Delta: 1,2 1,2 Lam: 1,2,3 1,2,2 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(2)*x(2)(1) Divisor: Delta 1,2 1,2 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(2)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,2 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(1)*x(2)(2) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(1)*x(2)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(2)(1)*x(2)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(1)*x(2)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(1)*x(2)(2) Lead Term of Product: -y(1)(1)*y(3)(2)*x(2)(1)*x(2)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(2)*y(3)(1)*x(1)(2)+y(2)(1)*y(3)(2)*x(1)(2)+y(1)(2)*y(3)(1)*x(2)(2)-y(1)(1)*y(3)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(3)(2)+y(1)(1)*y(2)(2)*x(3)(2)) - (-y(2)(2)*y(3)(1))*(-x(1)(2)*x(2)(1)+x(1)(1)*x(2)(2)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(2)*x(2)(1)-y(2)(2)*y(3)(1)*x(1)(1)*x(2)(2)+y(1)(2)*y(3)(1)*x(2)(1)*x(2)(2)-y(1)(1)*y(3)(2)*x(2)(1)*x(2)(2)-y(1)(2)*y(2)(1)*x(2)(1)*x(3)(2)+y(1)(1)*y(2)(2)*x(2)(1)*x(3)(2) ----------- TeX output: S(\del{1}{2}{1}{2}, \lam{1}{2}{3}{1}{2}{2}) = (-y_{2, 1} y_{3, 2}) \del{1}{2}{1}{2} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{2}{3}{1}{2} +(-y_{3, 1} x_{2, 2}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{2, 2}) \eps{1}{3}{1}{2} +(-y_{1, 1} x_{2, 2}) \eps{2}{3}{1}{2} ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,4 1,2,2 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(2)*x(2)(1) Divisor: Delta 1,2 1,2 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(2)*x(2)(1) Lead term is well behaved Divisor: Delta 2,4 1,2 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(2)(2)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(1)*x(2)(2) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(1)*x(2)(2) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(2)(1)*x(2)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(1)*x(2)(2) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(1)*x(2)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(1)*x(2)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(2)*y(4)(1)*x(1)(2)+y(2)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(2)(2)-y(1)(1)*y(4)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(4)(2)+y(1)(1)*y(2)(2)*x(4)(2)) - (-y(2)(2)*y(4)(1))*(-x(1)(2)*x(2)(1)+x(1)(1)*x(2)(2)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(2)*x(2)(1)-y(2)(2)*y(4)(1)*x(1)(1)*x(2)(2)+y(1)(2)*y(4)(1)*x(2)(1)*x(2)(2)-y(1)(1)*y(4)(2)*x(2)(1)*x(2)(2)-y(1)(2)*y(2)(1)*x(2)(1)*x(4)(2)+y(1)(1)*y(2)(2)*x(2)(1)*x(4)(2) ----------- TeX output: S(\del{1}{2}{1}{2}, \lam{1}{2}{4}{1}{2}{2}) = (-y_{2, 1} y_{4, 2}) \del{1}{2}{1}{2} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{2}{4}{1}{2} +(-y_{4, 1} x_{2, 2}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{2, 2}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{2, 2}) \eps{2}{4}{1}{2} ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,3,4 1,2,2 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(2)*x(2)(1) Divisor: Delta 1,2 1,2 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(2)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,2 Quotient: y(1)(2)*y(4)(1) Lead Term of Product: -y(1)(2)*y(4)(1)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 2,4 1,2 Quotient: -y(1)(2)*y(3)(1) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(2)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,2 Quotient: y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(1)*y(2)(2)*x(3)(2)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(1)*x(2)(2) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(1)*x(2)(2) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(3)(1)*x(2)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(1)*x(2)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(1)*x(4)(2) Lead Term of Product: y(1)(1)*y(3)(2)*x(2)(1)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(1)*x(3)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(3)(2)*y(4)(1)*x(1)(2)+y(3)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(3)(2)-y(1)(1)*y(4)(2)*x(3)(2)-y(1)(2)*y(3)(1)*x(4)(2)+y(1)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(-x(1)(2)*x(2)(1)+x(1)(1)*x(2)(2)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(2)*x(2)(1)-y(3)(2)*y(4)(1)*x(1)(1)*x(2)(2)+y(1)(2)*y(4)(1)*x(2)(1)*x(3)(2)-y(1)(1)*y(4)(2)*x(2)(1)*x(3)(2)-y(1)(2)*y(3)(1)*x(2)(1)*x(4)(2)+y(1)(1)*y(3)(2)*x(2)(1)*x(4)(2) ----------- TeX output: S(\del{1}{2}{1}{2}, \lam{1}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \del{1}{2}{1}{2} +(y_{1, 2} y_{4, 1}) \del{2}{3}{1}{2} +(-y_{1, 2} y_{3, 1}) \del{2}{4}{1}{2} +(y_{1, 1} y_{2, 2}) \del{3}{4}{1}{2} +(-y_{4, 1} x_{2, 2}) \eps{1}{3}{1}{2} +(y_{3, 1} x_{2, 2}) \eps{1}{4}{1}{2} +(y_{1, 1} x_{4, 2}) \eps{2}{3}{1}{2} +(-y_{1, 1} x_{3, 2}) \eps{2}{4}{1}{2} ---------------------------------- Delta: 1,2 1,2 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,3 1,2,3 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(1)*x(2)(3) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(2)(1)*x(2)(3) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(1)*x(2)(3) Lead Term of Product: -y(1)(1)*y(3)(2)*x(2)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(2)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(2)*x(1)(3)+y(1)(2)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(2)*x(3)(3)) - (-y(2)(2)*y(3)(1))*(-x(1)(3)*x(2)(1)+x(1)(1)*x(2)(3)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(3)*x(2)(1)-y(2)(2)*y(3)(1)*x(1)(1)*x(2)(3)+y(1)(2)*y(3)(1)*x(2)(1)*x(2)(3)-y(1)(1)*y(3)(2)*x(2)(1)*x(2)(3)-y(1)(2)*y(2)(1)*x(2)(1)*x(3)(3)+y(1)(1)*y(2)(2)*x(2)(1)*x(3)(3) ----------- TeX output: S(\del{1}{2}{1}{3}, \lam{1}{2}{3}{1}{2}{3}) = (-y_{2, 1} y_{3, 2}) \del{1}{2}{1}{3} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{2}{3}{1}{3} +(-y_{3, 1} x_{2, 3}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{2, 3}) \eps{1}{3}{1}{2} +(-y_{1, 1} x_{2, 3}) \eps{2}{3}{1}{2} ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,3 1,3,3 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(1)*x(2)(3) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: y(2)(1)*x(2)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(1)*x(2)(3) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(3)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(1))*(-x(1)(3)*x(2)(1)+x(1)(1)*x(2)(3)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(3)*x(2)(1)-y(2)(3)*y(3)(1)*x(1)(1)*x(2)(3)+y(1)(3)*y(3)(1)*x(2)(1)*x(2)(3)-y(1)(1)*y(3)(3)*x(2)(1)*x(2)(3)-y(1)(3)*y(2)(1)*x(2)(1)*x(3)(3)+y(1)(1)*y(2)(3)*x(2)(1)*x(3)(3) ----------- TeX output: S(\del{1}{2}{1}{3}, \lam{1}{2}{3}{1}{3}{3}) = (-y_{2, 1} y_{3, 3}) \del{1}{2}{1}{3} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{2}{3}{1}{3} +(-y_{3, 1} x_{2, 3}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{2, 3}) \eps{1}{3}{1}{3} +(-y_{1, 1} x_{2, 3}) \eps{2}{3}{1}{3} ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,3 2,3,3 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(3)(3)*x(2)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(2)*x(2)(3) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(1)*x(2)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(2)(3) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(2)(3) Lead term is well behaved Divisor: Rho 1,2,2 1,2,3 Quotient: x(3)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*x(2)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(3)*y(3)(2)*x(1)(3)+y(2)(2)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(2)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(2))*(-x(1)(3)*x(2)(1)+x(1)(1)*x(2)(3)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(3)*x(2)(1)-y(2)(3)*y(3)(2)*x(1)(1)*x(2)(3)+y(1)(3)*y(3)(2)*x(2)(1)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(1)*x(2)(3)-y(1)(3)*y(2)(2)*x(2)(1)*x(3)(3)+y(1)(2)*y(2)(3)*x(2)(1)*x(3)(3) ----------- TeX output: S(\del{1}{2}{1}{3}, \lam{1}{2}{3}{2}{3}{3}) = (-y_{2, 2} y_{3, 3}) \del{1}{2}{1}{3} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{2}{3}{2}{3} +(y_{3, 3} x_{2, 3}) \eps{1}{2}{1}{2} +(-y_{3, 2} x_{2, 3}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{2, 3}) \eps{1}{3}{2}{3} +(-y_{1, 1} x_{2, 3}) \eps{2}{3}{2}{3} +(x_{3, 3}) \pho{1}{2}{2}{1}{2}{3} ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,4 1,2,3 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(1)*x(2)(3) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(2)(1)*x(2)(3) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(1)*x(2)(3) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(2)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(2)*x(4)(3)) - (-y(2)(2)*y(4)(1))*(-x(1)(3)*x(2)(1)+x(1)(1)*x(2)(3)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(3)*x(2)(1)-y(2)(2)*y(4)(1)*x(1)(1)*x(2)(3)+y(1)(2)*y(4)(1)*x(2)(1)*x(2)(3)-y(1)(1)*y(4)(2)*x(2)(1)*x(2)(3)-y(1)(2)*y(2)(1)*x(2)(1)*x(4)(3)+y(1)(1)*y(2)(2)*x(2)(1)*x(4)(3) ----------- TeX output: S(\del{1}{2}{1}{3}, \lam{1}{2}{4}{1}{2}{3}) = (-y_{2, 1} y_{4, 2}) \del{1}{2}{1}{3} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{2}{4}{1}{3} +(-y_{4, 1} x_{2, 3}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{2, 3}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{2, 3}) \eps{2}{4}{1}{2} ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,4 1,3,3 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(1)*x(2)(3) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: y(2)(1)*x(2)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(1)(1)*x(2)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(3)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(1))*(-x(1)(3)*x(2)(1)+x(1)(1)*x(2)(3)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(3)*x(2)(1)-y(2)(3)*y(4)(1)*x(1)(1)*x(2)(3)+y(1)(3)*y(4)(1)*x(2)(1)*x(2)(3)-y(1)(1)*y(4)(3)*x(2)(1)*x(2)(3)-y(1)(3)*y(2)(1)*x(2)(1)*x(4)(3)+y(1)(1)*y(2)(3)*x(2)(1)*x(4)(3) ----------- TeX output: S(\del{1}{2}{1}{3}, \lam{1}{2}{4}{1}{3}{3}) = (-y_{2, 1} y_{4, 3}) \del{1}{2}{1}{3} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{2}{4}{1}{3} +(-y_{4, 1} x_{2, 3}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{2, 3}) \eps{1}{4}{1}{3} +(-y_{1, 1} x_{2, 3}) \eps{2}{4}{1}{3} ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,4 2,3,3 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(3)*x(2)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(2)*x(2)(3) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(1)*x(2)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(2)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(2)(3) Lead term is well behaved Divisor: Rho 1,2,2 1,2,3 Quotient: x(4)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*x(2)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(3)*y(4)(2)*x(1)(3)+y(2)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(2))*(-x(1)(3)*x(2)(1)+x(1)(1)*x(2)(3)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(3)*x(2)(1)-y(2)(3)*y(4)(2)*x(1)(1)*x(2)(3)+y(1)(3)*y(4)(2)*x(2)(1)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(1)*x(2)(3)-y(1)(3)*y(2)(2)*x(2)(1)*x(4)(3)+y(1)(2)*y(2)(3)*x(2)(1)*x(4)(3) ----------- TeX output: S(\del{1}{2}{1}{3}, \lam{1}{2}{4}{2}{3}{3}) = (-y_{2, 2} y_{4, 3}) \del{1}{2}{1}{3} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{2}{4}{2}{3} +(y_{4, 3} x_{2, 3}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{2, 3}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{2, 3}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{2, 3}) \eps{2}{4}{2}{3} +(x_{4, 3}) \pho{1}{2}{2}{1}{2}{3} ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,3,4 1,2,3 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: y(1)(2)*y(4)(1) Lead Term of Product: -y(1)(2)*y(4)(1)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(1)*y(4)(1) Lead Term of Product: y(1)(1)*y(4)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(1)(2)*y(3)(1) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: y(1)(1)*y(3)(1) Lead Term of Product: -y(1)(1)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(1)*y(2)(2)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(1)*y(2)(1) Lead Term of Product: y(1)(1)*y(2)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(1)*x(2)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(3)(1)*x(2)(3) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(1)*x(4)(3) Lead Term of Product: y(1)(1)*y(3)(2)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(3)(2)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(3)(3)-y(1)(2)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(-x(1)(3)*x(2)(1)+x(1)(1)*x(2)(3)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(3)*x(2)(1)-y(3)(2)*y(4)(1)*x(1)(1)*x(2)(3)+y(1)(2)*y(4)(1)*x(2)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(2)(1)*x(3)(3)-y(1)(2)*y(3)(1)*x(2)(1)*x(4)(3)+y(1)(1)*y(3)(2)*x(2)(1)*x(4)(3) ----------- TeX output: S(\del{1}{2}{1}{3}, \lam{1}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \del{1}{2}{1}{3} +(y_{1, 2} y_{4, 1}) \del{2}{3}{1}{3} +(-y_{1, 1} y_{4, 1}) \del{2}{3}{2}{3} +(-y_{1, 2} y_{3, 1}) \del{2}{4}{1}{3} +(y_{1, 1} y_{3, 1}) \del{2}{4}{2}{3} +(y_{1, 1} y_{2, 2}) \del{3}{4}{1}{3} +(-y_{1, 1} y_{2, 1}) \del{3}{4}{2}{3} +(-y_{4, 1} x_{2, 3}) \eps{1}{3}{1}{2} +(y_{3, 1} x_{2, 3}) \eps{1}{4}{1}{2} +(y_{1, 1} x_{4, 3}) \eps{2}{3}{1}{2} +(-y_{1, 1} x_{3, 3}) \eps{2}{4}{1}{2} ---------------------------------- Delta: 1,2 1,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,3,4 1,3,3 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: y(1)(3)*y(4)(1) Lead Term of Product: -y(1)(3)*y(4)(1)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(1)(3)*y(3)(1) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(1)*y(2)(3)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(1)*x(2)(3) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: y(3)(1)*x(2)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: y(1)(1)*x(4)(3) Lead Term of Product: y(1)(1)*y(3)(3)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(3)(3)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(-x(1)(3)*x(2)(1)+x(1)(1)*x(2)(3)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(3)*x(2)(1)-y(3)(3)*y(4)(1)*x(1)(1)*x(2)(3)+y(1)(3)*y(4)(1)*x(2)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(2)(1)*x(3)(3)-y(1)(3)*y(3)(1)*x(2)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(2)(1)*x(4)(3) ----------- TeX output: S(\del{1}{2}{1}{3}, \lam{1}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \del{1}{2}{1}{3} +(y_{1, 3} y_{4, 1}) \del{2}{3}{1}{3} +(-y_{1, 3} y_{3, 1}) \del{2}{4}{1}{3} +(y_{1, 1} y_{2, 3}) \del{3}{4}{1}{3} +(-y_{4, 1} x_{2, 3}) \eps{1}{3}{1}{3} +(y_{3, 1} x_{2, 3}) \eps{1}{4}{1}{3} +(y_{1, 1} x_{4, 3}) \eps{2}{3}{1}{3} +(-y_{1, 1} x_{3, 3}) \eps{2}{4}{1}{3} ---------------------------------- Delta: 1,2 1,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,3,4 2,3,3 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: y(1)(3)*y(4)(2)-y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: y(1)(1)*y(4)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(3)*y(3)(1) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(1)*y(2)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(4)(3)*x(2)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(2)*x(2)(3) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(1)*x(2)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(3)*x(4)(3) Lead Term of Product: -y(1)(3)*y(3)(2)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: y(1)(2)*x(4)(3) Lead Term of Product: y(1)(2)*y(3)(3)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: x(4)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(-x(1)(3)*x(2)(1)+x(1)(1)*x(2)(3)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(3)*x(2)(1)-y(3)(3)*y(4)(2)*x(1)(1)*x(2)(3)+y(1)(3)*y(4)(2)*x(2)(1)*x(3)(3)-y(1)(2)*y(4)(3)*x(2)(1)*x(3)(3)-y(1)(3)*y(3)(2)*x(2)(1)*x(4)(3)+y(1)(2)*y(3)(3)*x(2)(1)*x(4)(3) ----------- TeX output: S(\del{1}{2}{1}{3}, \lam{1}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \del{1}{2}{1}{3} +(y_{1, 3} y_{4, 2}-y_{1, 2} y_{4, 3}) \del{2}{3}{1}{3} +(y_{1, 1} y_{4, 3}) \del{2}{3}{2}{3} +(-y_{1, 3} y_{3, 1}) \del{2}{4}{2}{3} +(y_{1, 1} y_{2, 3}) \del{3}{4}{2}{3} +(y_{4, 3} x_{2, 3}) \eps{1}{3}{1}{2} +(-y_{4, 2} x_{2, 3}) \eps{1}{3}{1}{3} +(y_{3, 1} x_{2, 3}) \eps{1}{4}{2}{3} +(-y_{1, 3} x_{4, 3}) \eps{2}{3}{1}{2} +(y_{1, 2} x_{4, 3}) \eps{2}{3}{1}{3} +(-y_{1, 1} x_{3, 3}) \eps{2}{4}{2}{3} +(x_{4, 3}) \pho{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,2 1,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,3 1,2,4 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(3)(2)*x(2)(1)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(2)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(2)*x(1)(4)+y(1)(2)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(2)*x(3)(4)) - (-y(2)(2)*y(3)(1))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(4)*x(2)(1)-y(2)(2)*y(3)(1)*x(1)(1)*x(2)(4)+y(1)(2)*y(3)(1)*x(2)(1)*x(2)(4)-y(1)(1)*y(3)(2)*x(2)(1)*x(2)(4)-y(1)(2)*y(2)(1)*x(2)(1)*x(3)(4)+y(1)(1)*y(2)(2)*x(2)(1)*x(3)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{2}{3}{1}{2}{4}) = (-y_{2, 1} y_{3, 2}) \del{1}{2}{1}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{2}{3}{1}{4} +(-y_{3, 1} x_{2, 4}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{2, 4}) \eps{1}{3}{1}{2} +(-y_{1, 1} x_{2, 4}) \eps{2}{3}{1}{2} ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,3 1,3,4 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(1)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(3)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(1))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(4)*x(2)(1)-y(2)(3)*y(3)(1)*x(1)(1)*x(2)(4)+y(1)(3)*y(3)(1)*x(2)(1)*x(2)(4)-y(1)(1)*y(3)(3)*x(2)(1)*x(2)(4)-y(1)(3)*y(2)(1)*x(2)(1)*x(3)(4)+y(1)(1)*y(2)(3)*x(2)(1)*x(3)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{2}{3}{1}{3}{4}) = (-y_{2, 1} y_{3, 3}) \del{1}{2}{1}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{2}{3}{1}{4} +(-y_{3, 1} x_{2, 4}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{2, 4}) \eps{1}{3}{1}{3} +(-y_{1, 1} x_{2, 4}) \eps{2}{3}{1}{3} ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,3 1,4,4 Lead Term of Spoly: y(2)(1)*y(3)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(2)(1)*y(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(2)(4)*y(3)(1)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(1)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(4)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(1))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(2)(1)*y(3)(4)*x(1)(4)*x(2)(1)-y(2)(4)*y(3)(1)*x(1)(1)*x(2)(4)+y(1)(4)*y(3)(1)*x(2)(1)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(1)*x(2)(4)-y(1)(4)*y(2)(1)*x(2)(1)*x(3)(4)+y(1)(1)*y(2)(4)*x(2)(1)*x(3)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{2}{3}{1}{4}{4}) = (-y_{2, 1} y_{3, 4}) \del{1}{2}{1}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{2}{3}{1}{4} +(-y_{3, 1} x_{2, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{2, 4}) \eps{1}{3}{1}{4} +(-y_{1, 1} x_{2, 4}) \eps{2}{3}{1}{4} ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,3 2,3,4 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(3)(3)*x(2)(4) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(2)*x(2)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Rho 1,2,2 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(1)(3)*y(2)(2)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(3)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(2))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(4)*x(2)(1)-y(2)(3)*y(3)(2)*x(1)(1)*x(2)(4)+y(1)(3)*y(3)(2)*x(2)(1)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(1)*x(2)(4)-y(1)(3)*y(2)(2)*x(2)(1)*x(3)(4)+y(1)(2)*y(2)(3)*x(2)(1)*x(3)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{2}{3}{2}{3}{4}) = (-y_{2, 2} y_{3, 3}) \del{1}{2}{1}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{2}{3}{2}{4} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \del{2}{3}{3}{4} +(y_{3, 3} x_{2, 4}) \eps{1}{2}{1}{2} +(-y_{3, 2} x_{2, 4}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{2, 4}) \eps{1}{3}{2}{3} +(-y_{1, 1} x_{2, 4}) \eps{2}{3}{2}{3} +(x_{3, 4}) \pho{1}{2}{2}{1}{2}{3} ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,3 2,4,4 Lead Term of Spoly: y(2)(2)*y(3)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(2)(2)*y(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(3)(4)*x(2)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(3)(2)*x(2)(4) Lead Term of Product: -y(2)(4)*y(3)(2)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Rho 1,2,2 1,2,4 Quotient: x(3)(4) Lead Term of Product: -y(1)(4)*y(2)(2)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(4)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(2))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(2)(2)*y(3)(4)*x(1)(4)*x(2)(1)-y(2)(4)*y(3)(2)*x(1)(1)*x(2)(4)+y(1)(4)*y(3)(2)*x(2)(1)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(1)*x(2)(4)-y(1)(4)*y(2)(2)*x(2)(1)*x(3)(4)+y(1)(2)*y(2)(4)*x(2)(1)*x(3)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{2}{3}{2}{4}{4}) = (-y_{2, 2} y_{3, 4}) \del{1}{2}{1}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{2}{3}{2}{4} +(y_{3, 4} x_{2, 4}) \eps{1}{2}{1}{2} +(-y_{3, 2} x_{2, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{2, 4}) \eps{1}{3}{2}{4} +(-y_{1, 1} x_{2, 4}) \eps{2}{3}{2}{4} +(x_{3, 4}) \pho{1}{2}{2}{1}{2}{4} ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,3 3,4,4 Lead Term of Spoly: y(2)(3)*y(3)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(2)(3)*y(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(3)(4)*x(2)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(3)(3)*x(2)(4) Lead Term of Product: -y(2)(4)*y(3)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Rho 1,2,2 1,3,4 Quotient: x(3)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(3))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(2)(3)*y(3)(4)*x(1)(4)*x(2)(1)-y(2)(4)*y(3)(3)*x(1)(1)*x(2)(4)+y(1)(4)*y(3)(3)*x(2)(1)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(1)*x(2)(4)-y(1)(4)*y(2)(3)*x(2)(1)*x(3)(4)+y(1)(3)*y(2)(4)*x(2)(1)*x(3)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{2}{3}{3}{4}{4}) = (-y_{2, 3} y_{3, 4}) \del{1}{2}{1}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{2}{3}{3}{4} +(y_{3, 4} x_{2, 4}) \eps{1}{2}{1}{3} +(-y_{3, 3} x_{2, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{2, 4}) \eps{1}{3}{3}{4} +(-y_{1, 1} x_{2, 4}) \eps{2}{3}{3}{4} +(x_{3, 4}) \pho{1}{2}{2}{1}{3}{4} ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,4 1,2,4 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(1)*x(2)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(1)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(2)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(2)*x(4)(4)) - (-y(2)(2)*y(4)(1))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(4)*x(2)(1)-y(2)(2)*y(4)(1)*x(1)(1)*x(2)(4)+y(1)(2)*y(4)(1)*x(2)(1)*x(2)(4)-y(1)(1)*y(4)(2)*x(2)(1)*x(2)(4)-y(1)(2)*y(2)(1)*x(2)(1)*x(4)(4)+y(1)(1)*y(2)(2)*x(2)(1)*x(4)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{2}{4}{1}{2}{4}) = (-y_{2, 1} y_{4, 2}) \del{1}{2}{1}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{2}{4}{1}{4} +(-y_{4, 1} x_{2, 4}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{2, 4}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{2, 4}) \eps{2}{4}{1}{2} ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,4 1,3,4 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(1)*x(2)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(1)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(3)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(1))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(4)*x(2)(1)-y(2)(3)*y(4)(1)*x(1)(1)*x(2)(4)+y(1)(3)*y(4)(1)*x(2)(1)*x(2)(4)-y(1)(1)*y(4)(3)*x(2)(1)*x(2)(4)-y(1)(3)*y(2)(1)*x(2)(1)*x(4)(4)+y(1)(1)*y(2)(3)*x(2)(1)*x(4)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{2}{4}{1}{3}{4}) = (-y_{2, 1} y_{4, 3}) \del{1}{2}{1}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{2}{4}{1}{4} +(-y_{4, 1} x_{2, 4}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{2, 4}) \eps{1}{4}{1}{3} +(-y_{1, 1} x_{2, 4}) \eps{2}{4}{1}{3} ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,4 1,4,4 Lead Term of Spoly: y(2)(1)*y(4)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(2)(1)*y(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(4)(1)*x(2)(4) Lead Term of Product: -y(2)(4)*y(4)(1)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,4 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,4 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(1)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(4)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(1))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(2)(1)*y(4)(4)*x(1)(4)*x(2)(1)-y(2)(4)*y(4)(1)*x(1)(1)*x(2)(4)+y(1)(4)*y(4)(1)*x(2)(1)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(1)*x(2)(4)-y(1)(4)*y(2)(1)*x(2)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{2}{4}{1}{4}{4}) = (-y_{2, 1} y_{4, 4}) \del{1}{2}{1}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{2}{4}{1}{4} +(-y_{4, 1} x_{2, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{2, 4}) \eps{1}{4}{1}{4} +(-y_{1, 1} x_{2, 4}) \eps{2}{4}{1}{4} ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,4 2,3,4 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(3)*x(2)(4) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(2)*x(2)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Rho 1,2,2 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(1)(3)*y(2)(2)*x(2)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(3)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(2))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(4)*x(2)(1)-y(2)(3)*y(4)(2)*x(1)(1)*x(2)(4)+y(1)(3)*y(4)(2)*x(2)(1)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(1)*x(2)(4)-y(1)(3)*y(2)(2)*x(2)(1)*x(4)(4)+y(1)(2)*y(2)(3)*x(2)(1)*x(4)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{2}{4}{2}{3}{4}) = (-y_{2, 2} y_{4, 3}) \del{1}{2}{1}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{2}{4}{2}{4} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \del{2}{4}{3}{4} +(y_{4, 3} x_{2, 4}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{2, 4}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{2, 4}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{2, 4}) \eps{2}{4}{2}{3} +(x_{4, 4}) \pho{1}{2}{2}{1}{2}{3} ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,4 2,4,4 Lead Term of Spoly: y(2)(2)*y(4)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(2)(2)*y(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(4)*x(2)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(4)(2)*x(2)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Rho 1,2,2 1,2,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(2)*x(2)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(2))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(2)(2)*y(4)(4)*x(1)(4)*x(2)(1)-y(2)(4)*y(4)(2)*x(1)(1)*x(2)(4)+y(1)(4)*y(4)(2)*x(2)(1)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(1)*x(2)(4)-y(1)(4)*y(2)(2)*x(2)(1)*x(4)(4)+y(1)(2)*y(2)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{2}{4}{2}{4}{4}) = (-y_{2, 2} y_{4, 4}) \del{1}{2}{1}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{2}{4}{2}{4} +(y_{4, 4} x_{2, 4}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{2, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{2, 4}) \eps{1}{4}{2}{4} +(-y_{1, 1} x_{2, 4}) \eps{2}{4}{2}{4} +(x_{4, 4}) \pho{1}{2}{2}{1}{2}{4} ---------------------------------- Delta: 1,2 1,4 Lam: 1,2,4 3,4,4 Lead Term of Spoly: y(2)(3)*y(4)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(2)(3)*y(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(4)(4)*x(2)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(4)(3)*x(2)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Rho 1,2,2 1,3,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(2)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(3))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(2)(3)*y(4)(4)*x(1)(4)*x(2)(1)-y(2)(4)*y(4)(3)*x(1)(1)*x(2)(4)+y(1)(4)*y(4)(3)*x(2)(1)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(1)*x(2)(4)-y(1)(4)*y(2)(3)*x(2)(1)*x(4)(4)+y(1)(3)*y(2)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{2}{4}{3}{4}{4}) = (-y_{2, 3} y_{4, 4}) \del{1}{2}{1}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{2}{4}{3}{4} +(y_{4, 4} x_{2, 4}) \eps{1}{2}{1}{3} +(-y_{4, 3} x_{2, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{2, 4}) \eps{1}{4}{3}{4} +(-y_{1, 1} x_{2, 4}) \eps{2}{4}{3}{4} +(x_{4, 4}) \pho{1}{2}{2}{1}{3}{4} ---------------------------------- Delta: 1,2 1,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 1,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(2)*y(4)(1) Lead Term of Product: -y(1)(2)*y(4)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(1)*y(4)(1) Lead Term of Product: y(1)(1)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(2)*y(3)(1) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: y(1)(1)*y(3)(1) Lead Term of Product: -y(1)(1)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(1)*y(2)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(1)*y(2)(1) Lead Term of Product: y(1)(1)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(1)*x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(3)(1)*x(2)(4) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(1)(1)*x(4)(4) Lead Term of Product: y(1)(1)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(3)(2)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(3)(4)-y(1)(2)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(1)-y(3)(2)*y(4)(1)*x(1)(1)*x(2)(4)+y(1)(2)*y(4)(1)*x(2)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(2)(1)*x(3)(4)-y(1)(2)*y(3)(1)*x(2)(1)*x(4)(4)+y(1)(1)*y(3)(2)*x(2)(1)*x(4)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{1}{2}{1}{4} +(y_{1, 2} y_{4, 1}) \del{2}{3}{1}{4} +(-y_{1, 1} y_{4, 1}) \del{2}{3}{2}{4} +(-y_{1, 2} y_{3, 1}) \del{2}{4}{1}{4} +(y_{1, 1} y_{3, 1}) \del{2}{4}{2}{4} +(y_{1, 1} y_{2, 2}) \del{3}{4}{1}{4} +(-y_{1, 1} y_{2, 1}) \del{3}{4}{2}{4} +(-y_{4, 1} x_{2, 4}) \eps{1}{3}{1}{2} +(y_{3, 1} x_{2, 4}) \eps{1}{4}{1}{2} +(y_{1, 1} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{1}{2} ---------------------------------- Delta: 1,2 1,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 1,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(3)*y(4)(1) Lead Term of Product: -y(1)(3)*y(4)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(1)*y(4)(1) Lead Term of Product: y(1)(1)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(3)*y(3)(1) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(1)*y(3)(1) Lead Term of Product: -y(1)(1)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(1)*y(2)(3)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(1)*y(2)(1) Lead Term of Product: y(1)(1)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(1)*x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: y(3)(1)*x(2)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: y(1)(1)*x(4)(4) Lead Term of Product: y(1)(1)*y(3)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(3)(3)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(4)*x(2)(1)-y(3)(3)*y(4)(1)*x(1)(1)*x(2)(4)+y(1)(3)*y(4)(1)*x(2)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(2)(1)*x(3)(4)-y(1)(3)*y(3)(1)*x(2)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(2)(1)*x(4)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{1}{2}{1}{4} +(y_{1, 3} y_{4, 1}) \del{2}{3}{1}{4} +(-y_{1, 1} y_{4, 1}) \del{2}{3}{3}{4} +(-y_{1, 3} y_{3, 1}) \del{2}{4}{1}{4} +(y_{1, 1} y_{3, 1}) \del{2}{4}{3}{4} +(y_{1, 1} y_{2, 3}) \del{3}{4}{1}{4} +(-y_{1, 1} y_{2, 1}) \del{3}{4}{3}{4} +(-y_{4, 1} x_{2, 4}) \eps{1}{3}{1}{3} +(y_{3, 