)(1)-y(3)(1)*x(1)(2)-y(1)(2)*x(3)(1)+y(1)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*y(3)(3)*x(1)(2)+y(3)(1)*y(3)(2)*x(1)(3)+y(1)(3)*y(3)(2)*x(3)(1)-y(1)(2)*y(3)(3)*x(3)(1)+y(1)(1)*y(3)(3)*x(3)(2)-y(1)(1)*y(3)(2)*x(3)(3) ----------- TeX output: S(\eps{1}{3}{1}{2}, \eps{1}{3}{1}{3}) = (-y_{3, 1}) \eps{1}{3}{2}{3} +(-1) \pho{1}{3}{3}{1}{2}{3} ---------------------------------- Epsilon: 1,3 1,2 Epsilon: 1,3 2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Epsilon: 2,3 1,2 Lead Term of Spoly: -y(3)(1)*x(1)(2)*x(2)(1) Divisor: Delta 1,2 1,2 Quotient: y(3)(1) Lead Term of Product: -y(3)(1)*x(1)(2)*x(2)(1) Lead term is well behaved Divisor: Delta 1,3 1,2 Quotient: -y(2)(1) Lead Term of Product: y(2)(1)*x(1)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,2 Quotient: y(1)(1) Lead Term of Product: -y(1)(1)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: x(3)(1) Lead Term of Product: y(2)(2)*x(1)(1)*x(3)(1) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(y(3)(2)*x(2)(1)-y(3)(1)*x(2)(2)-y(2)(2)*x(3)(1)+y(2)(1)*x(3)(2)) - (x(2)(1))*(y(3)(2)*x(1)(1)-y(3)(1)*x(1)(2)-y(1)(2)*x(3)(1)+y(1)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*x(1)(2)*x(2)(1)+y(3)(1)*x(1)(1)*x(2)(2)+y(2)(2)*x(1)(1)*x(3)(1)-y(1)(2)*x(2)(1)*x(3)(1)-y(2)(1)*x(1)(1)*x(3)(2)+y(1)(1)*x(2)(1)*x(3)(2) ----------- TeX output: S(\eps{1}{3}{1}{2}, \eps{2}{3}{1}{2}) = (y_{3, 1}) \del{1}{2}{1}{2} +(-y_{2, 1}) \del{1}{3}{1}{2} +(y_{1, 1}) \del{2}{3}{1}{2} +(x_{3, 1}) \eps{1}{2}{1}{2} ---------------------------------- Epsilon: 1,3 1,2 Epsilon: 2,3 1,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,2 Epsilon: 2,3 2,3 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Epsilon: 1,3 2,3 Lead Term of Spoly: y(3)(2)*x(1)(1)*x(1)(3) Divisor: Delta 1,3 1,2 Quotient: y(1)(3) Lead Term of Product: -y(1)(3)*x(1)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 1,3 Quotient: -y(1)(2) Lead Term of Product: y(1)(2)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: y(1)(1) Lead Term of Product: -y(1)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: x(1)(3) Lead Term of Product: y(3)(2)*x(1)(1)*x(1)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) - (x(1)(2))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) ------- Rewrite: y(3)(2)*x(1)(1)*x(1)(3)-y(3)(1)*x(1)(2)*x(1)(3)-y(1)(3)*x(1)(2)*x(3)(1)+y(1)(3)*x(1)(1)*x(3)(2)-y(1)(2)*x(1)(1)*x(3)(3)+y(1)(1)*x(1)(2)*x(3)(3) ----------- TeX output: S(\eps{1}{3}{1}{3}, \eps{1}{3}{2}{3}) = (y_{1, 3}) \del{1}{3}{1}{2} +(-y_{1, 2}) \del{1}{3}{1}{3} +(y_{1, 1}) \del{1}{3}{2}{3} +(x_{1, 3}) \eps{1}{3}{1}{2} ---------------------------------- Epsilon: 1,3 1,3 Epsilon: 2,3 1,2 Relatively Prime ---------------------------------- Epsilon: 1,3 1,3 Epsilon: 2,3 1,3 Lead Term of Spoly: -y(3)(1)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: y(3)(1) Lead Term of Product: -y(3)(1)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,3 1,3 Quotient: -y(2)(1) Lead Term of Product: y(2)(1)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: y(1)(1) Lead Term of Product: -y(1)(1)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: x(3)(1) Lead Term of Product: y(2)(3)*x(1)(1)*x(3)(1) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) - (x(2)(1))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) ------- Rewrite: -y(3)(1)*x(1)(3)*x(2)(1)+y(3)(1)*x(1)(1)*x(2)(3)+y(2)(3)*x(1)(1)*x(3)(1)-y(1)(3)*x(2)(1)*x(3)(1)-y(2)(1)*x(1)(1)*x(3)(3)+y(1)(1)*x(2)(1)*x(3)(3) ----------- TeX output: S(\eps{1}{3}{1}{3}, \eps{2}{3}{1}{3}) = (y_{3, 1}) \del{1}{2}{1}{3} +(-y_{2, 1}) \del{1}{3}{1}{3} +(y_{1, 1}) \del{2}{3}{1}{3} +(x_{3, 1}) \eps{1}{2}{1}{3} ---------------------------------- Epsilon: 1,3 1,3 Epsilon: 2,3 2,3 Lead Term of Spoly: -y(3)(1)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: y(3)(1) Lead Term of Product: -y(3)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: -y(2)(1) Lead Term of Product: y(2)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 1,2 Quotient: y(1)(3) Lead Term of Product: -y(1)(3)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(1)(2) Lead Term of Product: y(1)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: 2*y(1)(1) Lead Term of Product: -2*y(1)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -x(3)(3) Lead Term of Product: -y(2)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: x(3)(2) Lead Term of Product: y(2)(3)*x(1)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: x(2)(3) Lead Term of Product: y(3)(2)*x(1)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(1))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) - (x(2)(2))*(y(3)(3)*x(1)(1)-y(3)(1)*x(1)(3)-y(1)(3)*x(3)(1)+y(1)(1)*x(3)(3)) ------- Rewrite: -y(3)(1)*x(1)(3)*x(2)(2)+y(3)(2)*x(1)(1)*x(2)(3)-y(1)(3)*x(2)(2)*x(3)(1)+y(2)(3)*x(1)(1)*x(3)(2)-y(2)(2)*x(1)(1)*x(3)(3)+y(1)(1)*x(2)(2)*x(3)(3) ----------- TeX output: S(\eps{1}{3}{1}{3}, \eps{2}{3}{2}{3}) = (y_{3, 1}) \del{1}{2}{2}{3} +(-y_{2, 1}) \del{1}{3}{2}{3} +(y_{1, 3}) \del{2}{3}{1}{2} +(-y_{1, 2}) \del{2}{3}{1}{3} +(2 y_{1, 1}) \del{2}{3}{2}{3} +(-x_{3, 3}) \eps{1}{2}{1}{2} +(x_{3, 2}) \eps{1}{2}{1}{3} +(x_{2, 3}) \eps{1}{3}{1}{2} ---------------------------------- Epsilon: 1,3 2,3 Epsilon: 2,3 1,2 Relatively Prime ---------------------------------- Epsilon: 1,3 2,3 Epsilon: 2,3 1,3 Lead Term of Spoly: -y(3)(2)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: y(3)(2) Lead Term of Product: -y(3)(2)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,3 1,2 Quotient: -y(2)(3) Lead Term of Product: y(2)(3)*x(1)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: -y(2)(1) Lead Term of Product: y(2)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: y(1)(2) Lead Term of Product: -y(1)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: x(3)(2) Lead Term of Product: y(2)(3)*x(1)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -x(2)(3) Lead Term of Product: -y(3)(2)*x(1)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) - (x(2)(1))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) ------- Rewrite: -y(3)(2)*x(1)(3)*x(2)(1)+y(3)(1)*x(1)(2)*x(2)(3)+y(2)(3)*x(1)(2)*x(3)(1)-y(1)(3)*x(2)(1)*x(3)(2)-y(2)(1)*x(1)(2)*x(3)(3)+y(1)(2)*x(2)(1)*x(3)(3) ----------- TeX output: S(\eps{1}{3}{2}{3}, \eps{2}{3}{1}{3}) = (y_{3, 2}) \del{1}{2}{1}{3} +(-y_{2, 3}) \del{1}{3}{1}{2} +(-y_{2, 1}) \del{1}{3}{2}{3} +(y_{1, 2}) \del{2}{3}{1}{3} +(x_{3, 2}) \eps{1}{2}{1}{3} +(-x_{2, 3}) \eps{1}{3}{1}{2} ---------------------------------- Epsilon: 1,3 2,3 Epsilon: 2,3 2,3 Lead Term of Spoly: -y(3)(2)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: y(3)(2) Lead Term of Product: -y(3)(2)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: -y(2)(2) Lead Term of Product: y(2)(2)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: y(1)(2) Lead Term of Product: -y(1)(2)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: x(3)(2) Lead Term of Product: y(2)(3)*x(1)(2)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(1)(2))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) - (x(2)(2))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) ------- Rewrite: -y(3)(2)*x(1)(3)*x(2)(2)+y(3)(2)*x(1)(2)*x(2)(3)+y(2)(3)*x(1)(2)*x(3)(2)-y(1)(3)*x(2)(2)*x(3)(2)-y(2)(2)*x(1)(2)*x(3)(3)+y(1)(2)*x(2)(2)*x(3)(3) ----------- TeX output: S(\eps{1}{3}{2}{3}, \eps{2}{3}{2}{3}) = (y_{3, 2}) \del{1}{2}{2}{3} +(-y_{2, 2}) \del{1}{3}{2}{3} +(y_{1, 2}) \del{2}{3}{2}{3} +(x_{3, 2}) \eps{1}{2}{2}{3} ---------------------------------- Epsilon: 2,3 1,2 Epsilon: 2,3 1,3 Lead Term of Spoly: -y(3)(1)*y(3)(3)*x(2)(2) Divisor: Epsilon 2,3 2,3 Quotient: -y(3)(1) Lead Term of Product: -y(3)(1)*y(3)(3)*x(2)(2) Lead term is well behaved Divisor: Rho 2,3,3 1,2,3 Quotient: -1 Lead Term of Product: y(2)(3)*y(3)(2)*x(3)(1) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (y(3)(2))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) - (y(3)(3))*(y(3)(2)*x(2)(1)-y(3)(1)*x(2)(2)-y(2)(2)*x(3)(1)+y(2)(1)*x(3)(2)) ------- Rewrite: -y(3)(1)*y(3)(3)*x(2)(2)+y(3)(1)*y(3)(2)*x(2)(3)+y(2)(3)*y(3)(2)*x(3)(1)-y(2)(2)*y(3)(3)*x(3)(1)+y(2)(1)*y(3)(3)*x(3)(2)-y(2)(1)*y(3)(2)*x(3)(3) ----------- TeX output: S(\eps{2}{3}{1}{2}, \eps{2}{3}{1}{3}) = (-y_{3, 1}) \eps{2}{3}{2}{3} +(-1) \pho{2}{3}{3}{1}{2}{3} ---------------------------------- Epsilon: 2,3 1,2 Epsilon: 2,3 2,3 Relatively Prime ---------------------------------- Epsilon: 2,3 1,3 Epsilon: 2,3 2,3 Lead Term of Spoly: y(3)(2)*x(2)(1)*x(2)(3) Divisor: Delta 2,3 1,2 Quotient: y(2)(3) Lead Term of Product: -y(2)(3)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(2)(2) Lead Term of Product: y(2)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: y(2)(1) Lead Term of Product: -y(2)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: x(2)(3) Lead Term of Product: y(3)(2)*x(2)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (x(2)(1))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) - (x(2)(2))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) ------- Rewrite: y(3)(2)*x(2)(1)*x(2)(3)-y(3)(1)*x(2)(2)*x(2)(3)-y(2)(3)*x(2)(2)*x(3)(1)+y(2)(3)*x(2)(1)*x(3)(2)-y(2)(2)*x(2)(1)*x(3)(3)+y(2)(1)*x(2)(2)*x(3)(3) ----------- TeX output: S(\eps{2}{3}{1}{3}, \eps{2}{3}{2}{3}) = (y_{2, 3}) \del{2}{3}{1}{2} +(-y_{2, 2}) \del{2}{3}{1}{3} +(y_{2, 1}) \del{2}{3}{2}{3} +(x_{2, 3}) \eps{2}{3}{1}{2} ----------------------------------