1} x_{2, 4}) \eps{1}{4}{1}{3} +(y_{1, 1} x_{4, 4}) \eps{2}{3}{1}{3} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{1}{3} ---------------------------------- Delta: 1,2 1,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(4)*y(4)(1) Lead Term of Product: -y(1)(4)*y(4)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(4)*y(3)(1) Lead Term of Product: y(1)(4)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(1)*y(2)(4) Lead Term of Product: -y(1)(1)*y(2)(4)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: -y(4)(1)*x(2)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,4 Quotient: y(3)(1)*x(2)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: y(1)(1)*x(4)(4) Lead Term of Product: y(1)(1)*y(3)(4)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(1)(4)*x(2)(1)-y(3)(4)*y(4)(1)*x(1)(1)*x(2)(4)+y(1)(4)*y(4)(1)*x(2)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(2)(1)*x(3)(4)-y(1)(4)*y(3)(1)*x(2)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{1}{2}{1}{4} +(y_{1, 4} y_{4, 1}) \del{2}{3}{1}{4} +(-y_{1, 4} y_{3, 1}) \del{2}{4}{1}{4} +(y_{1, 1} y_{2, 4}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{2, 4}) \eps{1}{3}{1}{4} +(y_{3, 1} x_{2, 4}) \eps{1}{4}{1}{4} +(y_{1, 1} x_{4, 4}) \eps{2}{3}{1}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{1}{4} ---------------------------------- Delta: 1,2 1,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 1,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(3)*y(4)(2)-y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(1)*y(4)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(1)*y(4)(2) Lead Term of Product: y(1)(1)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(3)*y(3)(1) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(2)*y(3)(1) Lead Term of Product: -y(1)(2)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(1)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(1)*y(2)(2) Lead Term of Product: y(1)(1)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(4)(3)*x(2)(4) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(2)*x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(1)*x(2)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: y(1)(2)*x(4)(4) Lead Term of Product: y(1)(2)*y(3)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(4)*x(2)(1)-y(3)(3)*y(4)(2)*x(1)(1)*x(2)(4)+y(1)(3)*y(4)(2)*x(2)(1)*x(3)(4)-y(1)(2)*y(4)(3)*x(2)(1)*x(3)(4)-y(1)(3)*y(3)(2)*x(2)(1)*x(4)(4)+y(1)(2)*y(3)(3)*x(2)(1)*x(4)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{1}{2}{1}{4} +(y_{1, 3} y_{4, 2}-y_{1, 2} y_{4, 3}) \del{2}{3}{1}{4} +(y_{1, 1} y_{4, 3}) \del{2}{3}{2}{4} +(-y_{1, 1} y_{4, 2}) \del{2}{3}{3}{4} +(-y_{1, 3} y_{3, 1}) \del{2}{4}{2}{4} +(y_{1, 2} y_{3, 1}) \del{2}{4}{3}{4} +(y_{1, 1} y_{2, 3}) \del{3}{4}{2}{4} +(-y_{1, 1} y_{2, 2}) \del{3}{4}{3}{4} +(y_{4, 3} x_{2, 4}) \eps{1}{3}{1}{2} +(-y_{4, 2} x_{2, 4}) \eps{1}{3}{1}{3} +(y_{3, 1} x_{2, 4}) \eps{1}{4}{2}{3} +(-y_{1, 3} x_{4, 4}) \eps{2}{3}{1}{2} +(y_{1, 2} x_{4, 4}) \eps{2}{3}{1}{3} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{3} +(x_{4, 4}) \pho{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,2 1,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(4)*y(4)(2)-y(1)(2)*y(4)(4) Lead Term of Product: -y(1)(4)*y(4)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(1)*y(4)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(4)*y(3)(1) Lead Term of Product: y(1)(4)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(1)*y(2)(4) Lead Term of Product: -y(1)(1)*y(2)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(4)(4)*x(2)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: -y(4)(2)*x(2)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(3)(1)*x(2)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(4)*x(4)(4) Lead Term of Product: -y(1)(4)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: y(1)(2)*x(4)(4) Lead Term of Product: y(1)(2)*y(3)(4)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,2,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(1)(4)*x(2)(1)-y(3)(4)*y(4)(2)*x(1)(1)*x(2)(4)+y(1)(4)*y(4)(2)*x(2)(1)*x(3)(4)-y(1)(2)*y(4)(4)*x(2)(1)*x(3)(4)-y(1)(4)*y(3)(2)*x(2)(1)*x(4)(4)+y(1)(2)*y(3)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{1}{2}{1}{4} +(y_{1, 4} y_{4, 2}-y_{1, 2} y_{4, 4}) \del{2}{3}{1}{4} +(y_{1, 1} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{1, 4} y_{3, 1}) \del{2}{4}{2}{4} +(y_{1, 1} y_{2, 4}) \del{3}{4}{2}{4} +(y_{4, 4} x_{2, 4}) \eps{1}{3}{1}{2} +(-y_{4, 2} x_{2, 4}) \eps{1}{3}{1}{4} +(y_{3, 1} x_{2, 4}) \eps{1}{4}{2}{4} +(-y_{1, 4} x_{4, 4}) \eps{2}{3}{1}{2} +(y_{1, 2} x_{4, 4}) \eps{2}{3}{1}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{4} +(x_{4, 4}) \pho{1}{2}{3}{1}{2}{4} ---------------------------------- Delta: 1,2 1,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(1)(4)*x(2)(1) Divisor: Delta 1,2 1,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(4)*x(2)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: y(1)(4)*y(4)(3)-y(1)(3)*y(4)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(1)*y(4)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(3)(1) Lead Term of Product: y(1)(4)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(1)*y(2)(4) Lead Term of Product: -y(1)(1)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: y(4)(4)*x(2)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: -y(4)(3)*x(2)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(1)(1)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(1)*x(2)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(4)*x(4)(4) Lead Term of Product: -y(1)(4)*y(3)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: y(1)(3)*x(4)(4) Lead Term of Product: y(1)(3)*y(3)(4)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,3,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(1)(4)*x(2)(1)+x(1)(1)*x(2)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(1)(4)*x(2)(1)-y(3)(4)*y(4)(3)*x(1)(1)*x(2)(4)+y(1)(4)*y(4)(3)*x(2)(1)*x(3)(4)-y(1)(3)*y(4)(4)*x(2)(1)*x(3)(4)-y(1)(4)*y(3)(3)*x(2)(1)*x(4)(4)+y(1)(3)*y(3)(4)*x(2)(1)*x(4)(4) ----------- TeX output: S(\del{1}{2}{1}{4}, \lam{1}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{1}{2}{1}{4} +(y_{1, 4} y_{4, 3}-y_{1, 3} y_{4, 4}) \del{2}{3}{1}{4} +(y_{1, 1} y_{4, 4}) \del{2}{3}{3}{4} +(-y_{1, 4} y_{3, 1}) \del{2}{4}{3}{4} +(y_{1, 1} y_{2, 4}) \del{3}{4}{3}{4} +(y_{4, 4} x_{2, 4}) \eps{1}{3}{1}{3} +(-y_{4, 3} x_{2, 4}) \eps{1}{3}{1}{4} +(y_{3, 1} x_{2, 4}) \eps{1}{4}{3}{4} +(-y_{1, 4} x_{4, 4}) \eps{2}{3}{1}{3} +(y_{1, 3} x_{4, 4}) \eps{2}{3}{1}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{3}{4} +(x_{4, 4}) \pho{1}{2}{3}{1}{3}{4} ---------------------------------- Delta: 1,2 1,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 1,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,3 1,2,3 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,2 Quotient: x(2)(3) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(2)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(2)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(2)*x(1)(3)+y(1)(2)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(2)*x(3)(3)) - (-y(2)(2)*y(3)(1))*(-x(1)(3)*x(2)(2)+x(1)(2)*x(2)(3)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(3)*x(2)(2)-y(2)(2)*y(3)(1)*x(1)(2)*x(2)(3)+y(1)(2)*y(3)(1)*x(2)(2)*x(2)(3)-y(1)(1)*y(3)(2)*x(2)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(2)(2)*x(3)(3)+y(1)(1)*y(2)(2)*x(2)(2)*x(3)(3) ----------- TeX output: S(\del{1}{2}{2}{3}, \lam{1}{2}{3}{1}{2}{3}) = (-y_{2, 1} y_{3, 2}) \del{1}{2}{2}{3} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{2}{3}{2}{3} +(x_{2, 3}) \lam{1}{2}{3}{1}{2}{2} ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,3 1,3,3 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(1)*x(2)(3) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(1)*x(2)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(2)(3) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: x(2)(3) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(3)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(3)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(1))*(-x(1)(3)*x(2)(2)+x(1)(2)*x(2)(3)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(3)*x(2)(2)-y(2)(3)*y(3)(1)*x(1)(2)*x(2)(3)+y(1)(3)*y(3)(1)*x(2)(2)*x(2)(3)-y(1)(1)*y(3)(3)*x(2)(2)*x(2)(3)-y(1)(3)*y(2)(1)*x(2)(2)*x(3)(3)+y(1)(1)*y(2)(3)*x(2)(2)*x(3)(3) ----------- TeX output: S(\del{1}{2}{2}{3}, \lam{1}{2}{3}{1}{3}{3}) = (-y_{2, 1} y_{3, 3}) \del{1}{2}{2}{3} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{2}{3}{2}{3} +(-y_{3, 1} x_{2, 3}) \eps{1}{2}{2}{3} +(y_{2, 1} x_{2, 3}) \eps{1}{3}{2}{3} +(-y_{1, 1} x_{2, 3}) \eps{2}{3}{2}{3} +(x_{2, 3}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,3 2,3,3 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(3)*y(2)(2)+y(1)(2)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(2)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(2)*x(2)(3) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(2)*x(2)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(2)*x(2)(3) Lead Term of Product: -y(1)(2)*y(3)(3)*x(2)(2)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(3)*y(3)(2)*x(1)(3)+y(2)(2)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(2)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(2))*(-x(1)(3)*x(2)(2)+x(1)(2)*x(2)(3)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(3)*x(2)(2)-y(2)(3)*y(3)(2)*x(1)(2)*x(2)(3)+y(1)(3)*y(3)(2)*x(2)(2)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(2)*x(2)(3)-y(1)(3)*y(2)(2)*x(2)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(2)(2)*x(3)(3) ----------- TeX output: S(\del{1}{2}{2}{3}, \lam{1}{2}{3}{2}{3}{3}) = (-y_{2, 2} y_{3, 3}) \del{1}{2}{2}{3} +(-y_{1, 3} y_{2, 2}+y_{1, 2} y_{2, 3}) \del{2}{3}{2}{3} +(-y_{3, 2} x_{2, 3}) \eps{1}{2}{2}{3} +(y_{2, 2} x_{2, 3}) \eps{1}{3}{2}{3} +(-y_{1, 2} x_{2, 3}) \eps{2}{3}{2}{3} ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,4 1,2,3 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Lam 1,2,4 1,2,2 Quotient: x(2)(3) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(2)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(2)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(2)*x(4)(3)) - (-y(2)(2)*y(4)(1))*(-x(1)(3)*x(2)(2)+x(1)(2)*x(2)(3)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(3)*x(2)(2)-y(2)(2)*y(4)(1)*x(1)(2)*x(2)(3)+y(1)(2)*y(4)(1)*x(2)(2)*x(2)(3)-y(1)(1)*y(4)(2)*x(2)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(2)(2)*x(4)(3)+y(1)(1)*y(2)(2)*x(2)(2)*x(4)(3) ----------- TeX output: S(\del{1}{2}{2}{3}, \lam{1}{2}{4}{1}{2}{3}) = (-y_{2, 1} y_{4, 2}) \del{1}{2}{2}{3} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{2}{4}{2}{3} +(x_{2, 3}) \lam{1}{2}{4}{1}{2}{2} ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,4 1,3,3 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(1)*x(2)(3) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(1)*x(2)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(2)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(2)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: x(2)(3) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(3)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(3)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(1))*(-x(1)(3)*x(2)(2)+x(1)(2)*x(2)(3)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(3)*x(2)(2)-y(2)(3)*y(4)(1)*x(1)(2)*x(2)(3)+y(1)(3)*y(4)(1)*x(2)(2)*x(2)(3)-y(1)(1)*y(4)(3)*x(2)(2)*x(2)(3)-y(1)(3)*y(2)(1)*x(2)(2)*x(4)(3)+y(1)(1)*y(2)(3)*x(2)(2)*x(4)(3) ----------- TeX output: S(\del{1}{2}{2}{3}, \lam{1}{2}{4}{1}{3}{3}) = (-y_{2, 1} y_{4, 3}) \del{1}{2}{2}{3} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{2}{4}{2}{3} +(-y_{4, 1} x_{2, 3}) \eps{1}{2}{2}{3} +(y_{2, 1} x_{2, 3}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{2, 3}) \eps{2}{4}{2}{3} +(x_{2, 3}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,4 2,3,3 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(3)*y(2)(2)+y(1)(2)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(2)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(2)*x(2)(3) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(2)*x(2)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(2)*x(2)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(2)(2)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(3)*y(4)(2)*x(1)(3)+y(2)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(2))*(-x(1)(3)*x(2)(2)+x(1)(2)*x(2)(3)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(3)*x(2)(2)-y(2)(3)*y(4)(2)*x(1)(2)*x(2)(3)+y(1)(3)*y(4)(2)*x(2)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(2)*x(2)(3)-y(1)(3)*y(2)(2)*x(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(2)(2)*x(4)(3) ----------- TeX output: S(\del{1}{2}{2}{3}, \lam{1}{2}{4}{2}{3}{3}) = (-y_{2, 2} y_{4, 3}) \del{1}{2}{2}{3} +(-y_{1, 3} y_{2, 2}+y_{1, 2} y_{2, 3}) \del{2}{4}{2}{3} +(-y_{4, 2} x_{2, 3}) \eps{1}{2}{2}{3} +(y_{2, 2} x_{2, 3}) \eps{1}{4}{2}{3} +(-y_{1, 2} x_{2, 3}) \eps{2}{4}{2}{3} ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,3,4 1,2,3 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: y(1)(2)*y(4)(1)-y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Lam 1,3,4 1,2,2 Quotient: x(2)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(2)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(3)(2)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(3)(3)-y(1)(2)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(-x(1)(3)*x(2)(2)+x(1)(2)*x(2)(3)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(3)*x(2)(2)-y(3)(2)*y(4)(1)*x(1)(2)*x(2)(3)+y(1)(2)*y(4)(1)*x(2)(2)*x(3)(3)-y(1)(1)*y(4)(2)*x(2)(2)*x(3)(3)-y(1)(2)*y(3)(1)*x(2)(2)*x(4)(3)+y(1)(1)*y(3)(2)*x(2)(2)*x(4)(3) ----------- TeX output: S(\del{1}{2}{2}{3}, \lam{1}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \del{1}{2}{2}{3} +(y_{1, 2} y_{4, 1}-y_{1, 1} y_{4, 2}) \del{2}{3}{2}{3} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{4}{2}{3} +(x_{2, 3}) \lam{1}{3}{4}{1}{2}{2} ---------------------------------- Delta: 1,2 2,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,3,4 1,3,3 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: y(1)(3)*y(4)(1) Lead Term of Product: -y(1)(3)*y(4)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(3)*y(3)(1) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(1)*y(2)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(1)*x(2)(3) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(1)*x(2)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(1)(1)*x(4)(3) Lead Term of Product: y(1)(1)*y(3)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: x(2)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(3)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(3)(3)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(-x(1)(3)*x(2)(2)+x(1)(2)*x(2)(3)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(3)*x(2)(2)-y(3)(3)*y(4)(1)*x(1)(2)*x(2)(3)+y(1)(3)*y(4)(1)*x(2)(2)*x(3)(3)-y(1)(1)*y(4)(3)*x(2)(2)*x(3)(3)-y(1)(3)*y(3)(1)*x(2)(2)*x(4)(3)+y(1)(1)*y(3)(3)*x(2)(2)*x(4)(3) ----------- TeX output: S(\del{1}{2}{2}{3}, \lam{1}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \del{1}{2}{2}{3} +(y_{1, 3} y_{4, 1}) \del{2}{3}{2}{3} +(-y_{1, 3} y_{3, 1}) \del{2}{4}{2}{3} +(y_{1, 1} y_{2, 3}) \del{3}{4}{2}{3} +(-y_{4, 1} x_{2, 3}) \eps{1}{3}{2}{3} +(y_{3, 1} x_{2, 3}) \eps{1}{4}{2}{3} +(y_{1, 1} x_{4, 3}) \eps{2}{3}{2}{3} +(-y_{1, 1} x_{3, 3}) \eps{2}{4}{2}{3} +(x_{2, 3}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Delta: 1,2 2,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,3,4 2,3,3 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: y(1)(3)*y(4)(2) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(3)*y(3)(2) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: y(1)(2)*y(2)(3) Lead Term of Product: -y(1)(2)*y(2)(3)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(2)*x(2)(3) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(2)*x(2)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(2)*x(2)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(1)(2)*x(4)(3) Lead Term of Product: y(1)(2)*y(3)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(2)*x(3)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(-x(1)(3)*x(2)(2)+x(1)(2)*x(2)(3)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(3)*x(2)(2)-y(3)(3)*y(4)(2)*x(1)(2)*x(2)(3)+y(1)(3)*y(4)(2)*x(2)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(2)(2)*x(3)(3)-y(1)(3)*y(3)(2)*x(2)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(2)(2)*x(4)(3) ----------- TeX output: S(\del{1}{2}{2}{3}, \lam{1}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \del{1}{2}{2}{3} +(y_{1, 3} y_{4, 2}) \del{2}{3}{2}{3} +(-y_{1, 3} y_{3, 2}) \del{2}{4}{2}{3} +(y_{1, 2} y_{2, 3}) \del{3}{4}{2}{3} +(-y_{4, 2} x_{2, 3}) \eps{1}{3}{2}{3} +(y_{3, 2} x_{2, 3}) \eps{1}{4}{2}{3} +(y_{1, 2} x_{4, 3}) \eps{2}{3}{2}{3} +(-y_{1, 2} x_{3, 3}) \eps{2}{4}{2}{3} ---------------------------------- Delta: 1,2 2,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 2,3,4 1,2,2 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: -y(2)(2)*y(4)(1)+y(2)(1)*y(4)(2) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 2,3 Quotient: y(2)(2)*y(3)(1)-y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: y(1)(2)*y(4)(1)-y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,2 Quotient: x(4)(3) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,2 Quotient: -x(3)(3) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,2 Quotient: x(2)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(2)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(1)(3))*(-y(3)(2)*y(4)(1)*x(2)(2)+y(3)(1)*y(4)(2)*x(2)(2)+y(2)(2)*y(4)(1)*x(3)(2)-y(2)(1)*y(4)(2)*x(3)(2)-y(2)(2)*y(3)(1)*x(4)(2)+y(2)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(-x(1)(3)*x(2)(2)+x(1)(2)*x(2)(3)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(3)*x(2)(2)-y(3)(2)*y(4)(1)*x(1)(2)*x(2)(3)+y(2)(2)*y(4)(1)*x(1)(3)*x(3)(2)-y(2)(1)*y(4)(2)*x(1)(3)*x(3)(2)-y(2)(2)*y(3)(1)*x(1)(3)*x(4)(2)+y(2)(1)*y(3)(2)*x(1)(3)*x(4)(2) ----------- TeX output: S(\del{1}{2}{2}{3}, \lam{2}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \del{1}{2}{2}{3} +(-y_{2, 2} y_{4, 1}+y_{2, 1} y_{4, 2}) \del{1}{3}{2}{3} +(y_{2, 2} y_{3, 1}-y_{2, 1} y_{3, 2}) \del{1}{4}{2}{3} +(y_{1, 2} y_{4, 1}-y_{1, 1} y_{4, 2}) \del{2}{3}{2}{3} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{4}{2}{3} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \del{3}{4}{2}{3} +(x_{4, 3}) \lam{1}{2}{3}{1}{2}{2} +(-x_{3, 3}) \lam{1}{2}{4}{1}{2}{2} +(x_{2, 3}) \lam{1}{3}{4}{1}{2}{2} ---------------------------------- Delta: 1,2 2,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,3 1,2,4 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,2 Quotient: x(2)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(2)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(2)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(2)*x(1)(4)+y(1)(2)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(2)*x(3)(4)) - (-y(2)(2)*y(3)(1))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(4)*x(2)(2)-y(2)(2)*y(3)(1)*x(1)(2)*x(2)(4)+y(1)(2)*y(3)(1)*x(2)(2)*x(2)(4)-y(1)(1)*y(3)(2)*x(2)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(2)(2)*x(3)(4)+y(1)(1)*y(2)(2)*x(2)(2)*x(3)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{2}{3}{1}{2}{4}) = (-y_{2, 1} y_{3, 2}) \del{1}{2}{2}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{2}{3}{2}{4} +(x_{2, 4}) \lam{1}{2}{3}{1}{2}{2} ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,3 1,3,4 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: x(2)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(3)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(1))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(4)*x(2)(2)-y(2)(3)*y(3)(1)*x(1)(2)*x(2)(4)+y(1)(3)*y(3)(1)*x(2)(2)*x(2)(4)-y(1)(1)*y(3)(3)*x(2)(2)*x(2)(4)-y(1)(3)*y(2)(1)*x(2)(2)*x(3)(4)+y(1)(1)*y(2)(3)*x(2)(2)*x(3)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{2}{3}{1}{3}{4}) = (-y_{2, 1} y_{3, 3}) \del{1}{2}{2}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{2}{3}{2}{4} +(-y_{3, 1} x_{2, 4}) \eps{1}{2}{2}{3} +(y_{2, 1} x_{2, 4}) \eps{1}{3}{2}{3} +(-y_{1, 1} x_{2, 4}) \eps{2}{3}{2}{3} +(x_{2, 4}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,3 1,4,4 Lead Term of Spoly: y(2)(1)*y(3)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(2)(1)*y(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(2)(4)*y(3)(1)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: x(2)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(4)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(1))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(2)(1)*y(3)(4)*x(1)(4)*x(2)(2)-y(2)(4)*y(3)(1)*x(1)(2)*x(2)(4)+y(1)(4)*y(3)(1)*x(2)(2)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(2)*x(2)(4)-y(1)(4)*y(2)(1)*x(2)(2)*x(3)(4)+y(1)(1)*y(2)(4)*x(2)(2)*x(3)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{2}{3}{1}{4}{4}) = (-y_{2, 1} y_{3, 4}) \del{1}{2}{2}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{2}{3}{2}{4} +(-y_{3, 1} x_{2, 4}) \eps{1}{2}{2}{4} +(y_{2, 1} x_{2, 4}) \eps{1}{3}{2}{4} +(-y_{1, 1} x_{2, 4}) \eps{2}{3}{2}{4} +(x_{2, 4}) \lam{1}{2}{3}{1}{2}{4} ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,3 2,3,4 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(3)*y(2)(2)+y(1)(2)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(2)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(2)*x(2)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(2)*x(2)(4) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(2)*x(2)(4) Lead Term of Product: -y(1)(2)*y(3)(3)*x(2)(2)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(3)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(2))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(4)*x(2)(2)-y(2)(3)*y(3)(2)*x(1)(2)*x(2)(4)+y(1)(3)*y(3)(2)*x(2)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(2)*x(2)(4)-y(1)(3)*y(2)(2)*x(2)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(2)(2)*x(3)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{2}{3}{2}{3}{4}) = (-y_{2, 2} y_{3, 3}) \del{1}{2}{2}{4} +(-y_{1, 3} y_{2, 2}+y_{1, 2} y_{2, 3}) \del{2}{3}{2}{4} +(-y_{3, 2} x_{2, 4}) \eps{1}{2}{2}{3} +(y_{2, 2} x_{2, 4}) \eps{1}{3}{2}{3} +(-y_{1, 2} x_{2, 4}) \eps{2}{3}{2}{3} ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,3 2,4,4 Lead Term of Spoly: y(2)(2)*y(3)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(2)(2)*y(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(4)*y(2)(2)+y(1)(2)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(2)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(3)(2)*x(2)(4) Lead Term of Product: -y(2)(4)*y(3)(2)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: y(2)(2)*x(2)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(2)*x(2)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(2)(2)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(4)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(2))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(2)(2)*y(3)(4)*x(1)(4)*x(2)(2)-y(2)(4)*y(3)(2)*x(1)(2)*x(2)(4)+y(1)(4)*y(3)(2)*x(2)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(2)*x(2)(4)-y(1)(4)*y(2)(2)*x(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(2)(2)*x(3)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{2}{3}{2}{4}{4}) = (-y_{2, 2} y_{3, 4}) \del{1}{2}{2}{4} +(-y_{1, 4} y_{2, 2}+y_{1, 2} y_{2, 4}) \del{2}{3}{2}{4} +(-y_{3, 2} x_{2, 4}) \eps{1}{2}{2}{4} +(y_{2, 2} x_{2, 4}) \eps{1}{3}{2}{4} +(-y_{1, 2} x_{2, 4}) \eps{2}{3}{2}{4} ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,3 3,4,4 Lead Term of Spoly: y(2)(3)*y(3)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(2)(3)*y(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(2)(2)+y(1)(2)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(3)(4)*x(2)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(3)(3)*x(2)(4) Lead Term of Product: -y(2)(4)*y(3)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(2)*x(2)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(2)*x(2)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Rho 1,2,2 2,3,4 Quotient: x(3)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(2)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(3))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(2)(3)*y(3)(4)*x(1)(4)*x(2)(2)-y(2)(4)*y(3)(3)*x(1)(2)*x(2)(4)+y(1)(4)*y(3)(3)*x(2)(2)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(2)*x(2)(4)-y(1)(4)*y(2)(3)*x(2)(2)*x(3)(4)+y(1)(3)*y(2)(4)*x(2)(2)*x(3)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{2}{3}{3}{4}{4}) = (-y_{2, 3} y_{3, 4}) \del{1}{2}{2}{4} +(-y_{1, 4} y_{2, 2}+y_{1, 2} y_{2, 4}) \del{2}{3}{3}{4} +(y_{3, 4} x_{2, 4}) \eps{1}{2}{2}{3} +(-y_{3, 3} x_{2, 4}) \eps{1}{2}{2}{4} +(y_{2, 2} x_{2, 4}) \eps{1}{3}{3}{4} +(-y_{1, 2} x_{2, 4}) \eps{2}{3}{3}{4} +(x_{3, 4}) \pho{1}{2}{2}{2}{3}{4} ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,4 1,2,4 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Lam 1,2,4 1,2,2 Quotient: x(2)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(2)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(2)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(2)*x(4)(4)) - (-y(2)(2)*y(4)(1))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(4)*x(2)(2)-y(2)(2)*y(4)(1)*x(1)(2)*x(2)(4)+y(1)(2)*y(4)(1)*x(2)(2)*x(2)(4)-y(1)(1)*y(4)(2)*x(2)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(2)(2)*x(4)(4)+y(1)(1)*y(2)(2)*x(2)(2)*x(4)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{2}{4}{1}{2}{4}) = (-y_{2, 1} y_{4, 2}) \del{1}{2}{2}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{2}{4}{2}{4} +(x_{2, 4}) \lam{1}{2}{4}{1}{2}{2} ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,4 1,3,4 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(1)*x(2)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: x(2)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(3)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(1))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(4)*x(2)(2)-y(2)(3)*y(4)(1)*x(1)(2)*x(2)(4)+y(1)(3)*y(4)(1)*x(2)(2)*x(2)(4)-y(1)(1)*y(4)(3)*x(2)(2)*x(2)(4)-y(1)(3)*y(2)(1)*x(2)(2)*x(4)(4)+y(1)(1)*y(2)(3)*x(2)(2)*x(4)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{2}{4}{1}{3}{4}) = (-y_{2, 1} y_{4, 3}) \del{1}{2}{2}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{2}{4}{2}{4} +(-y_{4, 1} x_{2, 4}) \eps{1}{2}{2}{3} +(y_{2, 1} x_{2, 4}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{2, 4}) \eps{2}{4}{2}{3} +(x_{2, 4}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,4 1,4,4 Lead Term of Spoly: y(2)(1)*y(4)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(2)(1)*y(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(4)(1)*x(2)(4) Lead Term of Product: -y(2)(4)*y(4)(1)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(2)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: x(2)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(4)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(1))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(2)(1)*y(4)(4)*x(1)(4)*x(2)(2)-y(2)(4)*y(4)(1)*x(1)(2)*x(2)(4)+y(1)(4)*y(4)(1)*x(2)(2)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(2)*x(2)(4)-y(1)(4)*y(2)(1)*x(2)(2)*x(4)(4)+y(1)(1)*y(2)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{2}{4}{1}{4}{4}) = (-y_{2, 1} y_{4, 4}) \del{1}{2}{2}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{2}{4}{2}{4} +(-y_{4, 1} x_{2, 4}) \eps{1}{2}{2}{4} +(y_{2, 1} x_{2, 4}) \eps{1}{4}{2}{4} +(-y_{1, 1} x_{2, 4}) \eps{2}{4}{2}{4} +(x_{2, 4}) \lam{1}{2}{4}{1}{2}{4} ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,4 2,3,4 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(3)*y(2)(2)+y(1)(2)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(2)*x(2)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(2)*x(2)(4) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(2)*x(2)(4) Lead Term of Product: -y(1)(2)*y(4)(3)*x(2)(2)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(3)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(2))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(4)*x(2)(2)-y(2)(3)*y(4)(2)*x(1)(2)*x(2)(4)+y(1)(3)*y(4)(2)*x(2)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(2)*x(2)(4)-y(1)(3)*y(2)(2)*x(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(2)(2)*x(4)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{2}{4}{2}{3}{4}) = (-y_{2, 2} y_{4, 3}) \del{1}{2}{2}{4} +(-y_{1, 3} y_{2, 2}+y_{1, 2} y_{2, 3}) \del{2}{4}{2}{4} +(-y_{4, 2} x_{2, 4}) \eps{1}{2}{2}{3} +(y_{2, 2} x_{2, 4}) \eps{1}{4}{2}{3} +(-y_{1, 2} x_{2, 4}) \eps{2}{4}{2}{3} ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,4 2,4,4 Lead Term of Spoly: y(2)(2)*y(4)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(2)(2)*y(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(4)*y(2)(2)+y(1)(2)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(4)(2)*x(2)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(2)(2)*x(2)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(2)*x(2)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(2)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(2))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(2)(2)*y(4)(4)*x(1)(4)*x(2)(2)-y(2)(4)*y(4)(2)*x(1)(2)*x(2)(4)+y(1)(4)*y(4)(2)*x(2)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(2)*x(2)(4)-y(1)(4)*y(2)(2)*x(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{2}{4}{2}{4}{4}) = (-y_{2, 2} y_{4, 4}) \del{1}{2}{2}{4} +(-y_{1, 4} y_{2, 2}+y_{1, 2} y_{2, 4}) \del{2}{4}{2}{4} +(-y_{4, 2} x_{2, 4}) \eps{1}{2}{2}{4} +(y_{2, 2} x_{2, 4}) \eps{1}{4}{2}{4} +(-y_{1, 2} x_{2, 4}) \eps{2}{4}{2}{4} ---------------------------------- Delta: 1,2 2,4 Lam: 1,2,4 3,4,4 Lead Term of Spoly: y(2)(3)*y(4)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(2)(3)*y(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(2)(2)+y(1)(2)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(4)*x(2)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(4)(3)*x(2)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(2)*x(2)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(2)*x(2)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Rho 1,2,2 2,3,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(2)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(3))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(2)(3)*y(4)(4)*x(1)(4)*x(2)(2)-y(2)(4)*y(4)(3)*x(1)(2)*x(2)(4)+y(1)(4)*y(4)(3)*x(2)(2)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(2)*x(2)(4)-y(1)(4)*y(2)(3)*x(2)(2)*x(4)(4)+y(1)(3)*y(2)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{2}{4}{3}{4}{4}) = (-y_{2, 3} y_{4, 4}) \del{1}{2}{2}{4} +(-y_{1, 4} y_{2, 2}+y_{1, 2} y_{2, 4}) \del{2}{4}{3}{4} +(y_{4, 4} x_{2, 4}) \eps{1}{2}{2}{3} +(-y_{4, 3} x_{2, 4}) \eps{1}{2}{2}{4} +(y_{2, 2} x_{2, 4}) \eps{1}{4}{3}{4} +(-y_{1, 2} x_{2, 4}) \eps{2}{4}{3}{4} +(x_{4, 4}) \pho{1}{2}{2}{2}{3}{4} ---------------------------------- Delta: 1,2 2,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 1,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(2)*y(4)(1)-y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Lam 1,3,4 1,2,2 Quotient: x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(2)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(3)(2)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(3)(4)-y(1)(2)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(2)-y(3)(2)*y(4)(1)*x(1)(2)*x(2)(4)+y(1)(2)*y(4)(1)*x(2)(2)*x(3)(4)-y(1)(1)*y(4)(2)*x(2)(2)*x(3)(4)-y(1)(2)*y(3)(1)*x(2)(2)*x(4)(4)+y(1)(1)*y(3)(2)*x(2)(2)*x(4)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{1}{2}{2}{4} +(y_{1, 2} y_{4, 1}-y_{1, 1} y_{4, 2}) \del{2}{3}{2}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{4}{2}{4} +(x_{2, 4}) \lam{1}{3}{4}{1}{2}{2} ---------------------------------- Delta: 1,2 2,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 1,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(3)*y(4)(1) Lead Term of Product: -y(1)(3)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(1)*y(4)(2) Lead Term of Product: y(1)(1)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(3)*y(3)(1) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(1)*y(3)(2) Lead Term of Product: -y(1)(1)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(1)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(1)*y(2)(2) Lead Term of Product: y(1)(1)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(1)*x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(1)*x(2)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(1)(1)*x(4)(4) Lead Term of Product: y(1)(1)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(3)(3)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(4)*x(2)(2)-y(3)(3)*y(4)(1)*x(1)(2)*x(2)(4)+y(1)(3)*y(4)(1)*x(2)(2)*x(3)(4)-y(1)(1)*y(4)(3)*x(2)(2)*x(3)(4)-y(1)(3)*y(3)(1)*x(2)(2)*x(4)(4)+y(1)(1)*y(3)(3)*x(2)(2)*x(4)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{1}{2}{2}{4} +(y_{1, 3} y_{4, 1}) \del{2}{3}{2}{4} +(-y_{1, 1} y_{4, 2}) \del{2}{3}{3}{4} +(-y_{1, 3} y_{3, 1}) \del{2}{4}{2}{4} +(y_{1, 1} y_{3, 2}) \del{2}{4}{3}{4} +(y_{1, 1} y_{2, 3}) \del{3}{4}{2}{4} +(-y_{1, 1} y_{2, 2}) \del{3}{4}{3}{4} +(-y_{4, 1} x_{2, 4}) \eps{1}{3}{2}{3} +(y_{3, 1} x_{2, 4}) \eps{1}{4}{2}{3} +(y_{1, 1} x_{4, 4}) \eps{2}{3}{2}{3} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{3} +(x_{2, 4}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Delta: 1,2 2,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(4)*y(4)(1) Lead Term of Product: -y(1)(4)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(4)*y(3)(1) Lead Term of Product: y(1)(4)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(1)*y(2)(4) Lead Term of Product: -y(1)(1)*y(2)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(4)(1)*x(2)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(3)(1)*x(2)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: y(1)(1)*x(4)(4) Lead Term of Product: y(1)(1)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,4 Quotient: x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(1)(4)*x(2)(2)-y(3)(4)*y(4)(1)*x(1)(2)*x(2)(4)+y(1)(4)*y(4)(1)*x(2)(2)*x(3)(4)-y(1)(1)*y(4)(4)*x(2)(2)*x(3)(4)-y(1)(4)*y(3)(1)*x(2)(2)*x(4)(4)+y(1)(1)*y(3)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{1}{2}{2}{4} +(y_{1, 4} y_{4, 1}) \del{2}{3}{2}{4} +(-y_{1, 4} y_{3, 1}) \del{2}{4}{2}{4} +(y_{1, 1} y_{2, 4}) \del{3}{4}{2}{4} +(-y_{4, 1} x_{2, 4}) \eps{1}{3}{2}{4} +(y_{3, 1} x_{2, 4}) \eps{1}{4}{2}{4} +(y_{1, 1} x_{4, 4}) \eps{2}{3}{2}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{4} +(x_{2, 4}) \lam{1}{3}{4}{1}{2}{4} ---------------------------------- Delta: 1,2 2,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 1,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(3)*y(4)(2) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(2)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(3)*y(3)(2) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: y(1)(2)*y(3)(2) Lead Term of Product: -y(1)(2)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(2)*y(2)(3) Lead Term of Product: -y(1)(2)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(2)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(2)*x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(2)*x(2)(4) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(1)(2)*x(4)(4) Lead Term of Product: y(1)(2)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(4)*x(2)(2)-y(3)(3)*y(4)(2)*x(1)(2)*x(2)(4)+y(1)(3)*y(4)(2)*x(2)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(2)(2)*x(3)(4)-y(1)(3)*y(3)(2)*x(2)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(2)(2)*x(4)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{1}{2}{2}{4} +(y_{1, 3} y_{4, 2}) \del{2}{3}{2}{4} +(-y_{1, 2} y_{4, 2}) \del{2}{3}{3}{4} +(-y_{1, 3} y_{3, 2}) \del{2}{4}{2}{4} +(y_{1, 2} y_{3, 2}) \del{2}{4}{3}{4} +(y_{1, 2} y_{2, 3}) \del{3}{4}{2}{4} +(-y_{1, 2} y_{2, 2}) \del{3}{4}{3}{4} +(-y_{4, 2} x_{2, 4}) \eps{1}{3}{2}{3} +(y_{3, 2} x_{2, 4}) \eps{1}{4}{2}{3} +(y_{1, 2} x_{4, 4}) \eps{2}{3}{2}{3} +(-y_{1, 2} x_{3, 4}) \eps{2}{4}{2}{3} ---------------------------------- Delta: 1,2 2,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(4)*y(4)(2) Lead Term of Product: -y(1)(4)*y(4)(2)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(4)*y(3)(2) Lead Term of Product: y(1)(4)*y(3)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(2)*y(2)(4) Lead Term of Product: -y(1)(2)*y(2)(4)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(4)(2)*x(2)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(3)(2)*x(2)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: y(1)(2)*x(4)(4) Lead Term of Product: y(1)(2)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(1)(4)*x(2)(2)-y(3)(4)*y(4)(2)*x(1)(2)*x(2)(4)+y(1)(4)*y(4)(2)*x(2)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(2)(2)*x(3)(4)-y(1)(4)*y(3)(2)*x(2)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{1}{2}{2}{4} +(y_{1, 4} y_{4, 2}) \del{2}{3}{2}{4} +(-y_{1, 4} y_{3, 2}) \del{2}{4}{2}{4} +(y_{1, 2} y_{2, 4}) \del{3}{4}{2}{4} +(-y_{4, 2} x_{2, 4}) \eps{1}{3}{2}{4} +(y_{3, 2} x_{2, 4}) \eps{1}{4}{2}{4} +(y_{1, 2} x_{4, 4}) \eps{2}{3}{2}{4} +(-y_{1, 2} x_{3, 4}) \eps{2}{4}{2}{4} ---------------------------------- Delta: 1,2 2,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(4)*y(4)(3)-y(1)(3)*y(4)(4) Lead Term of Product: -y(1)(4)*y(4)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(2)*y(4)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(3)(2) Lead Term of Product: y(1)(4)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(2)*y(2)(4) Lead Term of Product: -y(1)(2)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(4)(4)*x(2)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(4)(3)*x(2)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(1)(2)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(2)*x(2)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(4)*x(4)(4) Lead Term of Product: -y(1)(4)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: y(1)(3)*x(4)(4) Lead Term of Product: y(1)(3)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 2,3,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(2))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(1)(4)*x(2)(2)-y(3)(4)*y(4)(3)*x(1)(2)*x(2)(4)+y(1)(4)*y(4)(3)*x(2)(2)*x(3)(4)-y(1)(3)*y(4)(4)*x(2)(2)*x(3)(4)-y(1)(4)*y(3)(3)*x(2)(2)*x(4)(4)+y(1)(3)*y(3)(4)*x(2)(2)*x(4)(4) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{1}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{1}{2}{2}{4} +(y_{1, 4} y_{4, 3}-y_{1, 3} y_{4, 4}) \del{2}{3}{2}{4} +(y_{1, 2} y_{4, 4}) \del{2}{3}{3}{4} +(-y_{1, 4} y_{3, 2}) \del{2}{4}{3}{4} +(y_{1, 2} y_{2, 4}) \del{3}{4}{3}{4} +(y_{4, 4} x_{2, 4}) \eps{1}{3}{2}{3} +(-y_{4, 3} x_{2, 4}) \eps{1}{3}{2}{4} +(y_{3, 2} x_{2, 4}) \eps{1}{4}{3}{4} +(-y_{1, 4} x_{4, 4}) \eps{2}{3}{2}{3} +(y_{1, 3} x_{4, 4}) \eps{2}{3}{2}{4} +(-y_{1, 2} x_{3, 4}) \eps{2}{4}{3}{4} +(x_{4, 4}) \pho{1}{2}{3}{2}{3}{4} ---------------------------------- Delta: 1,2 2,4 Lam: 2,3,4 1,2,2 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(2) Divisor: Delta 1,2 2,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 2,4 Quotient: -y(2)(2)*y(4)(1)+y(2)(1)*y(4)(2) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 1,4 2,4 Quotient: y(2)(2)*y(3)(1)-y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: y(1)(2)*y(4)(1)-y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,2 Quotient: x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,2 Quotient: -x(3)(4) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,2 Quotient: x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(2)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(1)(4))*(-y(3)(2)*y(4)(1)*x(2)(2)+y(3)(1)*y(4)(2)*x(2)(2)+y(2)(2)*y(4)(1)*x(3)(2)-y(2)(1)*y(4)(2)*x(3)(2)-y(2)(2)*y(3)(1)*x(4)(2)+y(2)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(-x(1)(4)*x(2)(2)+x(1)(2)*x(2)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(2)-y(3)(2)*y(4)(1)*x(1)(2)*x(2)(4)+y(2)(2)*y(4)(1)*x(1)(4)*x(3)(2)-y(2)(1)*y(4)(2)*x(1)(4)*x(3)(2)-y(2)(2)*y(3)(1)*x(1)(4)*x(4)(2)+y(2)(1)*y(3)(2)*x(1)(4)*x(4)(2) ----------- TeX output: S(\del{1}{2}{2}{4}, \lam{2}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \del{1}{2}{2}{4} +(-y_{2, 2} y_{4, 1}+y_{2, 1} y_{4, 2}) \del{1}{3}{2}{4} +(y_{2, 2} y_{3, 1}-y_{2, 1} y_{3, 2}) \del{1}{4}{2}{4} +(y_{1, 2} y_{4, 1}-y_{1, 1} y_{4, 2}) \del{2}{3}{2}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{4}{2}{4} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \del{3}{4}{2}{4} +(x_{4, 4}) \lam{1}{2}{3}{1}{2}{2} +(-x_{3, 4}) \lam{1}{2}{4}{1}{2}{2} +(x_{2, 4}) \lam{1}{3}{4}{1}{2}{2} ---------------------------------- Delta: 1,2 2,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 2,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,3 1,2,4 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: x(2)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(2)(2)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(2)*x(1)(4)+y(1)(2)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(2)*x(3)(4)) - (-y(2)(2)*y(3)(1))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(4)*x(2)(3)-y(2)(2)*y(3)(1)*x(1)(3)*x(2)(4)+y(1)(2)*y(3)(1)*x(2)(3)*x(2)(4)-y(1)(1)*y(3)(2)*x(2)(3)*x(2)(4)-y(1)(2)*y(2)(1)*x(2)(3)*x(3)(4)+y(1)(1)*y(2)(2)*x(2)(3)*x(3)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{2}{3}{1}{2}{4}) = (-y_{2, 1} y_{3, 2}) \del{1}{2}{3}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{2}{3}{3}{4} +(x_{2, 4}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,3 1,3,4 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,3,3 Quotient: x(2)(4) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(2)(3)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(1))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(4)*x(2)(3)-y(2)(3)*y(3)(1)*x(1)(3)*x(2)(4)+y(1)(3)*y(3)(1)*x(2)(3)*x(2)(4)-y(1)(1)*y(3)(3)*x(2)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(2)(3)*x(3)(4)+y(1)(1)*y(2)(3)*x(2)(3)*x(3)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{2}{3}{1}{3}{4}) = (-y_{2, 1} y_{3, 3}) \del{1}{2}{3}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{2}{3}{3}{4} +(x_{2, 4}) \lam{1}{2}{3}{1}{3}{3} ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,3 1,4,4 Lead Term of Spoly: y(2)(1)*y(3)(4)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(2)(1)*y(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(3)(1)*x(2)(4) Lead Term of Product: -y(2)(4)*y(3)(1)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,3,4 Quotient: x(2)(4) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(2)(4)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(1))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(2)(1)*y(3)(4)*x(1)(4)*x(2)(3)-y(2)(4)*y(3)(1)*x(1)(3)*x(2)(4)+y(1)(4)*y(3)(1)*x(2)(3)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(3)*x(2)(4)-y(1)(4)*y(2)(1)*x(2)(3)*x(3)(4)+y(1)(1)*y(2)(4)*x(2)(3)*x(3)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{2}{3}{1}{4}{4}) = (-y_{2, 1} y_{3, 4}) \del{1}{2}{3}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{2}{3}{3}{4} +(-y_{3, 1} x_{2, 4}) \eps{1}{2}{3}{4} +(y_{2, 1} x_{2, 4}) \eps{1}{3}{3}{4} +(-y_{1, 1} x_{2, 4}) \eps{2}{3}{3}{4} +(x_{2, 4}) \lam{1}{2}{3}{1}{3}{4} ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,3 2,3,4 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(3)*y(2)(2)+y(1)(2)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,3 2,3,3 Quotient: x(2)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(2)(3)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(2))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(4)*x(2)(3)-y(2)(3)*y(3)(2)*x(1)(3)*x(2)(4)+y(1)(3)*y(3)(2)*x(2)(3)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(2)(3)*x(3)(4)+y(1)(2)*y(2)(3)*x(2)(3)*x(3)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{2}{3}{2}{3}{4}) = (-y_{2, 2} y_{3, 3}) \del{1}{2}{3}{4} +(-y_{1, 3} y_{2, 2}+y_{1, 2} y_{2, 3}) \del{2}{3}{3}{4} +(x_{2, 4}) \lam{1}{2}{3}{2}{3}{3} ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,3 2,4,4 Lead Term of Spoly: y(2)(2)*y(3)(4)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(2)(2)*y(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(2)(2)+y(1)(2)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(3)(2)*x(2)(4) Lead Term of Product: -y(2)(4)*y(3)(2)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(2)*x(2)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(2)*x(2)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,3 2,3,4 Quotient: x(2)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(2)(4)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(2))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(2)(2)*y(3)(4)*x(1)(4)*x(2)(3)-y(2)(4)*y(3)(2)*x(1)(3)*x(2)(4)+y(1)(4)*y(3)(2)*x(2)(3)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(3)*x(2)(4)-y(1)(4)*y(2)(2)*x(2)(3)*x(3)(4)+y(1)(2)*y(2)(4)*x(2)(3)*x(3)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{2}{3}{2}{4}{4}) = (-y_{2, 2} y_{3, 4}) \del{1}{2}{3}{4} +(-y_{1, 4} y_{2, 2}+y_{1, 2} y_{2, 4}) \del{2}{3}{3}{4} +(-y_{3, 2} x_{2, 4}) \eps{1}{2}{3}{4} +(y_{2, 2} x_{2, 4}) \eps{1}{3}{3}{4} +(-y_{1, 2} x_{2, 4}) \eps{2}{3}{3}{4} +(x_{2, 4}) \lam{1}{2}{3}{2}{3}{4} ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,3 3,4,4 Lead Term of Spoly: y(2)(3)*y(3)(4)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(2)(3)*y(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(2)(3)+y(1)(3)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(3)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(3)(3)*x(2)(4) Lead Term of Product: -y(2)(4)*y(3)(3)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(3)*x(2)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(3)*x(2)(4) Lead Term of Product: -y(1)(3)*y(3)(4)*x(2)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(3))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(2)(3)*y(3)(4)*x(1)(4)*x(2)(3)-y(2)(4)*y(3)(3)*x(1)(3)*x(2)(4)+y(1)(4)*y(3)(3)*x(2)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(3)*x(2)(4)-y(1)(4)*y(2)(3)*x(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(2)(3)*x(3)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{2}{3}{3}{4}{4}) = (-y_{2, 3} y_{3, 4}) \del{1}{2}{3}{4} +(-y_{1, 4} y_{2, 3}+y_{1, 3} y_{2, 4}) \del{2}{3}{3}{4} +(-y_{3, 3} x_{2, 4}) \eps{1}{2}{3}{4} +(y_{2, 3} x_{2, 4}) \eps{1}{3}{3}{4} +(-y_{1, 3} x_{2, 4}) \eps{2}{3}{3}{4} ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,4 1,2,4 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: x(2)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(2)(2)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(2)*x(4)(4)) - (-y(2)(2)*y(4)(1))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(4)*x(2)(3)-y(2)(2)*y(4)(1)*x(1)(3)*x(2)(4)+y(1)(2)*y(4)(1)*x(2)(3)*x(2)(4)-y(1)(1)*y(4)(2)*x(2)(3)*x(2)(4)-y(1)(2)*y(2)(1)*x(2)(3)*x(4)(4)+y(1)(1)*y(2)(2)*x(2)(3)*x(4)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{2}{4}{1}{2}{4}) = (-y_{2, 1} y_{4, 2}) \del{1}{2}{3}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{2}{4}{3}{4} +(x_{2, 4}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,4 1,3,4 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,3,3 Quotient: x(2)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(2)(3)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(1))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(4)*x(2)(3)-y(2)(3)*y(4)(1)*x(1)(3)*x(2)(4)+y(1)(3)*y(4)(1)*x(2)(3)*x(2)(4)-y(1)(1)*y(4)(3)*x(2)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(2)(3)*x(4)(4)+y(1)(1)*y(2)(3)*x(2)(3)*x(4)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{2}{4}{1}{3}{4}) = (-y_{2, 1} y_{4, 3}) \del{1}{2}{3}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{2}{4}{3}{4} +(x_{2, 4}) \lam{1}{2}{4}{1}{3}{3} ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,4 1,4,4 Lead Term of Spoly: y(2)(1)*y(4)(4)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(2)(1)*y(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(4)(1)*x(2)(4) Lead Term of Product: -y(2)(4)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(1)*x(2)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(1)*x(2)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,3,4 Quotient: x(2)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(2)(4)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(1))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(2)(1)*y(4)(4)*x(1)(4)*x(2)(3)-y(2)(4)*y(4)(1)*x(1)(3)*x(2)(4)+y(1)(4)*y(4)(1)*x(2)(3)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(3)*x(2)(4)-y(1)(4)*y(2)(1)*x(2)(3)*x(4)(4)+y(1)(1)*y(2)(4)*x(2)(3)*x(4)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{2}{4}{1}{4}{4}) = (-y_{2, 1} y_{4, 4}) \del{1}{2}{3}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{2}{4}{3}{4} +(-y_{4, 1} x_{2, 4}) \eps{1}{2}{3}{4} +(y_{2, 1} x_{2, 4}) \eps{1}{4}{3}{4} +(-y_{1, 1} x_{2, 4}) \eps{2}{4}{3}{4} +(x_{2, 4}) \lam{1}{2}{4}{1}{3}{4} ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,4 2,3,4 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(3)*y(2)(2)+y(1)(2)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,4 2,3,3 Quotient: x(2)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(2)(3)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(2))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(4)*x(2)(3)-y(2)(3)*y(4)(2)*x(1)(3)*x(2)(4)+y(1)(3)*y(4)(2)*x(2)(3)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(2)(3)*x(4)(4)+y(1)(2)*y(2)(3)*x(2)(3)*x(4)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{2}{4}{2}{3}{4}) = (-y_{2, 2} y_{4, 3}) \del{1}{2}{3}{4} +(-y_{1, 3} y_{2, 2}+y_{1, 2} y_{2, 3}) \del{2}{4}{3}{4} +(x_{2, 4}) \lam{1}{2}{4}{2}{3}{3} ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,4 2,4,4 Lead Term of Spoly: y(2)(2)*y(4)(4)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(2)(2)*y(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(2)(2)+y(1)(2)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(4)(2)*x(2)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(2)*x(2)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(2)*x(2)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(3)*x(2)(4) Lead term is well behaved Divisor: Lam 1,2,4 2,3,4 Quotient: x(2)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(2))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(2)(2)*y(4)(4)*x(1)(4)*x(2)(3)-y(2)(4)*y(4)(2)*x(1)(3)*x(2)(4)+y(1)(4)*y(4)(2)*x(2)(3)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(3)*x(2)(4)-y(1)(4)*y(2)(2)*x(2)(3)*x(4)(4)+y(1)(2)*y(2)(4)*x(2)(3)*x(4)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{2}{4}{2}{4}{4}) = (-y_{2, 2} y_{4, 4}) \del{1}{2}{3}{4} +(-y_{1, 4} y_{2, 2}+y_{1, 2} y_{2, 4}) \del{2}{4}{3}{4} +(-y_{4, 2} x_{2, 4}) \eps{1}{2}{3}{4} +(y_{2, 2} x_{2, 4}) \eps{1}{4}{3}{4} +(-y_{1, 2} x_{2, 4}) \eps{2}{4}{3}{4} +(x_{2, 4}) \lam{1}{2}{4}{2}{3}{4} ---------------------------------- Delta: 1,2 3,4 Lam: 1,2,4 3,4,4 Lead Term of Spoly: y(2)(3)*y(4)(4)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(2)(3)*y(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(2)(3)+y(1)(3)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(3)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(4)(3)*x(2)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(3)*x(2)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(3)*x(2)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(2)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(3))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(2)(3)*y(4)(4)*x(1)(4)*x(2)(3)-y(2)(4)*y(4)(3)*x(1)(3)*x(2)(4)+y(1)(4)*y(4)(3)*x(2)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(3)*x(2)(4)-y(1)(4)*y(2)(3)*x(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(2)(3)*x(4)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{2}{4}{3}{4}{4}) = (-y_{2, 3} y_{4, 4}) \del{1}{2}{3}{4} +(-y_{1, 4} y_{2, 3}+y_{1, 3} y_{2, 4}) \del{2}{4}{3}{4} +(-y_{4, 3} x_{2, 4}) \eps{1}{2}{3}{4} +(y_{2, 3} x_{2, 4}) \eps{1}{4}{3}{4} +(-y_{1, 3} x_{2, 4}) \eps{2}{4}{3}{4} ---------------------------------- Delta: 1,2 3,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 1,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(2)*y(4)(1)-y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(3)(2)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(3)(4)-y(1)(2)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(3)-y(3)(2)*y(4)(1)*x(1)(3)*x(2)(4)+y(1)(2)*y(4)(1)*x(2)(3)*x(3)(4)-y(1)(1)*y(4)(2)*x(2)(3)*x(3)(4)-y(1)(2)*y(3)(1)*x(2)(3)*x(4)(4)+y(1)(1)*y(3)(2)*x(2)(3)*x(4)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{1}{2}{3}{4} +(y_{1, 2} y_{4, 1}-y_{1, 1} y_{4, 2}) \del{2}{3}{3}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{4}{3}{4} +(x_{2, 4}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Delta: 1,2 3,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 1,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(3)*y(4)(1)-y(1)(1)*y(4)(3) Lead Term of Product: -y(1)(3)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,3,3 Quotient: x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(3)(3)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(4)*x(2)(3)-y(3)(3)*y(4)(1)*x(1)(3)*x(2)(4)+y(1)(3)*y(4)(1)*x(2)(3)*x(3)(4)-y(1)(1)*y(4)(3)*x(2)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(2)(3)*x(4)(4)+y(1)(1)*y(3)(3)*x(2)(3)*x(4)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{1}{2}{3}{4} +(y_{1, 3} y_{4, 1}-y_{1, 1} y_{4, 3}) \del{2}{3}{3}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{2}{4}{3}{4} +(x_{2, 4}) \lam{1}{3}{4}{1}{3}{3} ---------------------------------- Delta: 1,2 3,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(4)*y(4)(1) Lead Term of Product: -y(1)(4)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(3)(1) Lead Term of Product: y(1)(4)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(1)*y(2)(4) Lead Term of Product: -y(1)(1)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(4)(1)*x(2)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(1)*x(2)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: y(1)(1)*x(4)(4) Lead Term of Product: y(1)(1)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,3,4 Quotient: x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(1)(4)*x(2)(3)-y(3)(4)*y(4)(1)*x(1)(3)*x(2)(4)+y(1)(4)*y(4)(1)*x(2)(3)*x(3)(4)-y(1)(1)*y(4)(4)*x(2)(3)*x(3)(4)-y(1)(4)*y(3)(1)*x(2)(3)*x(4)(4)+y(1)(1)*y(3)(4)*x(2)(3)*x(4)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{1}{2}{3}{4} +(y_{1, 4} y_{4, 1}) \del{2}{3}{3}{4} +(-y_{1, 4} y_{3, 1}) \del{2}{4}{3}{4} +(y_{1, 1} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{4, 1} x_{2, 4}) \eps{1}{3}{3}{4} +(y_{3, 1} x_{2, 4}) \eps{1}{4}{3}{4} +(y_{1, 1} x_{4, 4}) \eps{2}{3}{3}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{3}{4} +(x_{2, 4}) \lam{1}{3}{4}{1}{3}{4} ---------------------------------- Delta: 1,2 3,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 1,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(3)*y(4)(2)-y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,3,4 2,3,3 Quotient: x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(4)*x(2)(3)-y(3)(3)*y(4)(2)*x(1)(3)*x(2)(4)+y(1)(3)*y(4)(2)*x(2)(3)*x(3)(4)-y(1)(2)*y(4)(3)*x(2)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(2)(3)*x(4)(4)+y(1)(2)*y(3)(3)*x(2)(3)*x(4)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{1}{2}{3}{4} +(y_{1, 3} y_{4, 2}-y_{1, 2} y_{4, 3}) \del{2}{3}{3}{4} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{2}{4}{3}{4} +(x_{2, 4}) \lam{1}{3}{4}{2}{3}{3} ---------------------------------- Delta: 1,2 3,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(4)*y(4)(2) Lead Term of Product: -y(1)(4)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(3)(2) Lead Term of Product: y(1)(4)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(2)*y(2)(4) Lead Term of Product: -y(1)(2)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(4)(2)*x(2)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(2)*x(2)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: y(1)(2)*x(4)(4) Lead Term of Product: y(1)(2)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 2,3,4 Quotient: x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(4)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(1)(4)*x(2)(3)-y(3)(4)*y(4)(2)*x(1)(3)*x(2)(4)+y(1)(4)*y(4)(2)*x(2)(3)*x(3)(4)-y(1)(2)*y(4)(4)*x(2)(3)*x(3)(4)-y(1)(4)*y(3)(2)*x(2)(3)*x(4)(4)+y(1)(2)*y(3)(4)*x(2)(3)*x(4)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{1}{2}{3}{4} +(y_{1, 4} y_{4, 2}) \del{2}{3}{3}{4} +(-y_{1, 4} y_{3, 2}) \del{2}{4}{3}{4} +(y_{1, 2} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{4, 2} x_{2, 4}) \eps{1}{3}{3}{4} +(y_{3, 2} x_{2, 4}) \eps{1}{4}{3}{4} +(y_{1, 2} x_{4, 4}) \eps{2}{3}{3}{4} +(-y_{1, 2} x_{3, 4}) \eps{2}{4}{3}{4} +(x_{2, 4}) \lam{1}{3}{4}{2}{3}{4} ---------------------------------- Delta: 1,2 3,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(4)*y(4)(3) Lead Term of Product: -y(1)(4)*y(4)(3)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(3)(3) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(3)*y(2)(4) Lead Term of Product: -y(1)(3)*y(2)(4)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(4)(3)*x(2)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(3)*x(2)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(3)*x(2)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: y(1)(3)*x(4)(4) Lead Term of Product: y(1)(3)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(3)*x(3)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(3))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(1)(4)*x(2)(3)-y(3)(4)*y(4)(3)*x(1)(3)*x(2)(4)+y(1)(4)*y(4)(3)*x(2)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(2)(3)*x(3)(4)-y(1)(4)*y(3)(3)*x(2)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(2)(3)*x(4)(4) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{1}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{1}{2}{3}{4} +(y_{1, 4} y_{4, 3}) \del{2}{3}{3}{4} +(-y_{1, 4} y_{3, 3}) \del{2}{4}{3}{4} +(y_{1, 3} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{4, 3} x_{2, 4}) \eps{1}{3}{3}{4} +(y_{3, 3} x_{2, 4}) \eps{1}{4}{3}{4} +(y_{1, 3} x_{4, 4}) \eps{2}{3}{3}{4} +(-y_{1, 3} x_{3, 4}) \eps{2}{4}{3}{4} ---------------------------------- Delta: 1,2 3,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 2,3,4 1,2,3 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(2)(2)*y(4)(1)+y(2)(1)*y(4)(2) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(2)(2)*y(3)(1)-y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(2)*y(4)(1)-y(1)(1)*y(4)(2) Lead Term of Product: -y(1)(2)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: -x(3)(4) Lead Term of Product: y(2)(2)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: x(2)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(1)(4))*(-y(3)(2)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(2)*x(2)(3)+y(2)(2)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(2)*x(3)(3)-y(2)(2)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(4)*x(2)(3)-y(3)(2)*y(4)(1)*x(1)(3)*x(2)(4)+y(2)(2)*y(4)(1)*x(1)(4)*x(3)(3)-y(2)(1)*y(4)(2)*x(1)(4)*x(3)(3)-y(2)(2)*y(3)(1)*x(1)(4)*x(4)(3)+y(2)(1)*y(3)(2)*x(1)(4)*x(4)(3) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{2}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \del{1}{2}{3}{4} +(-y_{2, 2} y_{4, 1}+y_{2, 1} y_{4, 2}) \del{1}{3}{3}{4} +(y_{2, 2} y_{3, 1}-y_{2, 1} y_{3, 2}) \del{1}{4}{3}{4} +(y_{1, 2} y_{4, 1}-y_{1, 1} y_{4, 2}) \del{2}{3}{3}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{4}{3}{4} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \del{3}{4}{3}{4} +(x_{4, 4}) \lam{1}{2}{3}{1}{2}{3} +(-x_{3, 4}) \lam{1}{2}{4}{1}{2}{3} +(x_{2, 4}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Delta: 1,2 3,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 2,3,4 1,3,3 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(2)(3)*y(4)(1)+y(2)(1)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(2)(3)*y(3)(1)-y(2)(1)*y(3)(3) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(3)*y(4)(1)-y(1)(1)*y(4)(3) Lead Term of Product: -y(1)(3)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(3)*y(2)(1)-y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,3,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,3,3 Quotient: -x(3)(4) Lead Term of Product: y(2)(3)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,3,3 Quotient: x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(1)(4))*(-y(3)(3)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(4)*x(2)(3)-y(3)(3)*y(4)(1)*x(1)(3)*x(2)(4)+y(2)(3)*y(4)(1)*x(1)(4)*x(3)(3)-y(2)(1)*y(4)(3)*x(1)(4)*x(3)(3)-y(2)(3)*y(3)(1)*x(1)(4)*x(4)(3)+y(2)(1)*y(3)(3)*x(1)(4)*x(4)(3) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{2}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \del{1}{2}{3}{4} +(-y_{2, 3} y_{4, 1}+y_{2, 1} y_{4, 3}) \del{1}{3}{3}{4} +(y_{2, 3} y_{3, 1}-y_{2, 1} y_{3, 3}) \del{1}{4}{3}{4} +(y_{1, 3} y_{4, 1}-y_{1, 1} y_{4, 3}) \del{2}{3}{3}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{2}{4}{3}{4} +(y_{1, 3} y_{2, 1}-y_{1, 1} y_{2, 3}) \del{3}{4}{3}{4} +(x_{4, 4}) \lam{1}{2}{3}{1}{3}{3} +(-x_{3, 4}) \lam{1}{2}{4}{1}{3}{3} +(x_{2, 4}) \lam{1}{3}{4}{1}{3}{3} ---------------------------------- Delta: 1,2 3,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 2,3,4 2,3,3 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(4)*x(2)(3) Divisor: Delta 1,2 3,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(4)*x(2)(3) Lead term is well behaved Divisor: Delta 1,3 3,4 Quotient: -y(2)(3)*y(4)(2)+y(2)(2)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 1,4 3,4 Quotient: y(2)(3)*y(3)(2)-y(2)(2)*y(3)(3) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: y(1)(3)*y(4)(2)-y(1)(2)*y(4)(3) Lead Term of Product: -y(1)(3)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(3)*y(2)(2)-y(1)(2)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,3 2,3,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 2,3,3 Quotient: -x(3)(4) Lead Term of Product: y(2)(3)*y(4)(2)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 2,3,3 Quotient: x(2)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(3)*x(2)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(1)(4))*(-y(3)(3)*y(4)(2)*x(2)(3)+y(3)(2)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(-x(1)(4)*x(2)(3)+x(1)(3)*x(2)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(4)*x(2)(3)-y(3)(3)*y(4)(2)*x(1)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(1)(4)*x(3)(3)-y(2)(2)*y(4)(3)*x(1)(4)*x(3)(3)-y(2)(3)*y(3)(2)*x(1)(4)*x(4)(3)+y(2)(2)*y(3)(3)*x(1)(4)*x(4)(3) ----------- TeX output: S(\del{1}{2}{3}{4}, \lam{2}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \del{1}{2}{3}{4} +(-y_{2, 3} y_{4, 2}+y_{2, 2} y_{4, 3}) \del{1}{3}{3}{4} +(y_{2, 3} y_{3, 2}-y_{2, 2} y_{3, 3}) \del{1}{4}{3}{4} +(y_{1, 3} y_{4, 2}-y_{1, 2} y_{4, 3}) \del{2}{3}{3}{4} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{2}{4}{3}{4} +(y_{1, 3} y_{2, 2}-y_{1, 2} y_{2, 3}) \del{3}{4}{3}{4} +(x_{4, 4}) \lam{1}{2}{3}{2}{3}{3} +(-x_{3, 4}) \lam{1}{2}{4}{2}{3}{3} +(x_{2, 4}) \lam{1}{3}{4}{2}{3}{3} ---------------------------------- Delta: 1,2 3,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,2 3,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,3 1,2,2 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(2)*x(3)(1) Divisor: Delta 1,3 1,2 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,2 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(1)*x(3)(2) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(2)(1)*x(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(1)*x(3)(2) Lead Term of Product: -y(1)(1)*y(3)(2)*x(2)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(2)*y(3)(1)*x(1)(2)+y(2)(1)*y(3)(2)*x(1)(2)+y(1)(2)*y(3)(1)*x(2)(2)-y(1)(1)*y(3)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(3)(2)+y(1)(1)*y(2)(2)*x(3)(2)) - (-y(2)(2)*y(3)(1))*(-x(1)(2)*x(3)(1)+x(1)(1)*x(3)(2)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(2)*x(3)(1)+y(1)(2)*y(3)(1)*x(2)(2)*x(3)(1)-y(1)(1)*y(3)(2)*x(2)(2)*x(3)(1)-y(2)(2)*y(3)(1)*x(1)(1)*x(3)(2)-y(1)(2)*y(2)(1)*x(3)(1)*x(3)(2)+y(1)(1)*y(2)(2)*x(3)(1)*x(3)(2) ----------- TeX output: S(\del{1}{3}{1}{2}, \lam{1}{2}{3}{1}{2}{2}) = (-y_{2, 1} y_{3, 2}) \del{1}{3}{1}{2} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{3}{1}{2} +(-y_{3, 1} x_{3, 2}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{3, 2}) \eps{1}{3}{1}{2} +(-y_{1, 1} x_{3, 2}) \eps{2}{3}{1}{2} ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,4 1,2,2 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(2)*x(3)(1) Divisor: Delta 1,3 1,2 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,2 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,2 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(3)(2)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(1)*x(3)(2) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(2)(1)*x(3)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(1)*x(3)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(2)*y(4)(1)*x(1)(2)+y(2)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(2)(2)-y(1)(1)*y(4)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(4)(2)+y(1)(1)*y(2)(2)*x(4)(2)) - (-y(2)(2)*y(4)(1))*(-x(1)(2)*x(3)(1)+x(1)(1)*x(3)(2)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(2)*x(3)(1)+y(1)(2)*y(4)(1)*x(2)(2)*x(3)(1)-y(1)(1)*y(4)(2)*x(2)(2)*x(3)(1)-y(2)(2)*y(4)(1)*x(1)(1)*x(3)(2)-y(1)(2)*y(2)(1)*x(3)(1)*x(4)(2)+y(1)(1)*y(2)(2)*x(3)(1)*x(4)(2) ----------- TeX output: S(\del{1}{3}{1}{2}, \lam{1}{2}{4}{1}{2}{2}) = (-y_{2, 1} y_{4, 2}) \del{1}{3}{1}{2} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{2}{3}{1}{2} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{3}{4}{1}{2} +(-y_{4, 1} x_{3, 2}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{3, 2}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{3, 2}) \eps{2}{4}{1}{2} ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,3,4 1,2,2 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(2)*x(3)(1) Divisor: Delta 1,3 1,2 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,2 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(3)(2)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(1)*x(3)(2) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(3)(1)*x(3)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(1)(1)*x(3)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(3)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(2)*y(4)(1)*x(1)(2)+y(3)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(3)(2)-y(1)(1)*y(4)(2)*x(3)(2)-y(1)(2)*y(3)(1)*x(4)(2)+y(1)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(-x(1)(2)*x(3)(1)+x(1)(1)*x(3)(2)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(2)*x(3)(1)-y(3)(2)*y(4)(1)*x(1)(1)*x(3)(2)+y(1)(2)*y(4)(1)*x(3)(1)*x(3)(2)-y(1)(1)*y(4)(2)*x(3)(1)*x(3)(2)-y(1)(2)*y(3)(1)*x(3)(1)*x(4)(2)+y(1)(1)*y(3)(2)*x(3)(1)*x(4)(2) ----------- TeX output: S(\del{1}{3}{1}{2}, \lam{1}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \del{1}{3}{1}{2} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{3}{4}{1}{2} +(-y_{4, 1} x_{3, 2}) \eps{1}{3}{1}{2} +(y_{3, 1} x_{3, 2}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{3, 2}) \eps{3}{4}{1}{2} ---------------------------------- Delta: 1,3 1,2 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,3 1,2,3 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(3)*x(3)(1) Divisor: Delta 1,3 1,3 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(1)*x(3)(3) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(2)(1)*x(3)(3) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(3)(2)*x(2)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(2)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(2)*x(1)(3)+y(1)(2)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(2)*x(3)(3)) - (-y(2)(2)*y(3)(1))*(-x(1)(3)*x(3)(1)+x(1)(1)*x(3)(3)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(3)*x(3)(1)+y(1)(2)*y(3)(1)*x(2)(3)*x(3)(1)-y(1)(1)*y(3)(2)*x(2)(3)*x(3)(1)-y(2)(2)*y(3)(1)*x(1)(1)*x(3)(3)-y(1)(2)*y(2)(1)*x(3)(1)*x(3)(3)+y(1)(1)*y(2)(2)*x(3)(1)*x(3)(3) ----------- TeX output: S(\del{1}{3}{1}{3}, \lam{1}{2}{3}{1}{2}{3}) = (-y_{2, 1} y_{3, 2}) \del{1}{3}{1}{3} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{3}{1}{3} +(-y_{3, 1} x_{3, 3}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{3, 3}) \eps{1}{3}{1}{2} +(-y_{1, 1} x_{3, 3}) \eps{2}{3}{1}{2} ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,3 1,3,3 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(3)*x(3)(1) Divisor: Delta 1,3 1,3 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(1)*x(3)(3) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: y(2)(1)*x(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(3)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(1))*(-x(1)(3)*x(3)(1)+x(1)(1)*x(3)(3)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(3)*x(3)(1)+y(1)(3)*y(3)(1)*x(2)(3)*x(3)(1)-y(1)(1)*y(3)(3)*x(2)(3)*x(3)(1)-y(2)(3)*y(3)(1)*x(1)(1)*x(3)(3)-y(1)(3)*y(2)(1)*x(3)(1)*x(3)(3)+y(1)(1)*y(2)(3)*x(3)(1)*x(3)(3) ----------- TeX output: S(\del{1}{3}{1}{3}, \lam{1}{2}{3}{1}{3}{3}) = (-y_{2, 1} y_{3, 3}) \del{1}{3}{1}{3} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{2}{3}{1}{3} +(-y_{3, 1} x_{3, 3}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{3, 3}) \eps{1}{3}{1}{3} +(-y_{1, 1} x_{3, 3}) \eps{2}{3}{1}{3} ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,3 2,3,3 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(3)*x(3)(1) Divisor: Delta 1,3 1,3 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(3)(3)*x(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(2)*x(3)(3) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(1)*x(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: x(3)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(3)*y(3)(2)*x(1)(3)+y(2)(2)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(2)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(2))*(-x(1)(3)*x(3)(1)+x(1)(1)*x(3)(3)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(3)*x(3)(1)+y(1)(3)*y(3)(2)*x(2)(3)*x(3)(1)-y(1)(2)*y(3)(3)*x(2)(3)*x(3)(1)-y(2)(3)*y(3)(2)*x(1)(1)*x(3)(3)-y(1)(3)*y(2)(2)*x(3)(1)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(1)*x(3)(3) ----------- TeX output: S(\del{1}{3}{1}{3}, \lam{1}{2}{3}{2}{3}{3}) = (-y_{2, 2} y_{3, 3}) \del{1}{3}{1}{3} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{2}{3}{1}{3} +(y_{3, 3} x_{3, 3}) \eps{1}{2}{1}{2} +(-y_{3, 2} x_{3, 3}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{3, 3}) \eps{1}{3}{2}{3} +(-y_{1, 1} x_{3, 3}) \eps{2}{3}{2}{3} +(x_{3, 3}) \pho{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,4 1,2,3 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(3)*x(3)(1) Divisor: Delta 1,3 1,3 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(1)*x(3)(3) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(2)(1)*x(3)(3) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(2)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(2)*x(4)(3)) - (-y(2)(2)*y(4)(1))*(-x(1)(3)*x(3)(1)+x(1)(1)*x(3)(3)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(3)*x(3)(1)+y(1)(2)*y(4)(1)*x(2)(3)*x(3)(1)-y(1)(1)*y(4)(2)*x(2)(3)*x(3)(1)-y(2)(2)*y(4)(1)*x(1)(1)*x(3)(3)-y(1)(2)*y(2)(1)*x(3)(1)*x(4)(3)+y(1)(1)*y(2)(2)*x(3)(1)*x(4)(3) ----------- TeX output: S(\del{1}{3}{1}{3}, \lam{1}{2}{4}{1}{2}{3}) = (-y_{2, 1} y_{4, 2}) \del{1}{3}{1}{3} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{2}{3}{1}{3} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{3}{4}{1}{3} +(-y_{4, 1} x_{3, 3}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{3, 3}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{3, 3}) \eps{2}{4}{1}{2} ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,4 1,3,3 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(3)*x(3)(1) Divisor: Delta 1,3 1,3 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(1)*x(3)(3) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: y(2)(1)*x(3)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(3)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(1))*(-x(1)(3)*x(3)(1)+x(1)(1)*x(3)(3)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(3)*x(3)(1)+y(1)(3)*y(4)(1)*x(2)(3)*x(3)(1)-y(1)(1)*y(4)(3)*x(2)(3)*x(3)(1)-y(2)(3)*y(4)(1)*x(1)(1)*x(3)(3)-y(1)(3)*y(2)(1)*x(3)(1)*x(4)(3)+y(1)(1)*y(2)(3)*x(3)(1)*x(4)(3) ----------- TeX output: S(\del{1}{3}{1}{3}, \lam{1}{2}{4}{1}{3}{3}) = (-y_{2, 1} y_{4, 3}) \del{1}{3}{1}{3} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{2}{3}{1}{3} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{3}{4}{1}{3} +(-y_{4, 1} x_{3, 3}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{3, 3}) \eps{1}{4}{1}{3} +(-y_{1, 1} x_{3, 3}) \eps{2}{4}{1}{3} ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,4 2,3,3 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(3)*x(3)(1) Divisor: Delta 1,3 1,3 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(3)*x(3)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(2)*x(3)(3) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(1)*x(3)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: x(4)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(3)*y(4)(2)*x(1)(3)+y(2)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(2))*(-x(1)(3)*x(3)(1)+x(1)(1)*x(3)(3)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(3)*x(3)(1)+y(1)(3)*y(4)(2)*x(2)(3)*x(3)(1)-y(1)(2)*y(4)(3)*x(2)(3)*x(3)(1)-y(2)(3)*y(4)(2)*x(1)(1)*x(3)(3)-y(1)(3)*y(2)(2)*x(3)(1)*x(4)(3)+y(1)(2)*y(2)(3)*x(3)(1)*x(4)(3) ----------- TeX output: S(\del{1}{3}{1}{3}, \lam{1}{2}{4}{2}{3}{3}) = (-y_{2, 2} y_{4, 3}) \del{1}{3}{1}{3} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{2}{3}{1}{3} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{3}{4}{2}{3} +(y_{4, 3} x_{3, 3}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{3, 3}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{3, 3}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{3, 3}) \eps{2}{4}{2}{3} +(x_{4, 3}) \pho{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,3,4 1,2,3 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(3)*x(3)(1) Divisor: Delta 1,3 1,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(1)*x(3)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(3)(1)*x(3)(3) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(4)(2)*x(3)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(2)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(3)(3)-y(1)(2)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(-x(1)(3)*x(3)(1)+x(1)(1)*x(3)(3)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(3)*x(3)(1)-y(3)(2)*y(4)(1)*x(1)(1)*x(3)(3)+y(1)(2)*y(4)(1)*x(3)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(3)(1)*x(3)(3)-y(1)(2)*y(3)(1)*x(3)(1)*x(4)(3)+y(1)(1)*y(3)(2)*x(3)(1)*x(4)(3) ----------- TeX output: S(\del{1}{3}{1}{3}, \lam{1}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \del{1}{3}{1}{3} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{3}{4}{1}{3} +(-y_{4, 1} x_{3, 3}) \eps{1}{3}{1}{2} +(y_{3, 1} x_{3, 3}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{3, 3}) \eps{3}{4}{1}{2} ---------------------------------- Delta: 1,3 1,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,3,4 1,3,3 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(3)*x(3)(1) Divisor: Delta 1,3 1,3 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(1)*x(3)(3) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: y(3)(1)*x(3)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 3,4 1,3 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(3)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(3)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(-x(1)(3)*x(3)(1)+x(1)(1)*x(3)(3)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(3)*x(3)(1)-y(3)(3)*y(4)(1)*x(1)(1)*x(3)(3)+y(1)(3)*y(4)(1)*x(3)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(1)*x(3)(3)-y(1)(3)*y(3)(1)*x(3)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(3)(1)*x(4)(3) ----------- TeX output: S(\del{1}{3}{1}{3}, \lam{1}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \del{1}{3}{1}{3} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{3}{4}{1}{3} +(-y_{4, 1} x_{3, 3}) \eps{1}{3}{1}{3} +(y_{3, 1} x_{3, 3}) \eps{1}{4}{1}{3} +(-y_{1, 1} x_{3, 3}) \eps{3}{4}{1}{3} ---------------------------------- Delta: 1,3 1,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,3,4 2,3,3 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(3)*x(3)(1) Divisor: Delta 1,3 1,3 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(4)(3)*x(3)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(2)*x(3)(3) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(1)*x(3)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(3)(2)*x(3)(3) Lead term is well behaved Divisor: Rho 1,3,3 1,2,3 Quotient: x(4)(3) Lead Term of Product: -y(1)(3)*y(3)(2)*x(3)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(-x(1)(3)*x(3)(1)+x(1)(1)*x(3)(3)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(3)*x(3)(1)-y(3)(3)*y(4)(2)*x(1)(1)*x(3)(3)+y(1)(3)*y(4)(2)*x(3)(1)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(1)*x(3)(3)-y(1)(3)*y(3)(2)*x(3)(1)*x(4)(3)+y(1)(2)*y(3)(3)*x(3)(1)*x(4)(3) ----------- TeX output: S(\del{1}{3}{1}{3}, \lam{1}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \del{1}{3}{1}{3} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{3}{4}{2}{3} +(y_{4, 3} x_{3, 3}) \eps{1}{3}{1}{2} +(-y_{4, 2} x_{3, 3}) \eps{1}{3}{1}{3} +(y_{3, 1} x_{3, 3}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{3, 3}) \eps{3}{4}{2}{3} +(x_{4, 3}) \pho{1}{3}{3}{1}{2}{3} ---------------------------------- Delta: 1,3 1,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,3 1,2,4 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(1)*x(3)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(3)(2)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(2)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(2)*x(1)(4)+y(1)(2)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(2)*x(3)(4)) - (-y(2)(2)*y(3)(1))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(4)*x(3)(1)+y(1)(2)*y(3)(1)*x(2)(4)*x(3)(1)-y(1)(1)*y(3)(2)*x(2)(4)*x(3)(1)-y(2)(2)*y(3)(1)*x(1)(1)*x(3)(4)-y(1)(2)*y(2)(1)*x(3)(1)*x(3)(4)+y(1)(1)*y(2)(2)*x(3)(1)*x(3)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{2}{3}{1}{2}{4}) = (-y_{2, 1} y_{3, 2}) \del{1}{3}{1}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{3}{1}{4} +(-y_{3, 1} x_{3, 4}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{3, 4}) \eps{1}{3}{1}{2} +(-y_{1, 1} x_{3, 4}) \eps{2}{3}{1}{2} ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,3 1,3,4 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(1)*x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(3)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(1))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(4)*x(3)(1)+y(1)(3)*y(3)(1)*x(2)(4)*x(3)(1)-y(1)(1)*y(3)(3)*x(2)(4)*x(3)(1)-y(2)(3)*y(3)(1)*x(1)(1)*x(3)(4)-y(1)(3)*y(2)(1)*x(3)(1)*x(3)(4)+y(1)(1)*y(2)(3)*x(3)(1)*x(3)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{2}{3}{1}{3}{4}) = (-y_{2, 1} y_{3, 3}) \del{1}{3}{1}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{2}{3}{1}{4} +(-y_{3, 1} x_{3, 4}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{3, 4}) \eps{1}{3}{1}{3} +(-y_{1, 1} x_{3, 4}) \eps{2}{3}{1}{3} ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,3 1,4,4 Lead Term of Spoly: y(2)(1)*y(3)(4)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(2)(1)*y(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(3)(1)*x(3)(4) Lead Term of Product: -y(2)(4)*y(3)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(4)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(1))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(2)(1)*y(3)(4)*x(1)(4)*x(3)(1)+y(1)(4)*y(3)(1)*x(2)(4)*x(3)(1)-y(1)(1)*y(3)(4)*x(2)(4)*x(3)(1)-y(2)(4)*y(3)(1)*x(1)(1)*x(3)(4)-y(1)(4)*y(2)(1)*x(3)(1)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(1)*x(3)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{2}{3}{1}{4}{4}) = (-y_{2, 1} y_{3, 4}) \del{1}{3}{1}{4} +(-y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{2}{3}{1}{4} +(-y_{3, 1} x_{3, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{3, 4}) \eps{1}{3}{1}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{3}{1}{4} ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,3 2,3,4 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(3)(3)*x(3)(4) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(2)*x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(3)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(2))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(4)*x(3)(1)+y(1)(3)*y(3)(2)*x(2)(4)*x(3)(1)-y(1)(2)*y(3)(3)*x(2)(4)*x(3)(1)-y(2)(3)*y(3)(2)*x(1)(1)*x(3)(4)-y(1)(3)*y(2)(2)*x(3)(1)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(1)*x(3)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{2}{3}{2}{3}{4}) = (-y_{2, 2} y_{3, 3}) \del{1}{3}{1}{4} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{2}{3}{1}{4} +(y_{3, 3} x_{3, 4}) \eps{1}{2}{1}{2} +(-y_{3, 2} x_{3, 4}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{3, 4}) \eps{1}{3}{2}{3} +(-y_{1, 1} x_{3, 4}) \eps{2}{3}{2}{3} +(x_{3, 4}) \pho{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,3 2,4,4 Lead Term of Spoly: y(2)(2)*y(3)(4)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(2)(2)*y(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(4)*y(3)(2)+y(1)(2)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(3)(4)*x(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(3)(2)*x(3)(4) Lead Term of Product: -y(2)(4)*y(3)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,2,4 Quotient: x(3)(4) Lead Term of Product: -y(1)(4)*y(2)(2)*x(3)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(4)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(2))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(2)(2)*y(3)(4)*x(1)(4)*x(3)(1)+y(1)(4)*y(3)(2)*x(2)(4)*x(3)(1)-y(1)(2)*y(3)(4)*x(2)(4)*x(3)(1)-y(2)(4)*y(3)(2)*x(1)(1)*x(3)(4)-y(1)(4)*y(2)(2)*x(3)(1)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(1)*x(3)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{2}{3}{2}{4}{4}) = (-y_{2, 2} y_{3, 4}) \del{1}{3}{1}{4} +(-y_{1, 4} y_{3, 2}+y_{1, 2} y_{3, 4}) \del{2}{3}{1}{4} +(y_{3, 4} x_{3, 4}) \eps{1}{2}{1}{2} +(-y_{3, 2} x_{3, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{3, 4}) \eps{1}{3}{2}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{3}{2}{4} +(x_{3, 4}) \pho{1}{2}{3}{1}{2}{4} ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,3 3,4,4 Lead Term of Spoly: y(2)(3)*y(3)(4)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(2)(3)*y(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(4)*y(3)(3)+y(1)(3)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(3)(4)*x(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(3)(3)*x(3)(4) Lead Term of Product: -y(2)(4)*y(3)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,3,4 Quotient: x(3)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(3))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(2)(3)*y(3)(4)*x(1)(4)*x(3)(1)+y(1)(4)*y(3)(3)*x(2)(4)*x(3)(1)-y(1)(3)*y(3)(4)*x(2)(4)*x(3)(1)-y(2)(4)*y(3)(3)*x(1)(1)*x(3)(4)-y(1)(4)*y(2)(3)*x(3)(1)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(1)*x(3)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{2}{3}{3}{4}{4}) = (-y_{2, 3} y_{3, 4}) \del{1}{3}{1}{4} +(-y_{1, 4} y_{3, 3}+y_{1, 3} y_{3, 4}) \del{2}{3}{1}{4} +(y_{3, 4} x_{3, 4}) \eps{1}{2}{1}{3} +(-y_{3, 3} x_{3, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{3, 4}) \eps{1}{3}{3}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{3}{3}{4} +(x_{3, 4}) \pho{1}{2}{3}{1}{3}{4} ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,4 1,2,4 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(2)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(2)*x(4)(4)) - (-y(2)(2)*y(4)(1))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(4)*x(3)(1)+y(1)(2)*y(4)(1)*x(2)(4)*x(3)(1)-y(1)(1)*y(4)(2)*x(2)(4)*x(3)(1)-y(2)(2)*y(4)(1)*x(1)(1)*x(3)(4)-y(1)(2)*y(2)(1)*x(3)(1)*x(4)(4)+y(1)(1)*y(2)(2)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{2}{4}{1}{2}{4}) = (-y_{2, 1} y_{4, 2}) \del{1}{3}{1}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{2}{3}{1}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{3, 4}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{3, 4}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{1}{2} ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,4 1,3,4 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(3)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(1))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(4)*x(3)(1)+y(1)(3)*y(4)(1)*x(2)(4)*x(3)(1)-y(1)(1)*y(4)(3)*x(2)(4)*x(3)(1)-y(2)(3)*y(4)(1)*x(1)(1)*x(3)(4)-y(1)(3)*y(2)(1)*x(3)(1)*x(4)(4)+y(1)(1)*y(2)(3)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{2}{4}{1}{3}{4}) = (-y_{2, 1} y_{4, 3}) \del{1}{3}{1}{4} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{2}{3}{1}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{3, 4}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{3, 4}) \eps{1}{4}{1}{3} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{1}{3} ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,4 1,4,4 Lead Term of Spoly: y(2)(1)*y(4)(4)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(2)(1)*y(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(4)*y(4)(1)+y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,4 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(4)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(1))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(2)(1)*y(4)(4)*x(1)(4)*x(3)(1)+y(1)(4)*y(4)(1)*x(2)(4)*x(3)(1)-y(1)(1)*y(4)(4)*x(2)(4)*x(3)(1)-y(2)(4)*y(4)(1)*x(1)(1)*x(3)(4)-y(1)(4)*y(2)(1)*x(3)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{2}{4}{1}{4}{4}) = (-y_{2, 1} y_{4, 4}) \del{1}{3}{1}{4} +(-y_{1, 4} y_{4, 1}+y_{1, 1} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{3, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{3, 4}) \eps{1}{4}{1}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{1}{4} ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,4 2,3,4 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(3)*x(3)(4) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(3)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(2))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(4)*x(3)(1)+y(1)(3)*y(4)(2)*x(2)(4)*x(3)(1)-y(1)(2)*y(4)(3)*x(2)(4)*x(3)(1)-y(2)(3)*y(4)(2)*x(1)(1)*x(3)(4)-y(1)(3)*y(2)(2)*x(3)(1)*x(4)(4)+y(1)(2)*y(2)(3)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{2}{4}{2}{3}{4}) = (-y_{2, 2} y_{4, 3}) \del{1}{3}{1}{4} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{2}{3}{1}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{3}{4}{2}{4} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \del{3}{4}{3}{4} +(y_{4, 3} x_{3, 4}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{3, 4}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{3, 4}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{3} +(x_{4, 4}) \pho{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,4 2,4,4 Lead Term of Spoly: y(2)(2)*y(4)(4)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(2)(2)*y(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(4)*y(4)(2)+y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(4)*x(3)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,2,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(2))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(2)(2)*y(4)(4)*x(1)(4)*x(3)(1)+y(1)(4)*y(4)(2)*x(2)(4)*x(3)(1)-y(1)(2)*y(4)(4)*x(2)(4)*x(3)(1)-y(2)(4)*y(4)(2)*x(1)(1)*x(3)(4)-y(1)(4)*y(2)(2)*x(3)(1)*x(4)(4)+y(1)(2)*y(2)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{2}{4}{2}{4}{4}) = (-y_{2, 2} y_{4, 4}) \del{1}{3}{1}{4} +(-y_{1, 4} y_{4, 2}+y_{1, 2} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{3}{4}{2}{4} +(y_{4, 4} x_{3, 4}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{3, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{3, 4}) \eps{1}{4}{2}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{4} +(x_{4, 4}) \pho{1}{2}{3}{1}{2}{4} ---------------------------------- Delta: 1,3 1,4 Lam: 1,2,4 3,4,4 Lead Term of Spoly: y(2)(3)*y(4)(4)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(2)(3)*y(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(4)(4)*x(3)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(4)(3)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,3,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(3))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(2)(3)*y(4)(4)*x(1)(4)*x(3)(1)+y(1)(4)*y(4)(3)*x(2)(4)*x(3)(1)-y(1)(3)*y(4)(4)*x(2)(4)*x(3)(1)-y(2)(4)*y(4)(3)*x(1)(1)*x(3)(4)-y(1)(4)*y(2)(3)*x(3)(1)*x(4)(4)+y(1)(3)*y(2)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{2}{4}{3}{4}{4}) = (-y_{2, 3} y_{4, 4}) \del{1}{3}{1}{4} +(-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{3}{4}{3}{4} +(y_{4, 4} x_{3, 4}) \eps{1}{2}{1}{3} +(-y_{4, 3} x_{3, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{3, 4}) \eps{1}{4}{3}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{3}{4} +(x_{4, 4}) \pho{1}{2}{3}{1}{3}{4} ---------------------------------- Delta: 1,3 1,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 1,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(2)*x(3)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(2)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(3)(4)-y(1)(2)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(4)*x(3)(1)-y(3)(2)*y(4)(1)*x(1)(1)*x(3)(4)+y(1)(2)*y(4)(1)*x(3)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(3)(1)*x(3)(4)-y(1)(2)*y(3)(1)*x(3)(1)*x(4)(4)+y(1)(1)*y(3)(2)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{1}{3}{1}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{3, 4}) \eps{1}{3}{1}{2} +(y_{3, 1} x_{3, 4}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{3, 4}) \eps{3}{4}{1}{2} ---------------------------------- Delta: 1,3 1,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 1,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,3 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(3)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(3)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(4)*x(3)(1)-y(3)(3)*y(4)(1)*x(1)(1)*x(3)(4)+y(1)(3)*y(4)(1)*x(3)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(1)*x(3)(4)-y(1)(3)*y(3)(1)*x(3)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{1}{3}{1}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{3, 4}) \eps{1}{3}{1}{3} +(y_{3, 1} x_{3, 4}) \eps{1}{4}{1}{3} +(-y_{1, 1} x_{3, 4}) \eps{3}{4}{1}{3} ---------------------------------- Delta: 1,3 1,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,4 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(3)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(1)(4)*x(3)(1)-y(3)(4)*y(4)(1)*x(1)(1)*x(3)(4)+y(1)(4)*y(4)(1)*x(3)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(1)*x(3)(4)-y(1)(4)*y(3)(1)*x(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{1}{3}{1}{4} +(-y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{3, 4}) \eps{1}{3}{1}{4} +(y_{3, 1} x_{3, 4}) \eps{1}{4}{1}{4} +(-y_{1, 1} x_{3, 4}) \eps{3}{4}{1}{4} ---------------------------------- Delta: 1,3 1,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 1,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(2)*y(3)(1)-y(1)(1)*y(3)(2) Lead Term of Product: -y(1)(2)*y(3)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(4)(3)*x(3)(4) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(3)(2)*x(3)(4) Lead term is well behaved Divisor: Rho 1,3,3 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(1)(3)*y(3)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(4)*x(3)(1)-y(3)(3)*y(4)(2)*x(1)(1)*x(3)(4)+y(1)(3)*y(4)(2)*x(3)(1)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(1)*x(3)(4)-y(1)(3)*y(3)(2)*x(3)(1)*x(4)(4)+y(1)(2)*y(3)(3)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{1}{3}{1}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{3}{4}{2}{4} +(y_{1, 2} y_{3, 1}-y_{1, 1} y_{3, 2}) \del{3}{4}{3}{4} +(y_{4, 3} x_{3, 4}) \eps{1}{3}{1}{2} +(-y_{4, 2} x_{3, 4}) \eps{1}{3}{1}{3} +(y_{3, 1} x_{3, 4}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{3, 4}) \eps{3}{4}{2}{3} +(x_{4, 4}) \pho{1}{3}{3}{1}{2}{3} ---------------------------------- Delta: 1,3 1,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(4)(4)*x(3)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(3)(2)*x(3)(4) Lead term is well behaved Divisor: Rho 1,3,3 1,2,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(3)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(1)(4)*x(3)(1)-y(3)(4)*y(4)(2)*x(1)(1)*x(3)(4)+y(1)(4)*y(4)(2)*x(3)(1)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(1)*x(3)(4)-y(1)(4)*y(3)(2)*x(3)(1)*x(4)(4)+y(1)(2)*y(3)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{1}{3}{1}{4} +(-y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{3}{4}{2}{4} +(y_{4, 4} x_{3, 4}) \eps{1}{3}{1}{2} +(-y_{4, 2} x_{3, 4}) \eps{1}{3}{1}{4} +(y_{3, 1} x_{3, 4}) \eps{1}{4}{2}{4} +(-y_{1, 1} x_{3, 4}) \eps{3}{4}{2}{4} +(x_{4, 4}) \pho{1}{3}{3}{1}{2}{4} ---------------------------------- Delta: 1,3 1,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(1)(4)*x(3)(1) Divisor: Delta 1,3 1,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: y(4)(4)*x(3)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: -y(4)(3)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(1)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(3)(3)*x(3)(4) Lead term is well behaved Divisor: Rho 1,3,3 1,3,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(3)(3)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(1)(4)*x(3)(1)+x(1)(1)*x(3)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(1)(4)*x(3)(1)-y(3)(4)*y(4)(3)*x(1)(1)*x(3)(4)+y(1)(4)*y(4)(3)*x(3)(1)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(1)*x(3)(4)-y(1)(4)*y(3)(3)*x(3)(1)*x(4)(4)+y(1)(3)*y(3)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{1}{3}{1}{4}, \lam{1}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{1}{3}{1}{4} +(-y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{3}{4}{3}{4} +(y_{4, 4} x_{3, 4}) \eps{1}{3}{1}{3} +(-y_{4, 3} x_{3, 4}) \eps{1}{3}{1}{4} +(y_{3, 1} x_{3, 4}) \eps{1}{4}{3}{4} +(-y_{1, 1} x_{3, 4}) \eps{3}{4}{3}{4} +(x_{4, 4}) \pho{1}{3}{3}{1}{3}{4} ---------------------------------- Delta: 1,3 1,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 1,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,3 1,2,3 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(3)*x(3)(2) Divisor: Delta 1,3 2,3 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,2 Quotient: x(3)(3) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(2)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(2)*x(1)(3)+y(1)(2)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(2)*x(3)(3)) - (-y(2)(2)*y(3)(1))*(-x(1)(3)*x(3)(2)+x(1)(2)*x(3)(3)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(3)*x(3)(2)+y(1)(2)*y(3)(1)*x(2)(3)*x(3)(2)-y(1)(1)*y(3)(2)*x(2)(3)*x(3)(2)-y(2)(2)*y(3)(1)*x(1)(2)*x(3)(3)-y(1)(2)*y(2)(1)*x(3)(2)*x(3)(3)+y(1)(1)*y(2)(2)*x(3)(2)*x(3)(3) ----------- TeX output: S(\del{1}{3}{2}{3}, \lam{1}{2}{3}{1}{2}{3}) = (-y_{2, 1} y_{3, 2}) \del{1}{3}{2}{3} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{3}{2}{3} +(x_{3, 3}) \lam{1}{2}{3}{1}{2}{2} ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,3 1,3,3 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(3)*x(3)(2) Divisor: Delta 1,3 2,3 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(1)*x(3)(3) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(1)*x(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: x(3)(3) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(3)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(3)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(1))*(-x(1)(3)*x(3)(2)+x(1)(2)*x(3)(3)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(3)*x(3)(2)+y(1)(3)*y(3)(1)*x(2)(3)*x(3)(2)-y(1)(1)*y(3)(3)*x(2)(3)*x(3)(2)-y(2)(3)*y(3)(1)*x(1)(2)*x(3)(3)-y(1)(3)*y(2)(1)*x(3)(2)*x(3)(3)+y(1)(1)*y(2)(3)*x(3)(2)*x(3)(3) ----------- TeX output: S(\del{1}{3}{2}{3}, \lam{1}{2}{3}{1}{3}{3}) = (-y_{2, 1} y_{3, 3}) \del{1}{3}{2}{3} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{2}{3}{2}{3} +(-y_{3, 1} x_{3, 3}) \eps{1}{2}{2}{3} +(y_{2, 1} x_{3, 3}) \eps{1}{3}{2}{3} +(-y_{1, 1} x_{3, 3}) \eps{2}{3}{2}{3} +(x_{3, 3}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,3 2,3,3 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(3)*x(3)(2) Divisor: Delta 1,3 2,3 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(2)*x(3)(3) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(2)*x(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(2)*x(3)(3) Lead Term of Product: -y(1)(2)*y(3)(3)*x(2)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(3)*y(3)(2)*x(1)(3)+y(2)(2)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(2)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(2))*(-x(1)(3)*x(3)(2)+x(1)(2)*x(3)(3)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(3)*x(3)(2)+y(1)(3)*y(3)(2)*x(2)(3)*x(3)(2)-y(1)(2)*y(3)(3)*x(2)(3)*x(3)(2)-y(2)(3)*y(3)(2)*x(1)(2)*x(3)(3)-y(1)(3)*y(2)(2)*x(3)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(2)*x(3)(3) ----------- TeX output: S(\del{1}{3}{2}{3}, \lam{1}{2}{3}{2}{3}{3}) = (-y_{2, 2} y_{3, 3}) \del{1}{3}{2}{3} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{2}{3}{2}{3} +(-y_{3, 2} x_{3, 3}) \eps{1}{2}{2}{3} +(y_{2, 2} x_{3, 3}) \eps{1}{3}{2}{3} +(-y_{1, 2} x_{3, 3}) \eps{2}{3}{2}{3} ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,4 1,2,3 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(3)*x(3)(2) Divisor: Delta 1,3 2,3 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Lam 1,2,4 1,2,2 Quotient: x(3)(3) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(2)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(2)*x(4)(3)) - (-y(2)(2)*y(4)(1))*(-x(1)(3)*x(3)(2)+x(1)(2)*x(3)(3)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(3)*x(3)(2)+y(1)(2)*y(4)(1)*x(2)(3)*x(3)(2)-y(1)(1)*y(4)(2)*x(2)(3)*x(3)(2)-y(2)(2)*y(4)(1)*x(1)(2)*x(3)(3)-y(1)(2)*y(2)(1)*x(3)(2)*x(4)(3)+y(1)(1)*y(2)(2)*x(3)(2)*x(4)(3) ----------- TeX output: S(\del{1}{3}{2}{3}, \lam{1}{2}{4}{1}{2}{3}) = (-y_{2, 1} y_{4, 2}) \del{1}{3}{2}{3} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{2}{3}{2}{3} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{3}{4}{2}{3} +(x_{3, 3}) \lam{1}{2}{4}{1}{2}{2} ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,4 1,3,3 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(3)*x(3)(2) Divisor: Delta 1,3 2,3 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(1)*x(3)(3) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(1)*x(3)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: x(3)(3) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(3)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(3)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(1))*(-x(1)(3)*x(3)(2)+x(1)(2)*x(3)(3)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(3)*x(3)(2)+y(1)(3)*y(4)(1)*x(2)(3)*x(3)(2)-y(1)(1)*y(4)(3)*x(2)(3)*x(3)(2)-y(2)(3)*y(4)(1)*x(1)(2)*x(3)(3)-y(1)(3)*y(2)(1)*x(3)(2)*x(4)(3)+y(1)(1)*y(2)(3)*x(3)(2)*x(4)(3) ----------- TeX output: S(\del{1}{3}{2}{3}, \lam{1}{2}{4}{1}{3}{3}) = (-y_{2, 1} y_{4, 3}) \del{1}{3}{2}{3} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{2}{3}{2}{3} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{3}{4}{2}{3} +(-y_{4, 1} x_{3, 3}) \eps{1}{2}{2}{3} +(y_{2, 1} x_{3, 3}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{3, 3}) \eps{2}{4}{2}{3} +(x_{3, 3}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,4 2,3,3 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(3)*x(3)(2) Divisor: Delta 1,3 2,3 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(3)*y(2)(2)+y(1)(2)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(2)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(2)*x(3)(3) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(2)*x(3)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(2)*x(3)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(3)*y(4)(2)*x(1)(3)+y(2)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(2))*(-x(1)(3)*x(3)(2)+x(1)(2)*x(3)(3)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(3)*x(3)(2)+y(1)(3)*y(4)(2)*x(2)(3)*x(3)(2)-y(1)(2)*y(4)(3)*x(2)(3)*x(3)(2)-y(2)(3)*y(4)(2)*x(1)(2)*x(3)(3)-y(1)(3)*y(2)(2)*x(3)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(3)(2)*x(4)(3) ----------- TeX output: S(\del{1}{3}{2}{3}, \lam{1}{2}{4}{2}{3}{3}) = (-y_{2, 2} y_{4, 3}) \del{1}{3}{2}{3} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{2}{3}{2}{3} +(-y_{1, 3} y_{2, 2}+y_{1, 2} y_{2, 3}) \del{3}{4}{2}{3} +(-y_{4, 2} x_{3, 3}) \eps{1}{2}{2}{3} +(y_{2, 2} x_{3, 3}) \eps{1}{4}{2}{3} +(-y_{1, 2} x_{3, 3}) \eps{2}{4}{2}{3} ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,3,4 1,2,3 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(3)*x(3)(2) Divisor: Delta 1,3 2,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Lam 1,3,4 1,2,2 Quotient: x(3)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(2)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(3)(3)-y(1)(2)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(-x(1)(3)*x(3)(2)+x(1)(2)*x(3)(3)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(3)*x(3)(2)-y(3)(2)*y(4)(1)*x(1)(2)*x(3)(3)+y(1)(2)*y(4)(1)*x(3)(2)*x(3)(3)-y(1)(1)*y(4)(2)*x(3)(2)*x(3)(3)-y(1)(2)*y(3)(1)*x(3)(2)*x(4)(3)+y(1)(1)*y(3)(2)*x(3)(2)*x(4)(3) ----------- TeX output: S(\del{1}{3}{2}{3}, \lam{1}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \del{1}{3}{2}{3} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{3}{4}{2}{3} +(x_{3, 3}) \lam{1}{3}{4}{1}{2}{2} ---------------------------------- Delta: 1,3 2,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,3,4 1,3,3 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(3)*x(3)(2) Divisor: Delta 1,3 2,3 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(1)*x(3)(3) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(1)*x(3)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(1)*x(3)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(3)(2)*x(3)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: x(3)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(3)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(3)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(-x(1)(3)*x(3)(2)+x(1)(2)*x(3)(3)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(3)*x(3)(2)-y(3)(3)*y(4)(1)*x(1)(2)*x(3)(3)+y(1)(3)*y(4)(1)*x(3)(2)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(2)*x(3)(3)-y(1)(3)*y(3)(1)*x(3)(2)*x(4)(3)+y(1)(1)*y(3)(3)*x(3)(2)*x(4)(3) ----------- TeX output: S(\del{1}{3}{2}{3}, \lam{1}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \del{1}{3}{2}{3} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{3}{4}{2}{3} +(-y_{4, 1} x_{3, 3}) \eps{1}{3}{2}{3} +(y_{3, 1} x_{3, 3}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{3, 3}) \eps{3}{4}{2}{3} +(x_{3, 3}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Delta: 1,3 2,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,3,4 2,3,3 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(3)*x(3)(2) Divisor: Delta 1,3 2,3 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(2)*x(3)(3) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(2)*x(3)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(2)*x(3)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(3)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(-x(1)(3)*x(3)(2)+x(1)(2)*x(3)(3)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(3)*x(3)(2)-y(3)(3)*y(4)(2)*x(1)(2)*x(3)(3)+y(1)(3)*y(4)(2)*x(3)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(2)*x(3)(3)-y(1)(3)*y(3)(2)*x(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(3)(2)*x(4)(3) ----------- TeX output: S(\del{1}{3}{2}{3}, \lam{1}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \del{1}{3}{2}{3} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{3}{4}{2}{3} +(-y_{4, 2} x_{3, 3}) \eps{1}{3}{2}{3} +(y_{3, 2} x_{3, 3}) \eps{1}{4}{2}{3} +(-y_{1, 2} x_{3, 3}) \eps{3}{4}{2}{3} ---------------------------------- Delta: 1,3 2,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,3 1,2,4 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,2 Quotient: x(3)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(2)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(2)*x(1)(4)+y(1)(2)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(2)*x(3)(4)) - (-y(2)(2)*y(3)(1))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(4)*x(3)(2)+y(1)(2)*y(3)(1)*x(2)(4)*x(3)(2)-y(1)(1)*y(3)(2)*x(2)(4)*x(3)(2)-y(2)(2)*y(3)(1)*x(1)(2)*x(3)(4)-y(1)(2)*y(2)(1)*x(3)(2)*x(3)(4)+y(1)(1)*y(2)(2)*x(3)(2)*x(3)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{2}{3}{1}{2}{4}) = (-y_{2, 1} y_{3, 2}) \del{1}{3}{2}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{3}{2}{4} +(x_{3, 4}) \lam{1}{2}{3}{1}{2}{2} ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,3 1,3,4 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(1)*x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(3)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(1))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(4)*x(3)(2)+y(1)(3)*y(3)(1)*x(2)(4)*x(3)(2)-y(1)(1)*y(3)(3)*x(2)(4)*x(3)(2)-y(2)(3)*y(3)(1)*x(1)(2)*x(3)(4)-y(1)(3)*y(2)(1)*x(3)(2)*x(3)(4)+y(1)(1)*y(2)(3)*x(3)(2)*x(3)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{2}{3}{1}{3}{4}) = (-y_{2, 1} y_{3, 3}) \del{1}{3}{2}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{2}{3}{2}{4} +(-y_{3, 1} x_{3, 4}) \eps{1}{2}{2}{3} +(y_{2, 1} x_{3, 4}) \eps{1}{3}{2}{3} +(-y_{1, 1} x_{3, 4}) \eps{2}{3}{2}{3} +(x_{3, 4}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,3 1,4,4 Lead Term of Spoly: y(2)(1)*y(3)(4)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(2)(1)*y(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(3)(1)*x(3)(4) Lead Term of Product: -y(2)(4)*y(3)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: x(3)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(4)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(1))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(2)(1)*y(3)(4)*x(1)(4)*x(3)(2)+y(1)(4)*y(3)(1)*x(2)(4)*x(3)(2)-y(1)(1)*y(3)(4)*x(2)(4)*x(3)(2)-y(2)(4)*y(3)(1)*x(1)(2)*x(3)(4)-y(1)(4)*y(2)(1)*x(3)(2)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(2)*x(3)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{2}{3}{1}{4}{4}) = (-y_{2, 1} y_{3, 4}) \del{1}{3}{2}{4} +(-y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{2}{3}{2}{4} +(-y_{3, 1} x_{3, 4}) \eps{1}{2}{2}{4} +(y_{2, 1} x_{3, 4}) \eps{1}{3}{2}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{3}{2}{4} +(x_{3, 4}) \lam{1}{2}{3}{1}{2}{4} ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,3 2,3,4 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(2)*x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(2)*x(3)(4) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(3)(3)*x(2)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(3)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(2))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(4)*x(3)(2)+y(1)(3)*y(3)(2)*x(2)(4)*x(3)(2)-y(1)(2)*y(3)(3)*x(2)(4)*x(3)(2)-y(2)(3)*y(3)(2)*x(1)(2)*x(3)(4)-y(1)(3)*y(2)(2)*x(3)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(2)*x(3)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{2}{3}{2}{3}{4}) = (-y_{2, 2} y_{3, 3}) \del{1}{3}{2}{4} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{2}{3}{2}{4} +(-y_{3, 2} x_{3, 4}) \eps{1}{2}{2}{3} +(y_{2, 2} x_{3, 4}) \eps{1}{3}{2}{3} +(-y_{1, 2} x_{3, 4}) \eps{2}{3}{2}{3} ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,3 2,4,4 Lead Term of Spoly: y(2)(2)*y(3)(4)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(2)(2)*y(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(4)*y(3)(2)+y(1)(2)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(3)(2)*x(3)(4) Lead Term of Product: -y(2)(4)*y(3)(2)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: y(2)(2)*x(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(2)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(4)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(2))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(2)(2)*y(3)(4)*x(1)(4)*x(3)(2)+y(1)(4)*y(3)(2)*x(2)(4)*x(3)(2)-y(1)(2)*y(3)(4)*x(2)(4)*x(3)(2)-y(2)(4)*y(3)(2)*x(1)(2)*x(3)(4)-y(1)(4)*y(2)(2)*x(3)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(2)*x(3)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{2}{3}{2}{4}{4}) = (-y_{2, 2} y_{3, 4}) \del{1}{3}{2}{4} +(-y_{1, 4} y_{3, 2}+y_{1, 2} y_{3, 4}) \del{2}{3}{2}{4} +(-y_{3, 2} x_{3, 4}) \eps{1}{2}{2}{4} +(y_{2, 2} x_{3, 4}) \eps{1}{3}{2}{4} +(-y_{1, 2} x_{3, 4}) \eps{2}{3}{2}{4} ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,3 3,4,4 Lead Term of Spoly: y(2)(3)*y(3)(4)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(2)(3)*y(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(4)*y(3)(3)+y(1)(3)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(3)(4)*x(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(3)(3)*x(3)(4) Lead Term of Product: -y(2)(4)*y(3)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(2)*x(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 2,3,4 Quotient: x(3)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(3))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(2)(3)*y(3)(4)*x(1)(4)*x(3)(2)+y(1)(4)*y(3)(3)*x(2)(4)*x(3)(2)-y(1)(3)*y(3)(4)*x(2)(4)*x(3)(2)-y(2)(4)*y(3)(3)*x(1)(2)*x(3)(4)-y(1)(4)*y(2)(3)*x(3)(2)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(2)*x(3)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{2}{3}{3}{4}{4}) = (-y_{2, 3} y_{3, 4}) \del{1}{3}{2}{4} +(-y_{1, 4} y_{3, 3}+y_{1, 3} y_{3, 4}) \del{2}{3}{2}{4} +(y_{3, 4} x_{3, 4}) \eps{1}{2}{2}{3} +(-y_{3, 3} x_{3, 4}) \eps{1}{2}{2}{4} +(y_{2, 2} x_{3, 4}) \eps{1}{3}{3}{4} +(-y_{1, 2} x_{3, 4}) \eps{2}{3}{3}{4} +(x_{3, 4}) \pho{1}{2}{3}{2}{3}{4} ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,4 1,2,4 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Lam 1,2,4 1,2,2 Quotient: x(3)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(2)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(2)*x(4)(4)) - (-y(2)(2)*y(4)(1))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(4)*x(3)(2)+y(1)(2)*y(4)(1)*x(2)(4)*x(3)(2)-y(1)(1)*y(4)(2)*x(2)(4)*x(3)(2)-y(2)(2)*y(4)(1)*x(1)(2)*x(3)(4)-y(1)(2)*y(2)(1)*x(3)(2)*x(4)(4)+y(1)(1)*y(2)(2)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{2}{4}{1}{2}{4}) = (-y_{2, 1} y_{4, 2}) \del{1}{3}{2}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{2}{3}{2}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{3}{4}{2}{4} +(x_{3, 4}) \lam{1}{2}{4}{1}{2}{2} ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,4 1,3,4 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(3)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(1))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(4)*x(3)(2)+y(1)(3)*y(4)(1)*x(2)(4)*x(3)(2)-y(1)(1)*y(4)(3)*x(2)(4)*x(3)(2)-y(2)(3)*y(4)(1)*x(1)(2)*x(3)(4)-y(1)(3)*y(2)(1)*x(3)(2)*x(4)(4)+y(1)(1)*y(2)(3)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{2}{4}{1}{3}{4}) = (-y_{2, 1} y_{4, 3}) \del{1}{3}{2}{4} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{2}{3}{2}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{3}{4}{2}{4} +(-y_{4, 1} x_{3, 4}) \eps{1}{2}{2}{3} +(y_{2, 1} x_{3, 4}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{3} +(x_{3, 4}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,4 1,4,4 Lead Term of Spoly: y(2)(1)*y(4)(4)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(2)(1)*y(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(4)*y(4)(1)+y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: x(3)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(4)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(1))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(2)(1)*y(4)(4)*x(1)(4)*x(3)(2)+y(1)(4)*y(4)(1)*x(2)(4)*x(3)(2)-y(1)(1)*y(4)(4)*x(2)(4)*x(3)(2)-y(2)(4)*y(4)(1)*x(1)(2)*x(3)(4)-y(1)(4)*y(2)(1)*x(3)(2)*x(4)(4)+y(1)(1)*y(2)(4)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{2}{4}{1}{4}{4}) = (-y_{2, 1} y_{4, 4}) \del{1}{3}{2}{4} +(-y_{1, 4} y_{4, 1}+y_{1, 1} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{3}{4}{2}{4} +(-y_{4, 1} x_{3, 4}) \eps{1}{2}{2}{4} +(y_{2, 1} x_{3, 4}) \eps{1}{4}{2}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{2}{4} +(x_{3, 4}) \lam{1}{2}{4}{1}{2}{4} ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,4 2,3,4 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(3)*y(2)(2)+y(1)(2)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(2)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(2)*x(3)(4) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(3)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(2))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(4)*x(3)(2)+y(1)(3)*y(4)(2)*x(2)(4)*x(3)(2)-y(1)(2)*y(4)(3)*x(2)(4)*x(3)(2)-y(2)(3)*y(4)(2)*x(1)(2)*x(3)(4)-y(1)(3)*y(2)(2)*x(3)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{2}{4}{2}{3}{4}) = (-y_{2, 2} y_{4, 3}) \del{1}{3}{2}{4} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{2}{3}{2}{4} +(-y_{1, 3} y_{2, 2}+y_{1, 2} y_{2, 3}) \del{3}{4}{2}{4} +(-y_{4, 2} x_{3, 4}) \eps{1}{2}{2}{3} +(y_{2, 2} x_{3, 4}) \eps{1}{4}{2}{3} +(-y_{1, 2} x_{3, 4}) \eps{2}{4}{2}{3} ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,4 2,4,4 Lead Term of Spoly: y(2)(2)*y(4)(4)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(2)(2)*y(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(4)*y(4)(2)+y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(4)*y(2)(2)+y(1)(2)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(2)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(2)(2)*x(3)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(2))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(2)(2)*y(4)(4)*x(1)(4)*x(3)(2)+y(1)(4)*y(4)(2)*x(2)(4)*x(3)(2)-y(1)(2)*y(4)(4)*x(2)(4)*x(3)(2)-y(2)(4)*y(4)(2)*x(1)(2)*x(3)(4)-y(1)(4)*y(2)(2)*x(3)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{2}{4}{2}{4}{4}) = (-y_{2, 2} y_{4, 4}) \del{1}{3}{2}{4} +(-y_{1, 4} y_{4, 2}+y_{1, 2} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{1, 4} y_{2, 2}+y_{1, 2} y_{2, 4}) \del{3}{4}{2}{4} +(-y_{4, 2} x_{3, 4}) \eps{1}{2}{2}{4} +(y_{2, 2} x_{3, 4}) \eps{1}{4}{2}{4} +(-y_{1, 2} x_{3, 4}) \eps{2}{4}{2}{4} ---------------------------------- Delta: 1,3 2,4 Lam: 1,2,4 3,4,4 Lead Term of Spoly: y(2)(3)*y(4)(4)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(2)(3)*y(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(2)(2)+y(1)(2)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(4)*x(3)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(4)(3)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(2)*x(3)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Rho 1,2,3 2,3,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(3))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(2)(3)*y(4)(4)*x(1)(4)*x(3)(2)+y(1)(4)*y(4)(3)*x(2)(4)*x(3)(2)-y(1)(3)*y(4)(4)*x(2)(4)*x(3)(2)-y(2)(4)*y(4)(3)*x(1)(2)*x(3)(4)-y(1)(4)*y(2)(3)*x(3)(2)*x(4)(4)+y(1)(3)*y(2)(4)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{2}{4}{3}{4}{4}) = (-y_{2, 3} y_{4, 4}) \del{1}{3}{2}{4} +(-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{1, 4} y_{2, 2}+y_{1, 2} y_{2, 4}) \del{3}{4}{3}{4} +(y_{4, 4} x_{3, 4}) \eps{1}{2}{2}{3} +(-y_{4, 3} x_{3, 4}) \eps{1}{2}{2}{4} +(y_{2, 2} x_{3, 4}) \eps{1}{4}{3}{4} +(-y_{1, 2} x_{3, 4}) \eps{2}{4}{3}{4} +(x_{4, 4}) \pho{1}{2}{3}{2}{3}{4} ---------------------------------- Delta: 1,3 2,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 1,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Lam 1,3,4 1,2,2 Quotient: x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(2)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(3)(4)-y(1)(2)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(4)*x(3)(2)-y(3)(2)*y(4)(1)*x(1)(2)*x(3)(4)+y(1)(2)*y(4)(1)*x(3)(2)*x(3)(4)-y(1)(1)*y(4)(2)*x(3)(2)*x(3)(4)-y(1)(2)*y(3)(1)*x(3)(2)*x(4)(4)+y(1)(1)*y(3)(2)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{1}{3}{2}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{3}{4}{2}{4} +(x_{3, 4}) \lam{1}{3}{4}{1}{2}{2} ---------------------------------- Delta: 1,3 2,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 1,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(3)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(3)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(4)*x(3)(2)-y(3)(3)*y(4)(1)*x(1)(2)*x(3)(4)+y(1)(3)*y(4)(1)*x(3)(2)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(2)*x(3)(4)-y(1)(3)*y(3)(1)*x(3)(2)*x(4)(4)+y(1)(1)*y(3)(3)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{1}{3}{2}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{3}{4}{2}{4} +(-y_{4, 1} x_{3, 4}) \eps{1}{3}{2}{3} +(y_{3, 1} x_{3, 4}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{3, 4}) \eps{3}{4}{2}{3} +(x_{3, 4}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Delta: 1,3 2,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(3)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,4 Quotient: x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(1)(4)*x(3)(2)-y(3)(4)*y(4)(1)*x(1)(2)*x(3)(4)+y(1)(4)*y(4)(1)*x(3)(2)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(2)*x(3)(4)-y(1)(4)*y(3)(1)*x(3)(2)*x(4)(4)+y(1)(1)*y(3)(4)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{1}{3}{2}{4} +(-y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{3}{4}{2}{4} +(-y_{4, 1} x_{3, 4}) \eps{1}{3}{2}{4} +(y_{3, 1} x_{3, 4}) \eps{1}{4}{2}{4} +(-y_{1, 1} x_{3, 4}) \eps{3}{4}{2}{4} +(x_{3, 4}) \lam{1}{3}{4}{1}{2}{4} ---------------------------------- Delta: 1,3 2,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 1,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(2)*x(3)(4) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(4)(3)*x(3)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(4)*x(3)(2)-y(3)(3)*y(4)(2)*x(1)(2)*x(3)(4)+y(1)(3)*y(4)(2)*x(3)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(2)*x(3)(4)-y(1)(3)*y(3)(2)*x(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{1}{3}{2}{4} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{3}{4}{2}{4} +(-y_{4, 2} x_{3, 4}) \eps{1}{3}{2}{3} +(y_{3, 2} x_{3, 4}) \eps{1}{4}{2}{3} +(-y_{1, 2} x_{3, 4}) \eps{3}{4}{2}{3} ---------------------------------- Delta: 1,3 2,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(4)*y(3)(2)+y(1)(2)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(3)(2)*x(3)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(3)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(1)(4)*x(3)(2)-y(3)(4)*y(4)(2)*x(1)(2)*x(3)(4)+y(1)(4)*y(4)(2)*x(3)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(2)*x(3)(4)-y(1)(4)*y(3)(2)*x(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{1}{3}{2}{4} +(-y_{1, 4} y_{3, 2}+y_{1, 2} y_{3, 4}) \del{3}{4}{2}{4} +(-y_{4, 2} x_{3, 4}) \eps{1}{3}{2}{4} +(y_{3, 2} x_{3, 4}) \eps{1}{4}{2}{4} +(-y_{1, 2} x_{3, 4}) \eps{3}{4}{2}{4} ---------------------------------- Delta: 1,3 2,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(1)(4)*x(3)(2) Divisor: Delta 1,3 2,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(3)(2)+y(1)(2)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(4)(4)*x(3)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(4)(3)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(1)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(2)*x(3)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(3)(3)*x(3)(4) Lead term is well behaved Divisor: Rho 1,3,3 2,3,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(3)(3)*x(3)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(1)(4)*x(3)(2)+x(1)(2)*x(3)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(1)(4)*x(3)(2)-y(3)(4)*y(4)(3)*x(1)(2)*x(3)(4)+y(1)(4)*y(4)(3)*x(3)(2)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(2)*x(3)(4)-y(1)(4)*y(3)(3)*x(3)(2)*x(4)(4)+y(1)(3)*y(3)(4)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{1}{3}{2}{4}, \lam{1}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{1}{3}{2}{4} +(-y_{1, 4} y_{3, 2}+y_{1, 2} y_{3, 4}) \del{3}{4}{3}{4} +(y_{4, 4} x_{3, 4}) \eps{1}{3}{2}{3} +(-y_{4, 3} x_{3, 4}) \eps{1}{3}{2}{4} +(y_{3, 2} x_{3, 4}) \eps{1}{4}{3}{4} +(-y_{1, 2} x_{3, 4}) \eps{3}{4}{3}{4} +(x_{4, 4}) \pho{1}{3}{3}{2}{3}{4} ---------------------------------- Delta: 1,3 2,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 2,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,3 1,2,4 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(2)(2)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(2)*x(1)(4)+y(1)(2)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(2)*x(3)(4)) - (-y(2)(2)*y(3)(1))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(4)*x(3)(3)+y(1)(2)*y(3)(1)*x(2)(4)*x(3)(3)-y(1)(1)*y(3)(2)*x(2)(4)*x(3)(3)-y(2)(2)*y(3)(1)*x(1)(3)*x(3)(4)-y(1)(2)*y(2)(1)*x(3)(3)*x(3)(4)+y(1)(1)*y(2)(2)*x(3)(3)*x(3)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{2}{3}{1}{2}{4}) = (-y_{2, 1} y_{3, 2}) \del{1}{3}{3}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{3}{3}{4} +(x_{3, 4}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,3 1,3,4 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,3,3 Quotient: x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(2)(3)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(1))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(4)*x(3)(3)+y(1)(3)*y(3)(1)*x(2)(4)*x(3)(3)-y(1)(1)*y(3)(3)*x(2)(4)*x(3)(3)-y(2)(3)*y(3)(1)*x(1)(3)*x(3)(4)-y(1)(3)*y(2)(1)*x(3)(3)*x(3)(4)+y(1)(1)*y(2)(3)*x(3)(3)*x(3)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{2}{3}{1}{3}{4}) = (-y_{2, 1} y_{3, 3}) \del{1}{3}{3}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{2}{3}{3}{4} +(x_{3, 4}) \lam{1}{2}{3}{1}{3}{3} ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,3 1,4,4 Lead Term of Spoly: y(2)(1)*y(3)(4)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(2)(1)*y(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(3)(1)*x(3)(4) Lead Term of Product: -y(2)(4)*y(3)(1)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,3,4 Quotient: x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(2)(4)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(1))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(2)(1)*y(3)(4)*x(1)(4)*x(3)(3)+y(1)(4)*y(3)(1)*x(2)(4)*x(3)(3)-y(1)(1)*y(3)(4)*x(2)(4)*x(3)(3)-y(2)(4)*y(3)(1)*x(1)(3)*x(3)(4)-y(1)(4)*y(2)(1)*x(3)(3)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(3)*x(3)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{2}{3}{1}{4}{4}) = (-y_{2, 1} y_{3, 4}) \del{1}{3}{3}{4} +(-y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{2}{3}{3}{4} +(-y_{3, 1} x_{3, 4}) \eps{1}{2}{3}{4} +(y_{2, 1} x_{3, 4}) \eps{1}{3}{3}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{3}{3}{4} +(x_{3, 4}) \lam{1}{2}{3}{1}{3}{4} ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,3 2,3,4 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Lam 1,2,3 2,3,3 Quotient: x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(2)(3)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(2))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(4)*x(3)(3)+y(1)(3)*y(3)(2)*x(2)(4)*x(3)(3)-y(1)(2)*y(3)(3)*x(2)(4)*x(3)(3)-y(2)(3)*y(3)(2)*x(1)(3)*x(3)(4)-y(1)(3)*y(2)(2)*x(3)(3)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(3)*x(3)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{2}{3}{2}{3}{4}) = (-y_{2, 2} y_{3, 3}) \del{1}{3}{3}{4} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{2}{3}{3}{4} +(x_{3, 4}) \lam{1}{2}{3}{2}{3}{3} ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,3 2,4,4 Lead Term of Spoly: y(2)(2)*y(3)(4)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(2)(2)*y(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(3)(2)+y(1)(2)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(3)(2)*x(3)(4) Lead Term of Product: -y(2)(4)*y(3)(2)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(2)*x(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,2,3 2,3,4 Quotient: x(3)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(2)(4)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(2))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(2)(2)*y(3)(4)*x(1)(4)*x(3)(3)+y(1)(4)*y(3)(2)*x(2)(4)*x(3)(3)-y(1)(2)*y(3)(4)*x(2)(4)*x(3)(3)-y(2)(4)*y(3)(2)*x(1)(3)*x(3)(4)-y(1)(4)*y(2)(2)*x(3)(3)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(3)*x(3)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{2}{3}{2}{4}{4}) = (-y_{2, 2} y_{3, 4}) \del{1}{3}{3}{4} +(-y_{1, 4} y_{3, 2}+y_{1, 2} y_{3, 4}) \del{2}{3}{3}{4} +(-y_{3, 2} x_{3, 4}) \eps{1}{2}{3}{4} +(y_{2, 2} x_{3, 4}) \eps{1}{3}{3}{4} +(-y_{1, 2} x_{3, 4}) \eps{2}{3}{3}{4} +(x_{3, 4}) \lam{1}{2}{3}{2}{3}{4} ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,3 3,4,4 Lead Term of Spoly: y(2)(3)*y(3)(4)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(2)(3)*y(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(3)(3)+y(1)(3)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(3)(3)*x(3)(4) Lead Term of Product: -y(2)(4)*y(3)(3)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(3)*x(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(3)*x(3)(4) Lead Term of Product: -y(1)(3)*y(3)(4)*x(2)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(3))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(2)(3)*y(3)(4)*x(1)(4)*x(3)(3)+y(1)(4)*y(3)(3)*x(2)(4)*x(3)(3)-y(1)(3)*y(3)(4)*x(2)(4)*x(3)(3)-y(2)(4)*y(3)(3)*x(1)(3)*x(3)(4)-y(1)(4)*y(2)(3)*x(3)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(3)*x(3)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{2}{3}{3}{4}{4}) = (-y_{2, 3} y_{3, 4}) \del{1}{3}{3}{4} +(-y_{1, 4} y_{3, 3}+y_{1, 3} y_{3, 4}) \del{2}{3}{3}{4} +(-y_{3, 3} x_{3, 4}) \eps{1}{2}{3}{4} +(y_{2, 3} x_{3, 4}) \eps{1}{3}{3}{4} +(-y_{1, 3} x_{3, 4}) \eps{2}{3}{3}{4} ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,4 1,2,4 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(2)*y(2)(1)+y(1)(1)*y(2)(2) Lead Term of Product: y(1)(2)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(2)(2)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(2)*x(4)(4)) - (-y(2)(2)*y(4)(1))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(4)*x(3)(3)+y(1)(2)*y(4)(1)*x(2)(4)*x(3)(3)-y(1)(1)*y(4)(2)*x(2)(4)*x(3)(3)-y(2)(2)*y(4)(1)*x(1)(3)*x(3)(4)-y(1)(2)*y(2)(1)*x(3)(3)*x(4)(4)+y(1)(1)*y(2)(2)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{2}{4}{1}{2}{4}) = (-y_{2, 1} y_{4, 2}) \del{1}{3}{3}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{2}{3}{3}{4} +(-y_{1, 2} y_{2, 1}+y_{1, 1} y_{2, 2}) \del{3}{4}{3}{4} +(x_{3, 4}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,4 1,3,4 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(3)*y(2)(1)+y(1)(1)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,3,3 Quotient: x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(2)(3)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(1))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(4)*x(3)(3)+y(1)(3)*y(4)(1)*x(2)(4)*x(3)(3)-y(1)(1)*y(4)(3)*x(2)(4)*x(3)(3)-y(2)(3)*y(4)(1)*x(1)(3)*x(3)(4)-y(1)(3)*y(2)(1)*x(3)(3)*x(4)(4)+y(1)(1)*y(2)(3)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{2}{4}{1}{3}{4}) = (-y_{2, 1} y_{4, 3}) \del{1}{3}{3}{4} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{2}{3}{3}{4} +(-y_{1, 3} y_{2, 1}+y_{1, 1} y_{2, 3}) \del{3}{4}{3}{4} +(x_{3, 4}) \lam{1}{2}{4}{1}{3}{3} ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,4 1,4,4 Lead Term of Spoly: y(2)(1)*y(4)(4)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(2)(1)*y(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(4)(1)+y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(2)(1)+y(1)(1)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(1)*x(3)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,3,4 Quotient: x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(2)(4)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(1))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(2)(1)*y(4)(4)*x(1)(4)*x(3)(3)+y(1)(4)*y(4)(1)*x(2)(4)*x(3)(3)-y(1)(1)*y(4)(4)*x(2)(4)*x(3)(3)-y(2)(4)*y(4)(1)*x(1)(3)*x(3)(4)-y(1)(4)*y(2)(1)*x(3)(3)*x(4)(4)+y(1)(1)*y(2)(4)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{2}{4}{1}{4}{4}) = (-y_{2, 1} y_{4, 4}) \del{1}{3}{3}{4} +(-y_{1, 4} y_{4, 1}+y_{1, 1} y_{4, 4}) \del{2}{3}{3}{4} +(-y_{1, 4} y_{2, 1}+y_{1, 1} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{4, 1} x_{3, 4}) \eps{1}{2}{3}{4} +(y_{2, 1} x_{3, 4}) \eps{1}{4}{3}{4} +(-y_{1, 1} x_{3, 4}) \eps{2}{4}{3}{4} +(x_{3, 4}) \lam{1}{2}{4}{1}{3}{4} ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,4 2,3,4 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(3)*y(2)(2)+y(1)(2)*y(2)(3) Lead Term of Product: y(1)(3)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,4 2,3,3 Quotient: x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(2)(3)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(2))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(4)*x(3)(3)+y(1)(3)*y(4)(2)*x(2)(4)*x(3)(3)-y(1)(2)*y(4)(3)*x(2)(4)*x(3)(3)-y(2)(3)*y(4)(2)*x(1)(3)*x(3)(4)-y(1)(3)*y(2)(2)*x(3)(3)*x(4)(4)+y(1)(2)*y(2)(3)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{2}{4}{2}{3}{4}) = (-y_{2, 2} y_{4, 3}) \del{1}{3}{3}{4} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{2}{3}{3}{4} +(-y_{1, 3} y_{2, 2}+y_{1, 2} y_{2, 3}) \del{3}{4}{3}{4} +(x_{3, 4}) \lam{1}{2}{4}{2}{3}{3} ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,4 2,4,4 Lead Term of Spoly: y(2)(2)*y(4)(4)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(2)(2)*y(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(4)(2)+y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(2)(2)+y(1)(2)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(2)*x(3)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,2,4 2,3,4 Quotient: x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(2))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(2)(2)*y(4)(4)*x(1)(4)*x(3)(3)+y(1)(4)*y(4)(2)*x(2)(4)*x(3)(3)-y(1)(2)*y(4)(4)*x(2)(4)*x(3)(3)-y(2)(4)*y(4)(2)*x(1)(3)*x(3)(4)-y(1)(4)*y(2)(2)*x(3)(3)*x(4)(4)+y(1)(2)*y(2)(4)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{2}{4}{2}{4}{4}) = (-y_{2, 2} y_{4, 4}) \del{1}{3}{3}{4} +(-y_{1, 4} y_{4, 2}+y_{1, 2} y_{4, 4}) \del{2}{3}{3}{4} +(-y_{1, 4} y_{2, 2}+y_{1, 2} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{4, 2} x_{3, 4}) \eps{1}{2}{3}{4} +(y_{2, 2} x_{3, 4}) \eps{1}{4}{3}{4} +(-y_{1, 2} x_{3, 4}) \eps{2}{4}{3}{4} +(x_{3, 4}) \lam{1}{2}{4}{2}{3}{4} ---------------------------------- Delta: 1,3 3,4 Lam: 1,2,4 3,4,4 Lead Term of Spoly: y(2)(3)*y(4)(4)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(2)(3)*y(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 2,3 3,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(2)(3)+y(1)(3)*y(2)(4) Lead Term of Product: y(1)(4)*y(2)(3)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(4)(3)*x(3)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(3)*x(3)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(3)*x(3)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(3))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(2)(3)*y(4)(4)*x(1)(4)*x(3)(3)+y(1)(4)*y(4)(3)*x(2)(4)*x(3)(3)-y(1)(3)*y(4)(4)*x(2)(4)*x(3)(3)-y(2)(4)*y(4)(3)*x(1)(3)*x(3)(4)-y(1)(4)*y(2)(3)*x(3)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{2}{4}{3}{4}{4}) = (-y_{2, 3} y_{4, 4}) \del{1}{3}{3}{4} +(-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{2}{3}{3}{4} +(-y_{1, 4} y_{2, 3}+y_{1, 3} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{4, 3} x_{3, 4}) \eps{1}{2}{3}{4} +(y_{2, 3} x_{3, 4}) \eps{1}{4}{3}{4} +(-y_{1, 3} x_{3, 4}) \eps{2}{4}{3}{4} ---------------------------------- Delta: 1,3 3,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 1,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(3)(2)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(3)(4)-y(1)(2)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(4)*x(3)(3)-y(3)(2)*y(4)(1)*x(1)(3)*x(3)(4)+y(1)(2)*y(4)(1)*x(3)(3)*x(3)(4)-y(1)(1)*y(4)(2)*x(3)(3)*x(3)(4)-y(1)(2)*y(3)(1)*x(3)(3)*x(4)(4)+y(1)(1)*y(3)(2)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{1}{3}{3}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{3}{4}{3}{4} +(x_{3, 4}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Delta: 1,3 3,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 1,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,3,3 Quotient: x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(3)(3)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(4)*x(3)(3)-y(3)(3)*y(4)(1)*x(1)(3)*x(3)(4)+y(1)(3)*y(4)(1)*x(3)(3)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(3)(3)*x(4)(4)+y(1)(1)*y(3)(3)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{1}{3}{3}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{3}{4}{3}{4} +(x_{3, 4}) \lam{1}{3}{4}{1}{3}{3} ---------------------------------- Delta: 1,3 3,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(1)*x(3)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(3)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,3,4 Quotient: x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(1)(4)*x(3)(3)-y(3)(4)*y(4)(1)*x(1)(3)*x(3)(4)+y(1)(4)*y(4)(1)*x(3)(3)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(3)*x(3)(4)-y(1)(4)*y(3)(1)*x(3)(3)*x(4)(4)+y(1)(1)*y(3)(4)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{1}{3}{3}{4} +(-y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{3}{4}{3}{4} +(-y_{4, 1} x_{3, 4}) \eps{1}{3}{3}{4} +(y_{3, 1} x_{3, 4}) \eps{1}{4}{3}{4} +(-y_{1, 1} x_{3, 4}) \eps{3}{4}{3}{4} +(x_{3, 4}) \lam{1}{3}{4}{1}{3}{4} ---------------------------------- Delta: 1,3 3,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 1,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,3,4 2,3,3 Quotient: x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(4)*x(3)(3)-y(3)(3)*y(4)(2)*x(1)(3)*x(3)(4)+y(1)(3)*y(4)(2)*x(3)(3)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(3)(3)*x(4)(4)+y(1)(2)*y(3)(3)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{1}{3}{3}{4} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{3}{4}{3}{4} +(x_{3, 4}) \lam{1}{3}{4}{2}{3}{3} ---------------------------------- Delta: 1,3 3,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(3)(2)+y(1)(2)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(2)*x(3)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(2)*x(3)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(3)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 1,3,4 2,3,4 Quotient: x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(1)(4)*x(3)(3)-y(3)(4)*y(4)(2)*x(1)(3)*x(3)(4)+y(1)(4)*y(4)(2)*x(3)(3)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(3)*x(3)(4)-y(1)(4)*y(3)(2)*x(3)(3)*x(4)(4)+y(1)(2)*y(3)(4)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{1}{3}{3}{4} +(-y_{1, 4} y_{3, 2}+y_{1, 2} y_{3, 4}) \del{3}{4}{3}{4} +(-y_{4, 2} x_{3, 4}) \eps{1}{3}{3}{4} +(y_{3, 2} x_{3, 4}) \eps{1}{4}{3}{4} +(-y_{1, 2} x_{3, 4}) \eps{3}{4}{3}{4} +(x_{3, 4}) \lam{1}{3}{4}{2}{3}{4} ---------------------------------- Delta: 1,3 3,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(1)(4)*x(3)(3) Divisor: Delta 1,3 3,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(3)(3)+y(1)(3)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(4)(3)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(3)*x(3)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(3)*x(3)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(3)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(1)(4)*x(3)(3)+x(1)(3)*x(3)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(1)(4)*x(3)(3)-y(3)(4)*y(4)(3)*x(1)(3)*x(3)(4)+y(1)(4)*y(4)(3)*x(3)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(3)*x(3)(4)-y(1)(4)*y(3)(3)*x(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{1}{3}{3}{4}, \lam{1}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{1}{3}{3}{4} +(-y_{1, 4} y_{3, 3}+y_{1, 3} y_{3, 4}) \del{3}{4}{3}{4} +(-y_{4, 3} x_{3, 4}) \eps{1}{3}{3}{4} +(y_{3, 3} x_{3, 4}) \eps{1}{4}{3}{4} +(-y_{1, 3} x_{3, 4}) \eps{3}{4}{3}{4} ---------------------------------- Delta: 1,3 3,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,3 3,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,3 1,2,2 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(2)*x(4)(1) Divisor: Delta 1,4 1,2 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(2)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,2 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(2)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,2 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*x(3)(2)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(1)*x(4)(2) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(1)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(2)(1)*x(4)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(1)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(1)*x(4)(2) Lead Term of Product: -y(1)(1)*y(3)(2)*x(2)(1)*x(4)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(2)*y(3)(1)*x(1)(2)+y(2)(1)*y(3)(2)*x(1)(2)+y(1)(2)*y(3)(1)*x(2)(2)-y(1)(1)*y(3)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(3)(2)+y(1)(1)*y(2)(2)*x(3)(2)) - (-y(2)(2)*y(3)(1))*(-x(1)(2)*x(4)(1)+x(1)(1)*x(4)(2)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(2)*x(4)(1)+y(1)(2)*y(3)(1)*x(2)(2)*x(4)(1)-y(1)(1)*y(3)(2)*x(2)(2)*x(4)(1)-y(1)(2)*y(2)(1)*x(3)(2)*x(4)(1)+y(1)(1)*y(2)(2)*x(3)(2)*x(4)(1)-y(2)(2)*y(3)(1)*x(1)(1)*x(4)(2) ----------- TeX output: S(\del{1}{4}{1}{2}, \lam{1}{2}{3}{1}{2}{2}) = (-y_{2, 1} y_{3, 2}) \del{1}{4}{1}{2} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{4}{1}{2} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \del{3}{4}{1}{2} +(-y_{3, 1} x_{4, 2}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{4, 2}) \eps{1}{3}{1}{2} +(-y_{1, 1} x_{4, 2}) \eps{2}{3}{1}{2} ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,4 1,2,2 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(2)*x(4)(1) Divisor: Delta 1,4 1,2 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(2)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,2 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(2)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(1)*x(4)(2) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(1)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(2)(1)*x(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(1)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(1)*x(4)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(1)*x(4)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(2)*y(4)(1)*x(1)(2)+y(2)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(2)(2)-y(1)(1)*y(4)(2)*x(2)(2)-y(1)(2)*y(2)(1)*x(4)(2)+y(1)(1)*y(2)(2)*x(4)(2)) - (-y(2)(2)*y(4)(1))*(-x(1)(2)*x(4)(1)+x(1)(1)*x(4)(2)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(2)*x(4)(1)+y(1)(2)*y(4)(1)*x(2)(2)*x(4)(1)-y(1)(1)*y(4)(2)*x(2)(2)*x(4)(1)-y(2)(2)*y(4)(1)*x(1)(1)*x(4)(2)-y(1)(2)*y(2)(1)*x(4)(1)*x(4)(2)+y(1)(1)*y(2)(2)*x(4)(1)*x(4)(2) ----------- TeX output: S(\del{1}{4}{1}{2}, \lam{1}{2}{4}{1}{2}{2}) = (-y_{2, 1} y_{4, 2}) \del{1}{4}{1}{2} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{2}{4}{1}{2} +(-y_{4, 1} x_{4, 2}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{4, 2}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{4, 2}) \eps{2}{4}{1}{2} ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,3,4 1,2,2 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(2)*x(4)(1) Divisor: Delta 1,4 1,2 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(2)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,2 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(3)(2)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(1)*x(4)(2) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(1)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(3)(1)*x(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(1)*x(4)(2) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(1)(1)*x(4)(2) Lead Term of Product: -y(1)(1)*y(4)(2)*x(3)(1)*x(4)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(2)*y(4)(1)*x(1)(2)+y(3)(1)*y(4)(2)*x(1)(2)+y(1)(2)*y(4)(1)*x(3)(2)-y(1)(1)*y(4)(2)*x(3)(2)-y(1)(2)*y(3)(1)*x(4)(2)+y(1)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(-x(1)(2)*x(4)(1)+x(1)(1)*x(4)(2)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(2)*x(4)(1)+y(1)(2)*y(4)(1)*x(3)(2)*x(4)(1)-y(1)(1)*y(4)(2)*x(3)(2)*x(4)(1)-y(3)(2)*y(4)(1)*x(1)(1)*x(4)(2)-y(1)(2)*y(3)(1)*x(4)(1)*x(4)(2)+y(1)(1)*y(3)(2)*x(4)(1)*x(4)(2) ----------- TeX output: S(\del{1}{4}{1}{2}, \lam{1}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \del{1}{4}{1}{2} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{3}{4}{1}{2} +(-y_{4, 1} x_{4, 2}) \eps{1}{3}{1}{2} +(y_{3, 1} x_{4, 2}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{4, 2}) \eps{3}{4}{1}{2} ---------------------------------- Delta: 1,4 1,2 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,2 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,3 1,2,3 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(3)*x(4)(1) Divisor: Delta 1,4 1,3 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(1)*x(4)(3) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(2)(1)*x(4)(3) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(3)(2)*x(2)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(2)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(2)*x(1)(3)+y(1)(2)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(2)*x(3)(3)) - (-y(2)(2)*y(3)(1))*(-x(1)(3)*x(4)(1)+x(1)(1)*x(4)(3)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(3)*x(4)(1)+y(1)(2)*y(3)(1)*x(2)(3)*x(4)(1)-y(1)(1)*y(3)(2)*x(2)(3)*x(4)(1)-y(1)(2)*y(2)(1)*x(3)(3)*x(4)(1)+y(1)(1)*y(2)(2)*x(3)(3)*x(4)(1)-y(2)(2)*y(3)(1)*x(1)(1)*x(4)(3) ----------- TeX output: S(\del{1}{4}{1}{3}, \lam{1}{2}{3}{1}{2}{3}) = (-y_{2, 1} y_{3, 2}) \del{1}{4}{1}{3} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{4}{1}{3} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \del{3}{4}{1}{3} +(-y_{3, 1} x_{4, 3}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{4, 3}) \eps{1}{3}{1}{2} +(-y_{1, 1} x_{4, 3}) \eps{2}{3}{1}{2} ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,3 1,3,3 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(3)*x(4)(1) Divisor: Delta 1,4 1,3 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: y(1)(3)*y(2)(1)-y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(1)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(1)*x(4)(3) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: y(2)(1)*x(4)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(3)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(1))*(-x(1)(3)*x(4)(1)+x(1)(1)*x(4)(3)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(3)*x(4)(1)+y(1)(3)*y(3)(1)*x(2)(3)*x(4)(1)-y(1)(1)*y(3)(3)*x(2)(3)*x(4)(1)-y(1)(3)*y(2)(1)*x(3)(3)*x(4)(1)+y(1)(1)*y(2)(3)*x(3)(3)*x(4)(1)-y(2)(3)*y(3)(1)*x(1)(1)*x(4)(3) ----------- TeX output: S(\del{1}{4}{1}{3}, \lam{1}{2}{3}{1}{3}{3}) = (-y_{2, 1} y_{3, 3}) \del{1}{4}{1}{3} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{2}{4}{1}{3} +(y_{1, 3} y_{2, 1}-y_{1, 1} y_{2, 3}) \del{3}{4}{1}{3} +(-y_{3, 1} x_{4, 3}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{4, 3}) \eps{1}{3}{1}{3} +(-y_{1, 1} x_{4, 3}) \eps{2}{3}{1}{3} ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,3 2,3,3 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(3)*x(4)(1) Divisor: Delta 1,4 1,3 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: y(1)(3)*y(2)(2)-y(1)(2)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(3)(3)*x(4)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(2)*x(4)(3) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(1)*x(4)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: x(4)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(3)*y(3)(2)*x(1)(3)+y(2)(2)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(2)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(2))*(-x(1)(3)*x(4)(1)+x(1)(1)*x(4)(3)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(3)*x(4)(1)+y(1)(3)*y(3)(2)*x(2)(3)*x(4)(1)-y(1)(2)*y(3)(3)*x(2)(3)*x(4)(1)-y(1)(3)*y(2)(2)*x(3)(3)*x(4)(1)+y(1)(2)*y(2)(3)*x(3)(3)*x(4)(1)-y(2)(3)*y(3)(2)*x(1)(1)*x(4)(3) ----------- TeX output: S(\del{1}{4}{1}{3}, \lam{1}{2}{3}{2}{3}{3}) = (-y_{2, 2} y_{3, 3}) \del{1}{4}{1}{3} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{2}{4}{1}{3} +(y_{1, 3} y_{2, 2}-y_{1, 2} y_{2, 3}) \del{3}{4}{1}{3} +(y_{3, 3} x_{4, 3}) \eps{1}{2}{1}{2} +(-y_{3, 2} x_{4, 3}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{4, 3}) \eps{1}{3}{2}{3} +(-y_{1, 1} x_{4, 3}) \eps{2}{3}{2}{3} +(x_{4, 3}) \pho{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,4 1,2,3 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(3)*x(4)(1) Divisor: Delta 1,4 1,3 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(1)*x(4)(3) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(2)(1)*x(4)(3) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(2)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(2)*x(4)(3)) - (-y(2)(2)*y(4)(1))*(-x(1)(3)*x(4)(1)+x(1)(1)*x(4)(3)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(3)*x(4)(1)+y(1)(2)*y(4)(1)*x(2)(3)*x(4)(1)-y(1)(1)*y(4)(2)*x(2)(3)*x(4)(1)-y(2)(2)*y(4)(1)*x(1)(1)*x(4)(3)-y(1)(2)*y(2)(1)*x(4)(1)*x(4)(3)+y(1)(1)*y(2)(2)*x(4)(1)*x(4)(3) ----------- TeX output: S(\del{1}{4}{1}{3}, \lam{1}{2}{4}{1}{2}{3}) = (-y_{2, 1} y_{4, 2}) \del{1}{4}{1}{3} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{2}{4}{1}{3} +(-y_{4, 1} x_{4, 3}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{4, 3}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{4, 3}) \eps{2}{4}{1}{2} ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,4 1,3,3 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(3)*x(4)(1) Divisor: Delta 1,4 1,3 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(1)*x(4)(3) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: y(2)(1)*x(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(3)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(1))*(-x(1)(3)*x(4)(1)+x(1)(1)*x(4)(3)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(3)*x(4)(1)+y(1)(3)*y(4)(1)*x(2)(3)*x(4)(1)-y(1)(1)*y(4)(3)*x(2)(3)*x(4)(1)-y(2)(3)*y(4)(1)*x(1)(1)*x(4)(3)-y(1)(3)*y(2)(1)*x(4)(1)*x(4)(3)+y(1)(1)*y(2)(3)*x(4)(1)*x(4)(3) ----------- TeX output: S(\del{1}{4}{1}{3}, \lam{1}{2}{4}{1}{3}{3}) = (-y_{2, 1} y_{4, 3}) \del{1}{4}{1}{3} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{2}{4}{1}{3} +(-y_{4, 1} x_{4, 3}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{4, 3}) \eps{1}{4}{1}{3} +(-y_{1, 1} x_{4, 3}) \eps{2}{4}{1}{3} ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,4 2,3,3 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(3)*x(4)(1) Divisor: Delta 1,4 1,3 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,3 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(3)*x(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(2)*x(4)(3) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(1)*x(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Rho 1,2,4 1,2,3 Quotient: x(4)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*x(4)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(3)*y(4)(2)*x(1)(3)+y(2)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(2))*(-x(1)(3)*x(4)(1)+x(1)(1)*x(4)(3)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(3)*x(4)(1)+y(1)(3)*y(4)(2)*x(2)(3)*x(4)(1)-y(1)(2)*y(4)(3)*x(2)(3)*x(4)(1)-y(2)(3)*y(4)(2)*x(1)(1)*x(4)(3)-y(1)(3)*y(2)(2)*x(4)(1)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(1)*x(4)(3) ----------- TeX output: S(\del{1}{4}{1}{3}, \lam{1}{2}{4}{2}{3}{3}) = (-y_{2, 2} y_{4, 3}) \del{1}{4}{1}{3} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{2}{4}{1}{3} +(y_{4, 3} x_{4, 3}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{4, 3}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{4, 3}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{4, 3}) \eps{2}{4}{2}{3} +(x_{4, 3}) \pho{1}{2}{4}{1}{2}{3} ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,3,4 1,2,3 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(3)*x(4)(1) Divisor: Delta 1,4 1,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(1)*x(4)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(3)(1)*x(4)(3) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(4)(2)*x(3)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(2)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(3)(3)-y(1)(2)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(-x(1)(3)*x(4)(1)+x(1)(1)*x(4)(3)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(3)*x(4)(1)+y(1)(2)*y(4)(1)*x(3)(3)*x(4)(1)-y(1)(1)*y(4)(2)*x(3)(3)*x(4)(1)-y(3)(2)*y(4)(1)*x(1)(1)*x(4)(3)-y(1)(2)*y(3)(1)*x(4)(1)*x(4)(3)+y(1)(1)*y(3)(2)*x(4)(1)*x(4)(3) ----------- TeX output: S(\del{1}{4}{1}{3}, \lam{1}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \del{1}{4}{1}{3} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{3}{4}{1}{3} +(-y_{4, 1} x_{4, 3}) \eps{1}{3}{1}{2} +(y_{3, 1} x_{4, 3}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{4, 3}) \eps{3}{4}{1}{2} ---------------------------------- Delta: 1,4 1,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,3,4 1,3,3 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(3)*x(4)(1) Divisor: Delta 1,4 1,3 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(1)*x(4)(3) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: y(3)(1)*x(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 3,4 1,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(3)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(3)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(-x(1)(3)*x(4)(1)+x(1)(1)*x(4)(3)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(3)*x(4)(1)+y(1)(3)*y(4)(1)*x(3)(3)*x(4)(1)-y(1)(1)*y(4)(3)*x(3)(3)*x(4)(1)-y(3)(3)*y(4)(1)*x(1)(1)*x(4)(3)-y(1)(3)*y(3)(1)*x(4)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(1)*x(4)(3) ----------- TeX output: S(\del{1}{4}{1}{3}, \lam{1}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \del{1}{4}{1}{3} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{3}{4}{1}{3} +(-y_{4, 1} x_{4, 3}) \eps{1}{3}{1}{3} +(y_{3, 1} x_{4, 3}) \eps{1}{4}{1}{3} +(-y_{1, 1} x_{4, 3}) \eps{3}{4}{1}{3} ---------------------------------- Delta: 1,4 1,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,3,4 2,3,3 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(3)*x(4)(1) Divisor: Delta 1,4 1,3 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(4)(3)*x(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(2)*x(4)(3) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(1)*x(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(3)(2)*x(4)(3) Lead term is well behaved Divisor: Rho 1,3,4 1,2,3 Quotient: x(4)(3) Lead Term of Product: -y(1)(3)*y(3)(2)*x(4)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(-x(1)(3)*x(4)(1)+x(1)(1)*x(4)(3)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(3)*x(4)(1)+y(1)(3)*y(4)(2)*x(3)(3)*x(4)(1)-y(1)(2)*y(4)(3)*x(3)(3)*x(4)(1)-y(3)(3)*y(4)(2)*x(1)(1)*x(4)(3)-y(1)(3)*y(3)(2)*x(4)(1)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(1)*x(4)(3) ----------- TeX output: S(\del{1}{4}{1}{3}, \lam{1}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \del{1}{4}{1}{3} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{3}{4}{1}{3} +(y_{4, 3} x_{4, 3}) \eps{1}{3}{1}{2} +(-y_{4, 2} x_{4, 3}) \eps{1}{3}{1}{3} +(y_{3, 1} x_{4, 3}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{4, 3}) \eps{3}{4}{2}{3} +(x_{4, 3}) \pho{1}{3}{4}{1}{2}{3} ---------------------------------- Delta: 1,4 1,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,3 1,2,4 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(3)(1)*x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(2)*x(2)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(2)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(2)*x(1)(4)+y(1)(2)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(2)*x(3)(4)) - (-y(2)(2)*y(3)(1))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(4)*x(4)(1)+y(1)(2)*y(3)(1)*x(2)(4)*x(4)(1)-y(1)(1)*y(3)(2)*x(2)(4)*x(4)(1)-y(1)(2)*y(2)(1)*x(3)(4)*x(4)(1)+y(1)(1)*y(2)(2)*x(3)(4)*x(4)(1)-y(2)(2)*y(3)(1)*x(1)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{2}{3}{1}{2}{4}) = (-y_{2, 1} y_{3, 2}) \del{1}{4}{1}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{4}{1}{4} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \del{3}{4}{1}{4} +(-y_{3, 1} x_{4, 4}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{4, 4}) \eps{1}{3}{1}{2} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{1}{2} ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,3 1,3,4 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(3)*y(2)(1)-y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(1)*x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(3)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(1))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(4)*x(4)(1)+y(1)(3)*y(3)(1)*x(2)(4)*x(4)(1)-y(1)(1)*y(3)(3)*x(2)(4)*x(4)(1)-y(1)(3)*y(2)(1)*x(3)(4)*x(4)(1)+y(1)(1)*y(2)(3)*x(3)(4)*x(4)(1)-y(2)(3)*y(3)(1)*x(1)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{2}{3}{1}{3}{4}) = (-y_{2, 1} y_{3, 3}) \del{1}{4}{1}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{2}{4}{1}{4} +(y_{1, 3} y_{2, 1}-y_{1, 1} y_{2, 3}) \del{3}{4}{1}{4} +(-y_{3, 1} x_{4, 4}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{4, 4}) \eps{1}{3}{1}{3} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{1}{3} ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,3 1,4,4 Lead Term of Spoly: y(2)(1)*y(3)(4)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(2)(1)*y(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(4)*y(2)(1)-y(1)(1)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(3)(1)*x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(1)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(4)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(1))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(2)(1)*y(3)(4)*x(1)(4)*x(4)(1)+y(1)(4)*y(3)(1)*x(2)(4)*x(4)(1)-y(1)(1)*y(3)(4)*x(2)(4)*x(4)(1)-y(1)(4)*y(2)(1)*x(3)(4)*x(4)(1)+y(1)(1)*y(2)(4)*x(3)(4)*x(4)(1)-y(2)(4)*y(3)(1)*x(1)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{2}{3}{1}{4}{4}) = (-y_{2, 1} y_{3, 4}) \del{1}{4}{1}{4} +(-y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{2}{4}{1}{4} +(y_{1, 4} y_{2, 1}-y_{1, 1} y_{2, 4}) \del{3}{4}{1}{4} +(-y_{3, 1} x_{4, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{4, 4}) \eps{1}{3}{1}{4} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{1}{4} ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,3 2,3,4 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(3)*y(2)(2)-y(1)(2)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(3)(3)*x(4)(4) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(3)(2)*x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(3)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(2))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(4)*x(4)(1)+y(1)(3)*y(3)(2)*x(2)(4)*x(4)(1)-y(1)(2)*y(3)(3)*x(2)(4)*x(4)(1)-y(1)(3)*y(2)(2)*x(3)(4)*x(4)(1)+y(1)(2)*y(2)(3)*x(3)(4)*x(4)(1)-y(2)(3)*y(3)(2)*x(1)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{2}{3}{2}{3}{4}) = (-y_{2, 2} y_{3, 3}) \del{1}{4}{1}{4} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{2}{4}{1}{4} +(y_{1, 3} y_{2, 2}-y_{1, 2} y_{2, 3}) \del{3}{4}{1}{4} +(y_{3, 3} x_{4, 4}) \eps{1}{2}{1}{2} +(-y_{3, 2} x_{4, 4}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{4, 4}) \eps{1}{3}{2}{3} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{2}{3} +(x_{4, 4}) \pho{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,3 2,4,4 Lead Term of Spoly: y(2)(2)*y(3)(4)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(2)(2)*y(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(4)*y(3)(2)+y(1)(2)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(4)*y(2)(2)-y(1)(2)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(3)(4)*x(4)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(3)(2)*x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(2)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,2,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(4)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(2))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(2)(2)*y(3)(4)*x(1)(4)*x(4)(1)+y(1)(4)*y(3)(2)*x(2)(4)*x(4)(1)-y(1)(2)*y(3)(4)*x(2)(4)*x(4)(1)-y(1)(4)*y(2)(2)*x(3)(4)*x(4)(1)+y(1)(2)*y(2)(4)*x(3)(4)*x(4)(1)-y(2)(4)*y(3)(2)*x(1)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{2}{3}{2}{4}{4}) = (-y_{2, 2} y_{3, 4}) \del{1}{4}{1}{4} +(-y_{1, 4} y_{3, 2}+y_{1, 2} y_{3, 4}) \del{2}{4}{1}{4} +(y_{1, 4} y_{2, 2}-y_{1, 2} y_{2, 4}) \del{3}{4}{1}{4} +(y_{3, 4} x_{4, 4}) \eps{1}{2}{1}{2} +(-y_{3, 2} x_{4, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{4, 4}) \eps{1}{3}{2}{4} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{2}{4} +(x_{4, 4}) \pho{1}{2}{3}{1}{2}{4} ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,3 3,4,4 Lead Term of Spoly: y(2)(3)*y(3)(4)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(2)(3)*y(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(4)*y(3)(3)+y(1)(3)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: y(1)(4)*y(2)(3)-y(1)(3)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(3)(4)*x(4)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(3)(3)*x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Rho 1,2,3 1,3,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(3))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(2)(3)*y(3)(4)*x(1)(4)*x(4)(1)+y(1)(4)*y(3)(3)*x(2)(4)*x(4)(1)-y(1)(3)*y(3)(4)*x(2)(4)*x(4)(1)-y(1)(4)*y(2)(3)*x(3)(4)*x(4)(1)+y(1)(3)*y(2)(4)*x(3)(4)*x(4)(1)-y(2)(4)*y(3)(3)*x(1)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{2}{3}{3}{4}{4}) = (-y_{2, 3} y_{3, 4}) \del{1}{4}{1}{4} +(-y_{1, 4} y_{3, 3}+y_{1, 3} y_{3, 4}) \del{2}{4}{1}{4} +(y_{1, 4} y_{2, 3}-y_{1, 3} y_{2, 4}) \del{3}{4}{1}{4} +(y_{3, 4} x_{4, 4}) \eps{1}{2}{1}{3} +(-y_{3, 3} x_{4, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{3}{4} +(x_{4, 4}) \pho{1}{2}{3}{1}{3}{4} ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,4 1,2,4 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(2)*x(2)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(2)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(2)*x(4)(4)) - (-y(2)(2)*y(4)(1))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(4)*x(4)(1)+y(1)(2)*y(4)(1)*x(2)(4)*x(4)(1)-y(1)(1)*y(4)(2)*x(2)(4)*x(4)(1)-y(2)(2)*y(4)(1)*x(1)(1)*x(4)(4)-y(1)(2)*y(2)(1)*x(4)(1)*x(4)(4)+y(1)(1)*y(2)(2)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{2}{4}{1}{2}{4}) = (-y_{2, 1} y_{4, 2}) \del{1}{4}{1}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{2}{4}{1}{4} +(-y_{4, 1} x_{4, 4}) \eps{1}{2}{1}{2} +(y_{2, 1} x_{4, 4}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{4, 4}) \eps{2}{4}{1}{2} ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,4 1,3,4 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(3)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(1))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(4)*x(4)(1)+y(1)(3)*y(4)(1)*x(2)(4)*x(4)(1)-y(1)(1)*y(4)(3)*x(2)(4)*x(4)(1)-y(2)(3)*y(4)(1)*x(1)(1)*x(4)(4)-y(1)(3)*y(2)(1)*x(4)(1)*x(4)(4)+y(1)(1)*y(2)(3)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{2}{4}{1}{3}{4}) = (-y_{2, 1} y_{4, 3}) \del{1}{4}{1}{4} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{2}{4}{1}{4} +(-y_{4, 1} x_{4, 4}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{4, 4}) \eps{1}{4}{1}{3} +(-y_{1, 1} x_{4, 4}) \eps{2}{4}{1}{3} ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,4 1,4,4 Lead Term of Spoly: y(2)(1)*y(4)(4)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(2)(1)*y(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(4)*y(4)(1)+y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(1)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,4 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(4)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(1))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(2)(1)*y(4)(4)*x(1)(4)*x(4)(1)+y(1)(4)*y(4)(1)*x(2)(4)*x(4)(1)-y(1)(1)*y(4)(4)*x(2)(4)*x(4)(1)-y(2)(4)*y(4)(1)*x(1)(1)*x(4)(4)-y(1)(4)*y(2)(1)*x(4)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{2}{4}{1}{4}{4}) = (-y_{2, 1} y_{4, 4}) \del{1}{4}{1}{4} +(-y_{1, 4} y_{4, 1}+y_{1, 1} y_{4, 4}) \del{2}{4}{1}{4} +(-y_{4, 1} x_{4, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{4, 4}) \eps{1}{4}{1}{4} +(-y_{1, 1} x_{4, 4}) \eps{2}{4}{1}{4} ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,4 2,3,4 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(3)*x(4)(4) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Rho 1,2,4 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(1)(3)*y(2)(2)*x(4)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(3)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(2))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(4)*x(4)(1)+y(1)(3)*y(4)(2)*x(2)(4)*x(4)(1)-y(1)(2)*y(4)(3)*x(2)(4)*x(4)(1)-y(2)(3)*y(4)(2)*x(1)(1)*x(4)(4)-y(1)(3)*y(2)(2)*x(4)(1)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{2}{4}{2}{3}{4}) = (-y_{2, 2} y_{4, 3}) \del{1}{4}{1}{4} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{2}{4}{1}{4} +(y_{4, 3} x_{4, 4}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{4, 4}) \eps{1}{2}{1}{3} +(y_{2, 1} x_{4, 4}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{4, 4}) \eps{2}{4}{2}{3} +(x_{4, 4}) \pho{1}{2}{4}{1}{2}{3} ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,4 2,4,4 Lead Term of Spoly: y(2)(2)*y(4)(4)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(2)(2)*y(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(4)*y(4)(2)+y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: y(4)(4)*x(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Rho 1,2,4 1,2,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(2)*x(4)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(2))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(2)(2)*y(4)(4)*x(1)(4)*x(4)(1)+y(1)(4)*y(4)(2)*x(2)(4)*x(4)(1)-y(1)(2)*y(4)(4)*x(2)(4)*x(4)(1)-y(2)(4)*y(4)(2)*x(1)(1)*x(4)(4)-y(1)(4)*y(2)(2)*x(4)(1)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{2}{4}{2}{4}{4}) = (-y_{2, 2} y_{4, 4}) \del{1}{4}{1}{4} +(-y_{1, 4} y_{4, 2}+y_{1, 2} y_{4, 4}) \del{2}{4}{1}{4} +(y_{4, 4} x_{4, 4}) \eps{1}{2}{1}{2} +(-y_{4, 2} x_{4, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{4, 4}) \eps{1}{4}{2}{4} +(-y_{1, 1} x_{4, 4}) \eps{2}{4}{2}{4} +(x_{4, 4}) \pho{1}{2}{4}{1}{2}{4} ---------------------------------- Delta: 1,4 1,4 Lam: 1,2,4 3,4,4 Lead Term of Spoly: y(2)(3)*y(4)(4)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(2)(3)*y(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 2,4 1,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: y(4)(4)*x(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,2 1,4 Quotient: -y(4)(3)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Rho 1,2,4 1,3,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(4)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(3))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(2)(3)*y(4)(4)*x(1)(4)*x(4)(1)+y(1)(4)*y(4)(3)*x(2)(4)*x(4)(1)-y(1)(3)*y(4)(4)*x(2)(4)*x(4)(1)-y(2)(4)*y(4)(3)*x(1)(1)*x(4)(4)-y(1)(4)*y(2)(3)*x(4)(1)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{2}{4}{3}{4}{4}) = (-y_{2, 3} y_{4, 4}) \del{1}{4}{1}{4} +(-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{2}{4}{1}{4} +(y_{4, 4} x_{4, 4}) \eps{1}{2}{1}{3} +(-y_{4, 3} x_{4, 4}) \eps{1}{2}{1}{4} +(y_{2, 1} x_{4, 4}) \eps{1}{4}{3}{4} +(-y_{1, 1} x_{4, 4}) \eps{2}{4}{3}{4} +(x_{4, 4}) \pho{1}{2}{4}{1}{3}{4} ---------------------------------- Delta: 1,4 1,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 1,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,2 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(2)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(3)(4)-y(1)(2)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(4)*x(4)(1)+y(1)(2)*y(4)(1)*x(3)(4)*x(4)(1)-y(1)(1)*y(4)(2)*x(3)(4)*x(4)(1)-y(3)(2)*y(4)(1)*x(1)(1)*x(4)(4)-y(1)(2)*y(3)(1)*x(4)(1)*x(4)(4)+y(1)(1)*y(3)(2)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{1}{4}{1}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{4, 4}) \eps{1}{3}{1}{2} +(y_{3, 1} x_{4, 4}) \eps{1}{4}{1}{2} +(-y_{1, 1} x_{4, 4}) \eps{3}{4}{1}{2} ---------------------------------- Delta: 1,4 1,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 1,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,3 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(3)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(4)*x(4)(1)+y(1)(3)*y(4)(1)*x(3)(4)*x(4)(1)-y(1)(1)*y(4)(3)*x(3)(4)*x(4)(1)-y(3)(3)*y(4)(1)*x(1)(1)*x(4)(4)-y(1)(3)*y(3)(1)*x(4)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{1}{4}{1}{4} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{4, 4}) \eps{1}{3}{1}{3} +(y_{3, 1} x_{4, 4}) \eps{1}{4}{1}{3} +(-y_{1, 1} x_{4, 4}) \eps{3}{4}{1}{3} ---------------------------------- Delta: 1,4 1,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(4)*y(4)(1)+y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 1,4 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(1)(4)*x(4)(1)+y(1)(4)*y(4)(1)*x(3)(4)*x(4)(1)-y(1)(1)*y(4)(4)*x(3)(4)*x(4)(1)-y(3)(4)*y(4)(1)*x(1)(1)*x(4)(4)-y(1)(4)*y(3)(1)*x(4)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{1}{4}{1}{4} +(-y_{1, 4} y_{4, 1}+y_{1, 1} y_{4, 4}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{4, 4}) \eps{1}{3}{1}{4} +(y_{3, 1} x_{4, 4}) \eps{1}{4}{1}{4} +(-y_{1, 1} x_{4, 4}) \eps{3}{4}{1}{4} ---------------------------------- Delta: 1,4 1,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 1,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(4)(3)*x(4)(4) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(3)(2)*x(4)(4) Lead term is well behaved Divisor: Rho 1,3,4 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(1)(3)*y(3)(2)*x(4)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(4)*x(4)(1)+y(1)(3)*y(4)(2)*x(3)(4)*x(4)(1)-y(1)(2)*y(4)(3)*x(3)(4)*x(4)(1)-y(3)(3)*y(4)(2)*x(1)(1)*x(4)(4)-y(1)(3)*y(3)(2)*x(4)(1)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{1}{4}{1}{4} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{3}{4}{1}{4} +(y_{4, 3} x_{4, 4}) \eps{1}{3}{1}{2} +(-y_{4, 2} x_{4, 4}) \eps{1}{3}{1}{3} +(y_{3, 1} x_{4, 4}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{4, 4}) \eps{3}{4}{2}{3} +(x_{4, 4}) \pho{1}{3}{4}{1}{2}{3} ---------------------------------- Delta: 1,4 1,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(4)*y(4)(2)+y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: y(4)(4)*x(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(3)(2)*x(4)(4) Lead term is well behaved Divisor: Rho 1,3,4 1,2,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(3)(2)*x(4)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(1)(4)*x(4)(1)+y(1)(4)*y(4)(2)*x(3)(4)*x(4)(1)-y(1)(2)*y(4)(4)*x(3)(4)*x(4)(1)-y(3)(4)*y(4)(2)*x(1)(1)*x(4)(4)-y(1)(4)*y(3)(2)*x(4)(1)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{1}{4}{1}{4} +(-y_{1, 4} y_{4, 2}+y_{1, 2} y_{4, 4}) \del{3}{4}{1}{4} +(y_{4, 4} x_{4, 4}) \eps{1}{3}{1}{2} +(-y_{4, 2} x_{4, 4}) \eps{1}{3}{1}{4} +(y_{3, 1} x_{4, 4}) \eps{1}{4}{2}{4} +(-y_{1, 1} x_{4, 4}) \eps{3}{4}{2}{4} +(x_{4, 4}) \pho{1}{3}{4}{1}{2}{4} ---------------------------------- Delta: 1,4 1,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(1)(4)*x(4)(1) Divisor: Delta 1,4 1,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: y(4)(4)*x(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 1,4 Quotient: -y(4)(3)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(1)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(3)(3)*x(4)(4) Lead term is well behaved Divisor: Rho 1,3,4 1,3,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(3)(3)*x(4)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(1)(4)*x(4)(1)+x(1)(1)*x(4)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(1)(4)*x(4)(1)+y(1)(4)*y(4)(3)*x(3)(4)*x(4)(1)-y(1)(3)*y(4)(4)*x(3)(4)*x(4)(1)-y(3)(4)*y(4)(3)*x(1)(1)*x(4)(4)-y(1)(4)*y(3)(3)*x(4)(1)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{1}{4}{1}{4}, \lam{1}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{1}{4}{1}{4} +(-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{3}{4}{1}{4} +(y_{4, 4} x_{4, 4}) \eps{1}{3}{1}{3} +(-y_{4, 3} x_{4, 4}) \eps{1}{3}{1}{4} +(y_{3, 1} x_{4, 4}) \eps{1}{4}{3}{4} +(-y_{1, 1} x_{4, 4}) \eps{3}{4}{3}{4} +(x_{4, 4}) \pho{1}{3}{4}{1}{3}{4} ---------------------------------- Delta: 1,4 1,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 1,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,3 1,2,3 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(3)*x(4)(2) Divisor: Delta 1,4 2,3 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,2 Quotient: x(4)(3) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(2)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(2)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(2)*x(1)(3)+y(1)(2)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(2)*x(3)(3)) - (-y(2)(2)*y(3)(1))*(-x(1)(3)*x(4)(2)+x(1)(2)*x(4)(3)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(3)*x(4)(2)+y(1)(2)*y(3)(1)*x(2)(3)*x(4)(2)-y(1)(1)*y(3)(2)*x(2)(3)*x(4)(2)-y(1)(2)*y(2)(1)*x(3)(3)*x(4)(2)+y(1)(1)*y(2)(2)*x(3)(3)*x(4)(2)-y(2)(2)*y(3)(1)*x(1)(2)*x(4)(3) ----------- TeX output: S(\del{1}{4}{2}{3}, \lam{1}{2}{3}{1}{2}{3}) = (-y_{2, 1} y_{3, 2}) \del{1}{4}{2}{3} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{4}{2}{3} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \del{3}{4}{2}{3} +(x_{4, 3}) \lam{1}{2}{3}{1}{2}{2} ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,3 1,3,3 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(3)*x(4)(2) Divisor: Delta 1,4 2,3 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: y(1)(3)*y(2)(1)-y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(1)*x(4)(3) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(1)*x(4)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: x(4)(3) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(3)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(3)*y(3)(1)*x(1)(3)+y(2)(1)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(1)*x(2)(3)-y(1)(1)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(3)(3)+y(1)(1)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(1))*(-x(1)(3)*x(4)(2)+x(1)(2)*x(4)(3)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(3)*x(4)(2)+y(1)(3)*y(3)(1)*x(2)(3)*x(4)(2)-y(1)(1)*y(3)(3)*x(2)(3)*x(4)(2)-y(1)(3)*y(2)(1)*x(3)(3)*x(4)(2)+y(1)(1)*y(2)(3)*x(3)(3)*x(4)(2)-y(2)(3)*y(3)(1)*x(1)(2)*x(4)(3) ----------- TeX output: S(\del{1}{4}{2}{3}, \lam{1}{2}{3}{1}{3}{3}) = (-y_{2, 1} y_{3, 3}) \del{1}{4}{2}{3} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{2}{4}{2}{3} +(y_{1, 3} y_{2, 1}-y_{1, 1} y_{2, 3}) \del{3}{4}{2}{3} +(-y_{3, 1} x_{4, 3}) \eps{1}{2}{2}{3} +(y_{2, 1} x_{4, 3}) \eps{1}{3}{2}{3} +(-y_{1, 1} x_{4, 3}) \eps{2}{3}{2}{3} +(x_{4, 3}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,3 2,3,3 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(3)*x(4)(2) Divisor: Delta 1,4 2,3 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: y(1)(3)*y(2)(2)-y(1)(2)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(2)*x(4)(3) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(2)*x(4)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(2)*x(4)(3) Lead Term of Product: -y(1)(2)*y(3)(3)*x(2)(2)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(3)*y(3)(2)*x(1)(3)+y(2)(2)*y(3)(3)*x(1)(3)+y(1)(3)*y(3)(2)*x(2)(3)-y(1)(2)*y(3)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(3)(3)+y(1)(2)*y(2)(3)*x(3)(3)) - (-y(2)(3)*y(3)(2))*(-x(1)(3)*x(4)(2)+x(1)(2)*x(4)(3)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(3)*x(4)(2)+y(1)(3)*y(3)(2)*x(2)(3)*x(4)(2)-y(1)(2)*y(3)(3)*x(2)(3)*x(4)(2)-y(1)(3)*y(2)(2)*x(3)(3)*x(4)(2)+y(1)(2)*y(2)(3)*x(3)(3)*x(4)(2)-y(2)(3)*y(3)(2)*x(1)(2)*x(4)(3) ----------- TeX output: S(\del{1}{4}{2}{3}, \lam{1}{2}{3}{2}{3}{3}) = (-y_{2, 2} y_{3, 3}) \del{1}{4}{2}{3} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{2}{4}{2}{3} +(y_{1, 3} y_{2, 2}-y_{1, 2} y_{2, 3}) \del{3}{4}{2}{3} +(-y_{3, 2} x_{4, 3}) \eps{1}{2}{2}{3} +(y_{2, 2} x_{4, 3}) \eps{1}{3}{2}{3} +(-y_{1, 2} x_{4, 3}) \eps{2}{3}{2}{3} ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,4 1,2,3 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(3)*x(4)(2) Divisor: Delta 1,4 2,3 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Lam 1,2,4 1,2,2 Quotient: x(4)(3) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(2)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(2)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(2)*x(2)(3)-y(1)(2)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(2)*x(4)(3)) - (-y(2)(2)*y(4)(1))*(-x(1)(3)*x(4)(2)+x(1)(2)*x(4)(3)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(3)*x(4)(2)+y(1)(2)*y(4)(1)*x(2)(3)*x(4)(2)-y(1)(1)*y(4)(2)*x(2)(3)*x(4)(2)-y(2)(2)*y(4)(1)*x(1)(2)*x(4)(3)-y(1)(2)*y(2)(1)*x(4)(2)*x(4)(3)+y(1)(1)*y(2)(2)*x(4)(2)*x(4)(3) ----------- TeX output: S(\del{1}{4}{2}{3}, \lam{1}{2}{4}{1}{2}{3}) = (-y_{2, 1} y_{4, 2}) \del{1}{4}{2}{3} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{2}{4}{2}{3} +(x_{4, 3}) \lam{1}{2}{4}{1}{2}{2} ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,4 1,3,3 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(3)*x(4)(2) Divisor: Delta 1,4 2,3 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(1)*x(4)(3) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(1)*x(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: x(4)(3) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(3)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(3)*y(4)(1)*x(1)(3)+y(2)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(2)(3)-y(1)(1)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(1)*x(4)(3)+y(1)(1)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(1))*(-x(1)(3)*x(4)(2)+x(1)(2)*x(4)(3)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(3)*x(4)(2)+y(1)(3)*y(4)(1)*x(2)(3)*x(4)(2)-y(1)(1)*y(4)(3)*x(2)(3)*x(4)(2)-y(2)(3)*y(4)(1)*x(1)(2)*x(4)(3)-y(1)(3)*y(2)(1)*x(4)(2)*x(4)(3)+y(1)(1)*y(2)(3)*x(4)(2)*x(4)(3) ----------- TeX output: S(\del{1}{4}{2}{3}, \lam{1}{2}{4}{1}{3}{3}) = (-y_{2, 1} y_{4, 3}) \del{1}{4}{2}{3} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{2}{4}{2}{3} +(-y_{4, 1} x_{4, 3}) \eps{1}{2}{2}{3} +(y_{2, 1} x_{4, 3}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{4, 3}) \eps{2}{4}{2}{3} +(x_{4, 3}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,4 2,3,3 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(3)*x(4)(2) Divisor: Delta 1,4 2,3 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,3 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(2)*x(4)(3) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(2)*x(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(2)*x(4)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(2)(2)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(3)*y(4)(2)*x(1)(3)+y(2)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(2)(3)-y(1)(2)*y(4)(3)*x(2)(3)-y(1)(3)*y(2)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(3)) - (-y(2)(3)*y(4)(2))*(-x(1)(3)*x(4)(2)+x(1)(2)*x(4)(3)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(3)*x(4)(2)+y(1)(3)*y(4)(2)*x(2)(3)*x(4)(2)-y(1)(2)*y(4)(3)*x(2)(3)*x(4)(2)-y(2)(3)*y(4)(2)*x(1)(2)*x(4)(3)-y(1)(3)*y(2)(2)*x(4)(2)*x(4)(3)+y(1)(2)*y(2)(3)*x(4)(2)*x(4)(3) ----------- TeX output: S(\del{1}{4}{2}{3}, \lam{1}{2}{4}{2}{3}{3}) = (-y_{2, 2} y_{4, 3}) \del{1}{4}{2}{3} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{2}{4}{2}{3} +(-y_{4, 2} x_{4, 3}) \eps{1}{2}{2}{3} +(y_{2, 2} x_{4, 3}) \eps{1}{4}{2}{3} +(-y_{1, 2} x_{4, 3}) \eps{2}{4}{2}{3} ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,3,4 1,2,3 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(3)*x(4)(2) Divisor: Delta 1,4 2,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Lam 1,3,4 1,2,2 Quotient: x(4)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(2)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(2)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(2)*x(1)(3)+y(1)(2)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(2)*x(3)(3)-y(1)(2)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(-x(1)(3)*x(4)(2)+x(1)(2)*x(4)(3)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(3)*x(4)(2)+y(1)(2)*y(4)(1)*x(3)(3)*x(4)(2)-y(1)(1)*y(4)(2)*x(3)(3)*x(4)(2)-y(3)(2)*y(4)(1)*x(1)(2)*x(4)(3)-y(1)(2)*y(3)(1)*x(4)(2)*x(4)(3)+y(1)(1)*y(3)(2)*x(4)(2)*x(4)(3) ----------- TeX output: S(\del{1}{4}{2}{3}, \lam{1}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \del{1}{4}{2}{3} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{3}{4}{2}{3} +(x_{4, 3}) \lam{1}{3}{4}{1}{2}{2} ---------------------------------- Delta: 1,4 2,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,3,4 1,3,3 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(3)*x(4)(2) Divisor: Delta 1,4 2,3 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(1)*x(4)(3) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(1)*x(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(1)*x(4)(3) Lead Term of Product: -y(1)(1)*y(4)(3)*x(3)(2)*x(4)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: x(4)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(3)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(3)*y(4)(1)*x(1)(3)+y(3)(1)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(1)*x(3)(3)-y(1)(1)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(1)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(-x(1)(3)*x(4)(2)+x(1)(2)*x(4)(3)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(3)*x(4)(2)+y(1)(3)*y(4)(1)*x(3)(3)*x(4)(2)-y(1)(1)*y(4)(3)*x(3)(3)*x(4)(2)-y(3)(3)*y(4)(1)*x(1)(2)*x(4)(3)-y(1)(3)*y(3)(1)*x(4)(2)*x(4)(3)+y(1)(1)*y(3)(3)*x(4)(2)*x(4)(3) ----------- TeX output: S(\del{1}{4}{2}{3}, \lam{1}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \del{1}{4}{2}{3} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{3}{4}{2}{3} +(-y_{4, 1} x_{4, 3}) \eps{1}{3}{2}{3} +(y_{3, 1} x_{4, 3}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{4, 3}) \eps{3}{4}{2}{3} +(x_{4, 3}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Delta: 1,4 2,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,3,4 2,3,3 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(3)*x(4)(2) Divisor: Delta 1,4 2,3 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(2)*x(4)(3) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(2)*x(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(2)*x(4)(3) Lead Term of Product: -y(1)(2)*y(4)(3)*x(3)(2)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(3)*y(4)(2)*x(1)(3)+y(3)(2)*y(4)(3)*x(1)(3)+y(1)(3)*y(4)(2)*x(3)(3)-y(1)(2)*y(4)(3)*x(3)(3)-y(1)(3)*y(3)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(-x(1)(3)*x(4)(2)+x(1)(2)*x(4)(3)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(3)*x(4)(2)+y(1)(3)*y(4)(2)*x(3)(3)*x(4)(2)-y(1)(2)*y(4)(3)*x(3)(3)*x(4)(2)-y(3)(3)*y(4)(2)*x(1)(2)*x(4)(3)-y(1)(3)*y(3)(2)*x(4)(2)*x(4)(3)+y(1)(2)*y(3)(3)*x(4)(2)*x(4)(3) ----------- TeX output: S(\del{1}{4}{2}{3}, \lam{1}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \del{1}{4}{2}{3} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{3}{4}{2}{3} +(-y_{4, 2} x_{4, 3}) \eps{1}{3}{2}{3} +(y_{3, 2} x_{4, 3}) \eps{1}{4}{2}{3} +(-y_{1, 2} x_{4, 3}) \eps{3}{4}{2}{3} ---------------------------------- Delta: 1,4 2,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,3 1,2,4 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Lam 1,2,3 1,2,2 Quotient: x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(2)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(2)*x(1)(4)+y(1)(2)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(2)*x(3)(4)) - (-y(2)(2)*y(3)(1))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(4)*x(4)(2)+y(1)(2)*y(3)(1)*x(2)(4)*x(4)(2)-y(1)(1)*y(3)(2)*x(2)(4)*x(4)(2)-y(1)(2)*y(2)(1)*x(3)(4)*x(4)(2)+y(1)(1)*y(2)(2)*x(3)(4)*x(4)(2)-y(2)(2)*y(3)(1)*x(1)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{2}{3}{1}{2}{4}) = (-y_{2, 1} y_{3, 2}) \del{1}{4}{2}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{4}{2}{4} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \del{3}{4}{2}{4} +(x_{4, 4}) \lam{1}{2}{3}{1}{2}{2} ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,3 1,3,4 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(3)*y(2)(1)-y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(1)*x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(3)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(1))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(4)*x(4)(2)+y(1)(3)*y(3)(1)*x(2)(4)*x(4)(2)-y(1)(1)*y(3)(3)*x(2)(4)*x(4)(2)-y(1)(3)*y(2)(1)*x(3)(4)*x(4)(2)+y(1)(1)*y(2)(3)*x(3)(4)*x(4)(2)-y(2)(3)*y(3)(1)*x(1)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{2}{3}{1}{3}{4}) = (-y_{2, 1} y_{3, 3}) \del{1}{4}{2}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{2}{4}{2}{4} +(y_{1, 3} y_{2, 1}-y_{1, 1} y_{2, 3}) \del{3}{4}{2}{4} +(-y_{3, 1} x_{4, 4}) \eps{1}{2}{2}{3} +(y_{2, 1} x_{4, 4}) \eps{1}{3}{2}{3} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{2}{3} +(x_{4, 4}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,3 1,4,4 Lead Term of Spoly: y(2)(1)*y(3)(4)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(2)(1)*y(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(4)*y(2)(1)-y(1)(1)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(3)(1)*x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(1)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,2,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(4)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(4)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(1))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(2)(1)*y(3)(4)*x(1)(4)*x(4)(2)+y(1)(4)*y(3)(1)*x(2)(4)*x(4)(2)-y(1)(1)*y(3)(4)*x(2)(4)*x(4)(2)-y(1)(4)*y(2)(1)*x(3)(4)*x(4)(2)+y(1)(1)*y(2)(4)*x(3)(4)*x(4)(2)-y(2)(4)*y(3)(1)*x(1)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{2}{3}{1}{4}{4}) = (-y_{2, 1} y_{3, 4}) \del{1}{4}{2}{4} +(-y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{2}{4}{2}{4} +(y_{1, 4} y_{2, 1}-y_{1, 1} y_{2, 4}) \del{3}{4}{2}{4} +(-y_{3, 1} x_{4, 4}) \eps{1}{2}{2}{4} +(y_{2, 1} x_{4, 4}) \eps{1}{3}{2}{4} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{2}{4} +(x_{4, 4}) \lam{1}{2}{3}{1}{2}{4} ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,3 2,3,4 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(3)*y(2)(2)-y(1)(2)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(3)(2)*x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(2)(2)*x(4)(4) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(3)*x(2)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(3)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(2))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(4)*x(4)(2)+y(1)(3)*y(3)(2)*x(2)(4)*x(4)(2)-y(1)(2)*y(3)(3)*x(2)(4)*x(4)(2)-y(1)(3)*y(2)(2)*x(3)(4)*x(4)(2)+y(1)(2)*y(2)(3)*x(3)(4)*x(4)(2)-y(2)(3)*y(3)(2)*x(1)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{2}{3}{2}{3}{4}) = (-y_{2, 2} y_{3, 3}) \del{1}{4}{2}{4} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{2}{4}{2}{4} +(y_{1, 3} y_{2, 2}-y_{1, 2} y_{2, 3}) \del{3}{4}{2}{4} +(-y_{3, 2} x_{4, 4}) \eps{1}{2}{2}{3} +(y_{2, 2} x_{4, 4}) \eps{1}{3}{2}{3} +(-y_{1, 2} x_{4, 4}) \eps{2}{3}{2}{3} ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,3 2,4,4 Lead Term of Spoly: y(2)(2)*y(3)(4)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(2)(2)*y(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(4)*y(3)(2)+y(1)(2)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(4)*y(2)(2)-y(1)(2)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(2)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(3)(2)*x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(2)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: y(2)(2)*x(4)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(2)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(4)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(2))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(2)(2)*y(3)(4)*x(1)(4)*x(4)(2)+y(1)(4)*y(3)(2)*x(2)(4)*x(4)(2)-y(1)(2)*y(3)(4)*x(2)(4)*x(4)(2)-y(1)(4)*y(2)(2)*x(3)(4)*x(4)(2)+y(1)(2)*y(2)(4)*x(3)(4)*x(4)(2)-y(2)(4)*y(3)(2)*x(1)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{2}{3}{2}{4}{4}) = (-y_{2, 2} y_{3, 4}) \del{1}{4}{2}{4} +(-y_{1, 4} y_{3, 2}+y_{1, 2} y_{3, 4}) \del{2}{4}{2}{4} +(y_{1, 4} y_{2, 2}-y_{1, 2} y_{2, 4}) \del{3}{4}{2}{4} +(-y_{3, 2} x_{4, 4}) \eps{1}{2}{2}{4} +(y_{2, 2} x_{4, 4}) \eps{1}{3}{2}{4} +(-y_{1, 2} x_{4, 4}) \eps{2}{3}{2}{4} ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,3 3,4,4 Lead Term of Spoly: y(2)(3)*y(3)(4)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(2)(3)*y(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(4)*y(3)(3)+y(1)(3)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: y(1)(4)*y(2)(3)-y(1)(3)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(3)(4)*x(4)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(3)(3)*x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(2)*x(4)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Rho 1,2,3 2,3,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(3))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(2)(3)*y(3)(4)*x(1)(4)*x(4)(2)+y(1)(4)*y(3)(3)*x(2)(4)*x(4)(2)-y(1)(3)*y(3)(4)*x(2)(4)*x(4)(2)-y(1)(4)*y(2)(3)*x(3)(4)*x(4)(2)+y(1)(3)*y(2)(4)*x(3)(4)*x(4)(2)-y(2)(4)*y(3)(3)*x(1)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{2}{3}{3}{4}{4}) = (-y_{2, 3} y_{3, 4}) \del{1}{4}{2}{4} +(-y_{1, 4} y_{3, 3}+y_{1, 3} y_{3, 4}) \del{2}{4}{2}{4} +(y_{1, 4} y_{2, 3}-y_{1, 3} y_{2, 4}) \del{3}{4}{2}{4} +(y_{3, 4} x_{4, 4}) \eps{1}{2}{2}{3} +(-y_{3, 3} x_{4, 4}) \eps{1}{2}{2}{4} +(y_{2, 2} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{1, 2} x_{4, 4}) \eps{2}{3}{3}{4} +(x_{4, 4}) \pho{1}{2}{3}{2}{3}{4} ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,4 1,2,4 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Lam 1,2,4 1,2,2 Quotient: x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(2)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(2)*x(4)(4)) - (-y(2)(2)*y(4)(1))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(4)*x(4)(2)+y(1)(2)*y(4)(1)*x(2)(4)*x(4)(2)-y(1)(1)*y(4)(2)*x(2)(4)*x(4)(2)-y(2)(2)*y(4)(1)*x(1)(2)*x(4)(4)-y(1)(2)*y(2)(1)*x(4)(2)*x(4)(4)+y(1)(1)*y(2)(2)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{2}{4}{1}{2}{4}) = (-y_{2, 1} y_{4, 2}) \del{1}{4}{2}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{2}{4}{2}{4} +(x_{4, 4}) \lam{1}{2}{4}{1}{2}{2} ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,4 1,3,4 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(3)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(1))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(4)*x(4)(2)+y(1)(3)*y(4)(1)*x(2)(4)*x(4)(2)-y(1)(1)*y(4)(3)*x(2)(4)*x(4)(2)-y(2)(3)*y(4)(1)*x(1)(2)*x(4)(4)-y(1)(3)*y(2)(1)*x(4)(2)*x(4)(4)+y(1)(1)*y(2)(3)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{2}{4}{1}{3}{4}) = (-y_{2, 1} y_{4, 3}) \del{1}{4}{2}{4} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{2}{4}{2}{4} +(-y_{4, 1} x_{4, 4}) \eps{1}{2}{2}{3} +(y_{2, 1} x_{4, 4}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{4, 4}) \eps{2}{4}{2}{3} +(x_{4, 4}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,4 1,4,4 Lead Term of Spoly: y(2)(1)*y(4)(4)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(2)(1)*y(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(4)*y(4)(1)+y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(1)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,2,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(4)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(4)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(1))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(2)(1)*y(4)(4)*x(1)(4)*x(4)(2)+y(1)(4)*y(4)(1)*x(2)(4)*x(4)(2)-y(1)(1)*y(4)(4)*x(2)(4)*x(4)(2)-y(2)(4)*y(4)(1)*x(1)(2)*x(4)(4)-y(1)(4)*y(2)(1)*x(4)(2)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{2}{4}{1}{4}{4}) = (-y_{2, 1} y_{4, 4}) \del{1}{4}{2}{4} +(-y_{1, 4} y_{4, 1}+y_{1, 1} y_{4, 4}) \del{2}{4}{2}{4} +(-y_{4, 1} x_{4, 4}) \eps{1}{2}{2}{4} +(y_{2, 1} x_{4, 4}) \eps{1}{4}{2}{4} +(-y_{1, 1} x_{4, 4}) \eps{2}{4}{2}{4} +(x_{4, 4}) \lam{1}{2}{4}{1}{2}{4} ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,4 2,3,4 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(2)(2)*x(4)(4) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(4)(3)*x(2)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(3)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(2))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(4)*x(4)(2)+y(1)(3)*y(4)(2)*x(2)(4)*x(4)(2)-y(1)(2)*y(4)(3)*x(2)(4)*x(4)(2)-y(2)(3)*y(4)(2)*x(1)(2)*x(4)(4)-y(1)(3)*y(2)(2)*x(4)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{2}{4}{2}{3}{4}) = (-y_{2, 2} y_{4, 3}) \del{1}{4}{2}{4} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{2}{4}{2}{4} +(-y_{4, 2} x_{4, 4}) \eps{1}{2}{2}{3} +(y_{2, 2} x_{4, 4}) \eps{1}{4}{2}{3} +(-y_{1, 2} x_{4, 4}) \eps{2}{4}{2}{3} ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,4 2,4,4 Lead Term of Spoly: y(2)(2)*y(4)(4)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(2)(2)*y(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(4)*y(4)(2)+y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(2)(2)*x(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(2))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(2)(2)*y(4)(4)*x(1)(4)*x(4)(2)+y(1)(4)*y(4)(2)*x(2)(4)*x(4)(2)-y(1)(2)*y(4)(4)*x(2)(4)*x(4)(2)-y(2)(4)*y(4)(2)*x(1)(2)*x(4)(4)-y(1)(4)*y(2)(2)*x(4)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{2}{4}{2}{4}{4}) = (-y_{2, 2} y_{4, 4}) \del{1}{4}{2}{4} +(-y_{1, 4} y_{4, 2}+y_{1, 2} y_{4, 4}) \del{2}{4}{2}{4} +(-y_{4, 2} x_{4, 4}) \eps{1}{2}{2}{4} +(y_{2, 2} x_{4, 4}) \eps{1}{4}{2}{4} +(-y_{1, 2} x_{4, 4}) \eps{2}{4}{2}{4} ---------------------------------- Delta: 1,4 2,4 Lam: 1,2,4 3,4,4 Lead Term of Spoly: y(2)(3)*y(4)(4)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(2)(3)*y(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 2,4 2,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: y(4)(4)*x(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,2 2,4 Quotient: -y(4)(3)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(2)*x(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Rho 1,2,4 2,3,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(4)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(3))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(2)(3)*y(4)(4)*x(1)(4)*x(4)(2)+y(1)(4)*y(4)(3)*x(2)(4)*x(4)(2)-y(1)(3)*y(4)(4)*x(2)(4)*x(4)(2)-y(2)(4)*y(4)(3)*x(1)(2)*x(4)(4)-y(1)(4)*y(2)(3)*x(4)(2)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{2}{4}{3}{4}{4}) = (-y_{2, 3} y_{4, 4}) \del{1}{4}{2}{4} +(-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{2}{4}{2}{4} +(y_{4, 4} x_{4, 4}) \eps{1}{2}{2}{3} +(-y_{4, 3} x_{4, 4}) \eps{1}{2}{2}{4} +(y_{2, 2} x_{4, 4}) \eps{1}{4}{3}{4} +(-y_{1, 2} x_{4, 4}) \eps{2}{4}{3}{4} +(x_{4, 4}) \pho{1}{2}{4}{2}{3}{4} ---------------------------------- Delta: 1,4 2,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 1,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Lam 1,3,4 1,2,2 Quotient: x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(2)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(3)(4)-y(1)(2)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(4)*x(4)(2)+y(1)(2)*y(4)(1)*x(3)(4)*x(4)(2)-y(1)(1)*y(4)(2)*x(3)(4)*x(4)(2)-y(3)(2)*y(4)(1)*x(1)(2)*x(4)(4)-y(1)(2)*y(3)(1)*x(4)(2)*x(4)(4)+y(1)(1)*y(3)(2)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{1}{4}{2}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{3}{4}{2}{4} +(x_{4, 4}) \lam{1}{3}{4}{1}{2}{2} ---------------------------------- Delta: 1,4 2,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 1,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(3)*x(3)(2)*x(4)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(3)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(4)*x(4)(2)+y(1)(3)*y(4)(1)*x(3)(4)*x(4)(2)-y(1)(1)*y(4)(3)*x(3)(4)*x(4)(2)-y(3)(3)*y(4)(1)*x(1)(2)*x(4)(4)-y(1)(3)*y(3)(1)*x(4)(2)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{1}{4}{2}{4} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{3}{4}{2}{4} +(-y_{4, 1} x_{4, 4}) \eps{1}{3}{2}{3} +(y_{3, 1} x_{4, 4}) \eps{1}{4}{2}{3} +(-y_{1, 1} x_{4, 4}) \eps{3}{4}{2}{3} +(x_{4, 4}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Delta: 1,4 2,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(4)*y(4)(1)+y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(3)(2)*x(4)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,2,4 Quotient: x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(4)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(1)(4)*x(4)(2)+y(1)(4)*y(4)(1)*x(3)(4)*x(4)(2)-y(1)(1)*y(4)(4)*x(3)(4)*x(4)(2)-y(3)(4)*y(4)(1)*x(1)(2)*x(4)(4)-y(1)(4)*y(3)(1)*x(4)(2)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{1}{4}{2}{4} +(-y_{1, 4} y_{4, 1}+y_{1, 1} y_{4, 4}) \del{3}{4}{2}{4} +(-y_{4, 1} x_{4, 4}) \eps{1}{3}{2}{4} +(y_{3, 1} x_{4, 4}) \eps{1}{4}{2}{4} +(-y_{1, 1} x_{4, 4}) \eps{3}{4}{2}{4} +(x_{4, 4}) \lam{1}{3}{4}{1}{2}{4} ---------------------------------- Delta: 1,4 2,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 1,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,3 Quotient: y(3)(2)*x(4)(4) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(4)(3)*x(3)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(4)*x(4)(2)+y(1)(3)*y(4)(2)*x(3)(4)*x(4)(2)-y(1)(2)*y(4)(3)*x(3)(4)*x(4)(2)-y(3)(3)*y(4)(2)*x(1)(2)*x(4)(4)-y(1)(3)*y(3)(2)*x(4)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{1}{4}{2}{4} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{3}{4}{2}{4} +(-y_{4, 2} x_{4, 4}) \eps{1}{3}{2}{3} +(y_{3, 2} x_{4, 4}) \eps{1}{4}{2}{3} +(-y_{1, 2} x_{4, 4}) \eps{3}{4}{2}{3} ---------------------------------- Delta: 1,4 2,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(4)*y(4)(2)+y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 2,4 Quotient: y(3)(2)*x(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(3)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(1)(4)*x(4)(2)+y(1)(4)*y(4)(2)*x(3)(4)*x(4)(2)-y(1)(2)*y(4)(4)*x(3)(4)*x(4)(2)-y(3)(4)*y(4)(2)*x(1)(2)*x(4)(4)-y(1)(4)*y(3)(2)*x(4)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{1}{4}{2}{4} +(-y_{1, 4} y_{4, 2}+y_{1, 2} y_{4, 4}) \del{3}{4}{2}{4} +(-y_{4, 2} x_{4, 4}) \eps{1}{3}{2}{4} +(y_{3, 2} x_{4, 4}) \eps{1}{4}{2}{4} +(-y_{1, 2} x_{4, 4}) \eps{3}{4}{2}{4} ---------------------------------- Delta: 1,4 2,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(1)(4)*x(4)(2) Divisor: Delta 1,4 2,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: y(4)(4)*x(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 2,4 Quotient: -y(4)(3)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(1)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(2)*x(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(3)(3)*x(4)(4) Lead term is well behaved Divisor: Rho 1,3,4 2,3,4 Quotient: x(4)(4) Lead Term of Product: -y(1)(4)*y(3)(3)*x(4)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(1)(4)*x(4)(2)+x(1)(2)*x(4)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(1)(4)*x(4)(2)+y(1)(4)*y(4)(3)*x(3)(4)*x(4)(2)-y(1)(3)*y(4)(4)*x(3)(4)*x(4)(2)-y(3)(4)*y(4)(3)*x(1)(2)*x(4)(4)-y(1)(4)*y(3)(3)*x(4)(2)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{1}{4}{2}{4}, \lam{1}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{1}{4}{2}{4} +(-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{3}{4}{2}{4} +(y_{4, 4} x_{4, 4}) \eps{1}{3}{2}{3} +(-y_{4, 3} x_{4, 4}) \eps{1}{3}{2}{4} +(y_{3, 2} x_{4, 4}) \eps{1}{4}{3}{4} +(-y_{1, 2} x_{4, 4}) \eps{3}{4}{3}{4} +(x_{4, 4}) \pho{1}{3}{4}{2}{3}{4} ---------------------------------- Delta: 1,4 2,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 2,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,3 1,2,4 Lead Term of Spoly: y(2)(1)*y(3)(2)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(2)(1)*y(3)(2) Lead Term of Product: y(2)(1)*y(3)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(2)*y(3)(1)+y(1)(1)*y(3)(2) Lead Term of Product: y(1)(2)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(2)*y(2)(1)-y(1)(1)*y(2)(2) Lead Term of Product: -y(1)(2)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(2)*y(3)(1)*x(1)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(2)(2)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(2)*x(1)(4)+y(1)(2)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(2)*x(3)(4)) - (-y(2)(2)*y(3)(1))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(2)(1)*y(3)(2)*x(1)(4)*x(4)(3)+y(1)(2)*y(3)(1)*x(2)(4)*x(4)(3)-y(1)(1)*y(3)(2)*x(2)(4)*x(4)(3)-y(1)(2)*y(2)(1)*x(3)(4)*x(4)(3)+y(1)(1)*y(2)(2)*x(3)(4)*x(4)(3)-y(2)(2)*y(3)(1)*x(1)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{2}{3}{1}{2}{4}) = (-y_{2, 1} y_{3, 2}) \del{1}{4}{3}{4} +(-y_{1, 2} y_{3, 1}+y_{1, 1} y_{3, 2}) \del{2}{4}{3}{4} +(y_{1, 2} y_{2, 1}-y_{1, 1} y_{2, 2}) \del{3}{4}{3}{4} +(x_{4, 4}) \lam{1}{2}{3}{1}{2}{3} ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,3 1,3,4 Lead Term of Spoly: y(2)(1)*y(3)(3)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(2)(1)*y(3)(3) Lead Term of Product: y(2)(1)*y(3)(3)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(3)*y(3)(1)+y(1)(1)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(3)*y(2)(1)-y(1)(1)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,3 1,3,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(2)(3)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(1))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(2)(1)*y(3)(3)*x(1)(4)*x(4)(3)+y(1)(3)*y(3)(1)*x(2)(4)*x(4)(3)-y(1)(1)*y(3)(3)*x(2)(4)*x(4)(3)-y(1)(3)*y(2)(1)*x(3)(4)*x(4)(3)+y(1)(1)*y(2)(3)*x(3)(4)*x(4)(3)-y(2)(3)*y(3)(1)*x(1)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{2}{3}{1}{3}{4}) = (-y_{2, 1} y_{3, 3}) \del{1}{4}{3}{4} +(-y_{1, 3} y_{3, 1}+y_{1, 1} y_{3, 3}) \del{2}{4}{3}{4} +(y_{1, 3} y_{2, 1}-y_{1, 1} y_{2, 3}) \del{3}{4}{3}{4} +(x_{4, 4}) \lam{1}{2}{3}{1}{3}{3} ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,3 1,4,4 Lead Term of Spoly: y(2)(1)*y(3)(4)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(2)(1)*y(3)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(3)(1)+y(1)(1)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(4)*y(2)(1)-y(1)(1)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(3)(1)*x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(1)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(3)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,3 1,3,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(1)*x(1)(4)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(2)(4)*y(3)(1)*x(1)(4)+y(2)(1)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(1)*x(2)(4)-y(1)(1)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(3)(4)+y(1)(1)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(1))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(2)(1)*y(3)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(3)(1)*x(2)(4)*x(4)(3)-y(1)(1)*y(3)(4)*x(2)(4)*x(4)(3)-y(1)(4)*y(2)(1)*x(3)(4)*x(4)(3)+y(1)(1)*y(2)(4)*x(3)(4)*x(4)(3)-y(2)(4)*y(3)(1)*x(1)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{2}{3}{1}{4}{4}) = (-y_{2, 1} y_{3, 4}) \del{1}{4}{3}{4} +(-y_{1, 4} y_{3, 1}+y_{1, 1} y_{3, 4}) \del{2}{4}{3}{4} +(y_{1, 4} y_{2, 1}-y_{1, 1} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{3, 1} x_{4, 4}) \eps{1}{2}{3}{4} +(y_{2, 1} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{1, 1} x_{4, 4}) \eps{2}{3}{3}{4} +(x_{4, 4}) \lam{1}{2}{3}{1}{3}{4} ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,3 2,3,4 Lead Term of Spoly: y(2)(2)*y(3)(3)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(2)(2)*y(3)(3) Lead Term of Product: y(2)(2)*y(3)(3)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(3)*y(3)(2)+y(1)(2)*y(3)(3) Lead Term of Product: y(1)(3)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(3)*y(2)(2)-y(1)(2)*y(2)(3) Lead Term of Product: -y(1)(3)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,3 2,3,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(2)(3)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(3)*x(1)(4)+y(1)(3)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(3)*x(3)(4)) - (-y(2)(3)*y(3)(2))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(2)(2)*y(3)(3)*x(1)(4)*x(4)(3)+y(1)(3)*y(3)(2)*x(2)(4)*x(4)(3)-y(1)(2)*y(3)(3)*x(2)(4)*x(4)(3)-y(1)(3)*y(2)(2)*x(3)(4)*x(4)(3)+y(1)(2)*y(2)(3)*x(3)(4)*x(4)(3)-y(2)(3)*y(3)(2)*x(1)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{2}{3}{2}{3}{4}) = (-y_{2, 2} y_{3, 3}) \del{1}{4}{3}{4} +(-y_{1, 3} y_{3, 2}+y_{1, 2} y_{3, 3}) \del{2}{4}{3}{4} +(y_{1, 3} y_{2, 2}-y_{1, 2} y_{2, 3}) \del{3}{4}{3}{4} +(x_{4, 4}) \lam{1}{2}{3}{2}{3}{3} ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,3 2,4,4 Lead Term of Spoly: y(2)(2)*y(3)(4)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(2)(2)*y(3)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(3)(2)+y(1)(2)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(4)*y(2)(2)-y(1)(2)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(3)(2)*x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(2)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(2)*x(4)(4) Lead Term of Product: y(2)(2)*y(3)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,3 2,3,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(1)(4)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(2)(4)*y(3)(2)*x(1)(4)+y(2)(2)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(2)*x(2)(4)-y(1)(2)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(3)(4)+y(1)(2)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(2))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(2)(2)*y(3)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(3)(2)*x(2)(4)*x(4)(3)-y(1)(2)*y(3)(4)*x(2)(4)*x(4)(3)-y(1)(4)*y(2)(2)*x(3)(4)*x(4)(3)+y(1)(2)*y(2)(4)*x(3)(4)*x(4)(3)-y(2)(4)*y(3)(2)*x(1)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{2}{3}{2}{4}{4}) = (-y_{2, 2} y_{3, 4}) \del{1}{4}{3}{4} +(-y_{1, 4} y_{3, 2}+y_{1, 2} y_{3, 4}) \del{2}{4}{3}{4} +(y_{1, 4} y_{2, 2}-y_{1, 2} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{3, 2} x_{4, 4}) \eps{1}{2}{3}{4} +(y_{2, 2} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{1, 2} x_{4, 4}) \eps{2}{3}{3}{4} +(x_{4, 4}) \lam{1}{2}{3}{2}{3}{4} ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,3 3,4,4 Lead Term of Spoly: y(2)(3)*y(3)(4)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(2)(3)*y(3)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(3)(3)+y(1)(3)*y(3)(4) Lead Term of Product: y(1)(4)*y(3)(3)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(1)(4)*y(2)(3)-y(1)(3)*y(2)(4) Lead Term of Product: -y(1)(4)*y(2)(3)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(3)(3)*x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(3)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: y(2)(3)*x(4)(4) Lead Term of Product: y(2)(3)*y(3)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(3)(4)*x(2)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(2)(4)*y(3)(3)*x(1)(4)+y(2)(3)*y(3)(4)*x(1)(4)+y(1)(4)*y(3)(3)*x(2)(4)-y(1)(3)*y(3)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(3)(4)+y(1)(3)*y(2)(4)*x(3)(4)) - (-y(2)(4)*y(3)(3))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(2)(3)*y(3)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(3)(3)*x(2)(4)*x(4)(3)-y(1)(3)*y(3)(4)*x(2)(4)*x(4)(3)-y(1)(4)*y(2)(3)*x(3)(4)*x(4)(3)+y(1)(3)*y(2)(4)*x(3)(4)*x(4)(3)-y(2)(4)*y(3)(3)*x(1)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{2}{3}{3}{4}{4}) = (-y_{2, 3} y_{3, 4}) \del{1}{4}{3}{4} +(-y_{1, 4} y_{3, 3}+y_{1, 3} y_{3, 4}) \del{2}{4}{3}{4} +(y_{1, 4} y_{2, 3}-y_{1, 3} y_{2, 4}) \del{3}{4}{3}{4} +(-y_{3, 3} x_{4, 4}) \eps{1}{2}{3}{4} +(y_{2, 3} x_{4, 4}) \eps{1}{3}{3}{4} +(-y_{1, 3} x_{4, 4}) \eps{2}{3}{3}{4} ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,4 1,2,4 Lead Term of Spoly: y(2)(1)*y(4)(2)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(2)(1)*y(4)(2) Lead Term of Product: y(2)(1)*y(4)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(1)*x(1)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(2)(2)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(2)*x(2)(4)-y(1)(2)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(2)*x(4)(4)) - (-y(2)(2)*y(4)(1))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(2)(1)*y(4)(2)*x(1)(4)*x(4)(3)+y(1)(2)*y(4)(1)*x(2)(4)*x(4)(3)-y(1)(1)*y(4)(2)*x(2)(4)*x(4)(3)-y(2)(2)*y(4)(1)*x(1)(3)*x(4)(4)-y(1)(2)*y(2)(1)*x(4)(3)*x(4)(4)+y(1)(1)*y(2)(2)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{2}{4}{1}{2}{4}) = (-y_{2, 1} y_{4, 2}) \del{1}{4}{3}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{2}{4}{3}{4} +(x_{4, 4}) \lam{1}{2}{4}{1}{2}{3} ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,4 1,3,4 Lead Term of Spoly: y(2)(1)*y(4)(3)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(2)(1)*y(4)(3) Lead Term of Product: y(2)(1)*y(4)(3)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,4 1,3,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(2)(3)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(1))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(2)(1)*y(4)(3)*x(1)(4)*x(4)(3)+y(1)(3)*y(4)(1)*x(2)(4)*x(4)(3)-y(1)(1)*y(4)(3)*x(2)(4)*x(4)(3)-y(2)(3)*y(4)(1)*x(1)(3)*x(4)(4)-y(1)(3)*y(2)(1)*x(4)(3)*x(4)(4)+y(1)(1)*y(2)(3)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{2}{4}{1}{3}{4}) = (-y_{2, 1} y_{4, 3}) \del{1}{4}{3}{4} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{2}{4}{3}{4} +(x_{4, 4}) \lam{1}{2}{4}{1}{3}{3} ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,4 1,4,4 Lead Term of Spoly: y(2)(1)*y(4)(4)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(2)(1)*y(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(4)(1)+y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(1)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(1)*x(4)(4) Lead Term of Product: y(2)(1)*y(4)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 1,3,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(1)*x(1)(4)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(2)(4)*y(4)(1)*x(1)(4)+y(2)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(2)(4)-y(1)(1)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(1)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(1))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(2)(1)*y(4)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(4)(1)*x(2)(4)*x(4)(3)-y(1)(1)*y(4)(4)*x(2)(4)*x(4)(3)-y(2)(4)*y(4)(1)*x(1)(3)*x(4)(4)-y(1)(4)*y(2)(1)*x(4)(3)*x(4)(4)+y(1)(1)*y(2)(4)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{2}{4}{1}{4}{4}) = (-y_{2, 1} y_{4, 4}) \del{1}{4}{3}{4} +(-y_{1, 4} y_{4, 1}+y_{1, 1} y_{4, 4}) \del{2}{4}{3}{4} +(-y_{4, 1} x_{4, 4}) \eps{1}{2}{3}{4} +(y_{2, 1} x_{4, 4}) \eps{1}{4}{3}{4} +(-y_{1, 1} x_{4, 4}) \eps{2}{4}{3}{4} +(x_{4, 4}) \lam{1}{2}{4}{1}{3}{4} ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,4 2,3,4 Lead Term of Spoly: y(2)(2)*y(4)(3)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(2)(2)*y(4)(3) Lead Term of Product: y(2)(2)*y(4)(3)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,2,4 2,3,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(2)(3)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(3)*x(2)(4)-y(1)(3)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(4)) - (-y(2)(3)*y(4)(2))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(2)(2)*y(4)(3)*x(1)(4)*x(4)(3)+y(1)(3)*y(4)(2)*x(2)(4)*x(4)(3)-y(1)(2)*y(4)(3)*x(2)(4)*x(4)(3)-y(2)(3)*y(4)(2)*x(1)(3)*x(4)(4)-y(1)(3)*y(2)(2)*x(4)(3)*x(4)(4)+y(1)(2)*y(2)(3)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{2}{4}{2}{3}{4}) = (-y_{2, 2} y_{4, 3}) \del{1}{4}{3}{4} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{2}{4}{3}{4} +(x_{4, 4}) \lam{1}{2}{4}{2}{3}{3} ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,4 2,4,4 Lead Term of Spoly: y(2)(2)*y(4)(4)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(2)(2)*y(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(4)(2)+y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(2)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(2)*x(4)(4) Lead Term of Product: y(2)(2)*y(4)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Lam 1,2,4 2,3,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(2)*x(1)(4)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(2)(4)*y(4)(2)*x(1)(4)+y(2)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(2)(4)-y(1)(2)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(2)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(2))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(2)(2)*y(4)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(4)(2)*x(2)(4)*x(4)(3)-y(1)(2)*y(4)(4)*x(2)(4)*x(4)(3)-y(2)(4)*y(4)(2)*x(1)(3)*x(4)(4)-y(1)(4)*y(2)(2)*x(4)(3)*x(4)(4)+y(1)(2)*y(2)(4)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{2}{4}{2}{4}{4}) = (-y_{2, 2} y_{4, 4}) \del{1}{4}{3}{4} +(-y_{1, 4} y_{4, 2}+y_{1, 2} y_{4, 4}) \del{2}{4}{3}{4} +(-y_{4, 2} x_{4, 4}) \eps{1}{2}{3}{4} +(y_{2, 2} x_{4, 4}) \eps{1}{4}{3}{4} +(-y_{1, 2} x_{4, 4}) \eps{2}{4}{3}{4} +(x_{4, 4}) \lam{1}{2}{4}{2}{3}{4} ---------------------------------- Delta: 1,4 3,4 Lam: 1,2,4 3,4,4 Lead Term of Spoly: y(2)(3)*y(4)(4)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(2)(3)*y(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 2,4 3,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,2 3,4 Quotient: -y(4)(3)*x(4)(4) Lead Term of Product: -y(2)(4)*y(4)(3)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(2)(3)*x(4)(4) Lead Term of Product: y(2)(3)*y(4)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(2)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(2)(4)*y(4)(3)*x(1)(4)+y(2)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(2)(4)-y(1)(3)*y(4)(4)*x(2)(4)-y(1)(4)*y(2)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(4)) - (-y(2)(4)*y(4)(3))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(2)(3)*y(4)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(4)(3)*x(2)(4)*x(4)(3)-y(1)(3)*y(4)(4)*x(2)(4)*x(4)(3)-y(2)(4)*y(4)(3)*x(1)(3)*x(4)(4)-y(1)(4)*y(2)(3)*x(4)(3)*x(4)(4)+y(1)(3)*y(2)(4)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{2}{4}{3}{4}{4}) = (-y_{2, 3} y_{4, 4}) \del{1}{4}{3}{4} +(-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{2}{4}{3}{4} +(-y_{4, 3} x_{4, 4}) \eps{1}{2}{3}{4} +(y_{2, 3} x_{4, 4}) \eps{1}{4}{3}{4} +(-y_{1, 3} x_{4, 4}) \eps{2}{4}{3}{4} ---------------------------------- Delta: 1,4 3,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 1,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(2)*y(4)(1)+y(1)(1)*y(4)(2) Lead Term of Product: y(1)(2)*y(4)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(1)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(3)(2)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(2)*x(1)(4)+y(1)(2)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(2)*x(3)(4)-y(1)(2)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(1)(4)*x(4)(3)+y(1)(2)*y(4)(1)*x(3)(4)*x(4)(3)-y(1)(1)*y(4)(2)*x(3)(4)*x(4)(3)-y(3)(2)*y(4)(1)*x(1)(3)*x(4)(4)-y(1)(2)*y(3)(1)*x(4)(3)*x(4)(4)+y(1)(1)*y(3)(2)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{1}{4}{3}{4} +(-y_{1, 2} y_{4, 1}+y_{1, 1} y_{4, 2}) \del{3}{4}{3}{4} +(x_{4, 4}) \lam{1}{3}{4}{1}{2}{3} ---------------------------------- Delta: 1,4 3,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 1,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(3)*y(4)(1)+y(1)(1)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,3,4 1,3,3 Quotient: x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(3)(3)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(1)(4)*x(4)(3)+y(1)(3)*y(4)(1)*x(3)(4)*x(4)(3)-y(1)(1)*y(4)(3)*x(3)(4)*x(4)(3)-y(3)(3)*y(4)(1)*x(1)(3)*x(4)(4)-y(1)(3)*y(3)(1)*x(4)(3)*x(4)(4)+y(1)(1)*y(3)(3)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{1}{4}{3}{4} +(-y_{1, 3} y_{4, 1}+y_{1, 1} y_{4, 3}) \del{3}{4}{3}{4} +(x_{4, 4}) \lam{1}{3}{4}{1}{3}{3} ---------------------------------- Delta: 1,4 3,4 Lam: 1,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(4)(1)+y(1)(1)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(1)*x(4)(4) Lead Term of Product: -y(1)(1)*y(4)(4)*x(3)(3)*x(4)(4) Lead term is well behaved Divisor: Lam 1,3,4 1,3,4 Quotient: x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(1)(4)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(3)(4)*y(4)(1)*x(1)(4)+y(3)(1)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(1)*x(3)(4)-y(1)(1)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(1)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(4)(1)*x(3)(4)*x(4)(3)-y(1)(1)*y(4)(4)*x(3)(4)*x(4)(3)-y(3)(4)*y(4)(1)*x(1)(3)*x(4)(4)-y(1)(4)*y(3)(1)*x(4)(3)*x(4)(4)+y(1)(1)*y(3)(4)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{1}{4}{3}{4} +(-y_{1, 4} y_{4, 1}+y_{1, 1} y_{4, 4}) \del{3}{4}{3}{4} +(-y_{4, 1} x_{4, 4}) \eps{1}{3}{3}{4} +(y_{3, 1} x_{4, 4}) \eps{1}{4}{3}{4} +(-y_{1, 1} x_{4, 4}) \eps{3}{4}{3}{4} +(x_{4, 4}) \lam{1}{3}{4}{1}{3}{4} ---------------------------------- Delta: 1,4 3,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 1,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(3)*y(4)(2)+y(1)(2)*y(4)(3) Lead Term of Product: y(1)(3)*y(4)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 1,3,4 2,3,3 Quotient: x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(3)(3)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(3)*x(1)(4)+y(1)(3)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(3)*x(3)(4)-y(1)(3)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(1)(4)*x(4)(3)+y(1)(3)*y(4)(2)*x(3)(4)*x(4)(3)-y(1)(2)*y(4)(3)*x(3)(4)*x(4)(3)-y(3)(3)*y(4)(2)*x(1)(3)*x(4)(4)-y(1)(3)*y(3)(2)*x(4)(3)*x(4)(4)+y(1)(2)*y(3)(3)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{1}{4}{3}{4} +(-y_{1, 3} y_{4, 2}+y_{1, 2} y_{4, 3}) \del{3}{4}{3}{4} +(x_{4, 4}) \lam{1}{3}{4}{2}{3}{3} ---------------------------------- Delta: 1,4 3,4 Lam: 1,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(4)(2)+y(1)(2)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(2)*x(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(2)*x(4)(4) Lead Term of Product: -y(1)(2)*y(4)(4)*x(3)(3)*x(4)(4) Lead term is well behaved Divisor: Lam 1,3,4 2,3,4 Quotient: x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(1)(4)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(3)(4)*y(4)(2)*x(1)(4)+y(3)(2)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(2)*x(3)(4)-y(1)(2)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(2)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(4)(2)*x(3)(4)*x(4)(3)-y(1)(2)*y(4)(4)*x(3)(4)*x(4)(3)-y(3)(4)*y(4)(2)*x(1)(3)*x(4)(4)-y(1)(4)*y(3)(2)*x(4)(3)*x(4)(4)+y(1)(2)*y(3)(4)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{1}{4}{3}{4} +(-y_{1, 4} y_{4, 2}+y_{1, 2} y_{4, 4}) \del{3}{4}{3}{4} +(-y_{4, 2} x_{4, 4}) \eps{1}{3}{3}{4} +(y_{3, 2} x_{4, 4}) \eps{1}{4}{3}{4} +(-y_{1, 2} x_{4, 4}) \eps{3}{4}{3}{4} +(x_{4, 4}) \lam{1}{3}{4}{2}{3}{4} ---------------------------------- Delta: 1,4 3,4 Lam: 1,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(1)(4)*x(4)(3) Divisor: Delta 1,4 3,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(1)(4)*y(4)(3)+y(1)(3)*y(4)(4) Lead Term of Product: y(1)(4)*y(4)(3)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 1,3 3,4 Quotient: -y(4)(3)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 1,4 3,4 Quotient: y(3)(3)*x(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(1)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(1)(3)*x(4)(4) Lead Term of Product: -y(1)(3)*y(4)(4)*x(3)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(3)(4)*y(4)(3)*x(1)(4)+y(3)(3)*y(4)(4)*x(1)(4)+y(1)(4)*y(4)(3)*x(3)(4)-y(1)(3)*y(4)(4)*x(3)(4)-y(1)(4)*y(3)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(1)(4)*x(4)(3)+x(1)(3)*x(4)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(1)(4)*x(4)(3)+y(1)(4)*y(4)(3)*x(3)(4)*x(4)(3)-y(1)(3)*y(4)(4)*x(3)(4)*x(4)(3)-y(3)(4)*y(4)(3)*x(1)(3)*x(4)(4)-y(1)(4)*y(3)(3)*x(4)(3)*x(4)(4)+y(1)(3)*y(3)(4)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{1}{4}{3}{4}, \lam{1}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{1}{4}{3}{4} +(-y_{1, 4} y_{4, 3}+y_{1, 3} y_{4, 4}) \del{3}{4}{3}{4} +(-y_{4, 3} x_{4, 4}) \eps{1}{3}{3}{4} +(y_{3, 3} x_{4, 4}) \eps{1}{4}{3}{4} +(-y_{1, 3} x_{4, 4}) \eps{3}{4}{3}{4} ---------------------------------- Delta: 1,4 3,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 1,4 3,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 2,3,4 1,2,2 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(2)(2)*x(3)(1) Divisor: Delta 2,3 1,2 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,2 Quotient: -y(2)(2)*y(3)(1)+y(2)(1)*y(3)(2) Lead Term of Product: y(2)(2)*y(3)(1)*x(3)(2)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(1)*x(3)(2) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: y(3)(1)*x(3)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(2)(1)*x(3)(2) Lead Term of Product: -y(2)(1)*y(4)(2)*x(3)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(2)*y(4)(1)*x(2)(2)+y(3)(1)*y(4)(2)*x(2)(2)+y(2)(2)*y(4)(1)*x(3)(2)-y(2)(1)*y(4)(2)*x(3)(2)-y(2)(2)*y(3)(1)*x(4)(2)+y(2)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(-x(2)(2)*x(3)(1)+x(2)(1)*x(3)(2)) ------- Rewrite: y(3)(1)*y(4)(2)*x(2)(2)*x(3)(1)-y(3)(2)*y(4)(1)*x(2)(1)*x(3)(2)+y(2)(2)*y(4)(1)*x(3)(1)*x(3)(2)-y(2)(1)*y(4)(2)*x(3)(1)*x(3)(2)-y(2)(2)*y(3)(1)*x(3)(1)*x(4)(2)+y(2)(1)*y(3)(2)*x(3)(1)*x(4)(2) ----------- TeX output: S(\del{2}{3}{1}{2}, \lam{2}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \del{2}{3}{1}{2} +(-y_{2, 2} y_{3, 1}+y_{2, 1} y_{3, 2}) \del{3}{4}{1}{2} +(-y_{4, 1} x_{3, 2}) \eps{2}{3}{1}{2} +(y_{3, 1} x_{3, 2}) \eps{2}{4}{1}{2} +(-y_{2, 1} x_{3, 2}) \eps{3}{4}{1}{2} ---------------------------------- Delta: 2,3 1,2 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 2,3,4 1,2,3 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(2)(3)*x(3)(1) Divisor: Delta 2,3 1,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(2)(2)*y(3)(1)+y(2)(1)*y(3)(2) Lead Term of Product: y(2)(2)*y(3)(1)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(1)*x(3)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: y(3)(1)*x(3)(3) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(2)(1)*x(3)(3) Lead Term of Product: -y(2)(1)*y(4)(2)*x(3)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(2)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(2)*x(2)(3)+y(2)(2)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(2)*x(3)(3)-y(2)(2)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(-x(2)(3)*x(3)(1)+x(2)(1)*x(3)(3)) ------- Rewrite: y(3)(1)*y(4)(2)*x(2)(3)*x(3)(1)-y(3)(2)*y(4)(1)*x(2)(1)*x(3)(3)+y(2)(2)*y(4)(1)*x(3)(1)*x(3)(3)-y(2)(1)*y(4)(2)*x(3)(1)*x(3)(3)-y(2)(2)*y(3)(1)*x(3)(1)*x(4)(3)+y(2)(1)*y(3)(2)*x(3)(1)*x(4)(3) ----------- TeX output: S(\del{2}{3}{1}{3}, \lam{2}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \del{2}{3}{1}{3} +(-y_{2, 2} y_{3, 1}+y_{2, 1} y_{3, 2}) \del{3}{4}{1}{3} +(-y_{4, 1} x_{3, 3}) \eps{2}{3}{1}{2} +(y_{3, 1} x_{3, 3}) \eps{2}{4}{1}{2} +(-y_{2, 1} x_{3, 3}) \eps{3}{4}{1}{2} ---------------------------------- Delta: 2,3 1,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 2,3,4 1,3,3 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(2)(3)*x(3)(1) Divisor: Delta 2,3 1,3 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(2)(3)*y(3)(1)+y(2)(1)*y(3)(3) Lead Term of Product: y(2)(3)*y(3)(1)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(4)(1)*x(3)(3) Lead Term of Product: -y(3)(3)*y(4)(1)*x(2)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: y(3)(1)*x(3)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 3,4 1,3 Quotient: -y(2)(1)*x(3)(3) Lead Term of Product: -y(2)(1)*y(4)(3)*x(3)(1)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(3)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(-x(2)(3)*x(3)(1)+x(2)(1)*x(3)(3)) ------- Rewrite: y(3)(1)*y(4)(3)*x(2)(3)*x(3)(1)-y(3)(3)*y(4)(1)*x(2)(1)*x(3)(3)+y(2)(3)*y(4)(1)*x(3)(1)*x(3)(3)-y(2)(1)*y(4)(3)*x(3)(1)*x(3)(3)-y(2)(3)*y(3)(1)*x(3)(1)*x(4)(3)+y(2)(1)*y(3)(3)*x(3)(1)*x(4)(3) ----------- TeX output: S(\del{2}{3}{1}{3}, \lam{2}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \del{2}{3}{1}{3} +(-y_{2, 3} y_{3, 1}+y_{2, 1} y_{3, 3}) \del{3}{4}{1}{3} +(-y_{4, 1} x_{3, 3}) \eps{2}{3}{1}{3} +(y_{3, 1} x_{3, 3}) \eps{2}{4}{1}{3} +(-y_{2, 1} x_{3, 3}) \eps{3}{4}{1}{3} ---------------------------------- Delta: 2,3 1,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 2,3,4 2,3,3 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(2)(3)*x(3)(1) Divisor: Delta 2,3 1,3 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(2)(3)*y(3)(1)+y(2)(1)*y(3)(3) Lead Term of Product: y(2)(3)*y(3)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(4)(3)*x(3)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(4)(2)*x(3)(3) Lead Term of Product: -y(3)(3)*y(4)(2)*x(2)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(3)(1)*x(3)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(1)*x(3)(3) Lead Term of Product: -y(2)(1)*y(4)(3)*x(3)(2)*x(3)(3) Lead term is well behaved Divisor: Rho 2,3,3 1,2,3 Quotient: x(4)(3) Lead Term of Product: -y(2)(3)*y(3)(2)*x(3)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(3)*y(4)(2)*x(2)(3)+y(3)(2)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(-x(2)(3)*x(3)(1)+x(2)(1)*x(3)(3)) ------- Rewrite: y(3)(2)*y(4)(3)*x(2)(3)*x(3)(1)-y(3)(3)*y(4)(2)*x(2)(1)*x(3)(3)+y(2)(3)*y(4)(2)*x(3)(1)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(1)*x(3)(3)-y(2)(3)*y(3)(2)*x(3)(1)*x(4)(3)+y(2)(2)*y(3)(3)*x(3)(1)*x(4)(3) ----------- TeX output: S(\del{2}{3}{1}{3}, \lam{2}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \del{2}{3}{1}{3} +(-y_{2, 3} y_{3, 1}+y_{2, 1} y_{3, 3}) \del{3}{4}{2}{3} +(y_{4, 3} x_{3, 3}) \eps{2}{3}{1}{2} +(-y_{4, 2} x_{3, 3}) \eps{2}{3}{1}{3} +(y_{3, 1} x_{3, 3}) \eps{2}{4}{2}{3} +(-y_{2, 1} x_{3, 3}) \eps{3}{4}{2}{3} +(x_{4, 3}) \pho{2}{3}{3}{1}{2}{3} ---------------------------------- Delta: 2,3 1,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 2,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(2)(4)*x(3)(1) Divisor: Delta 2,3 1,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(2)(2)*y(3)(1)+y(2)(1)*y(3)(2) Lead Term of Product: y(2)(2)*y(3)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(2)(1)*x(3)(4) Lead Term of Product: -y(2)(1)*y(4)(2)*x(3)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(2)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(2)*x(2)(4)+y(2)(2)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(2)*x(3)(4)-y(2)(2)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(2)(4)*x(3)(1)+x(2)(1)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(2)(4)*x(3)(1)-y(3)(2)*y(4)(1)*x(2)(1)*x(3)(4)+y(2)(2)*y(4)(1)*x(3)(1)*x(3)(4)-y(2)(1)*y(4)(2)*x(3)(1)*x(3)(4)-y(2)(2)*y(3)(1)*x(3)(1)*x(4)(4)+y(2)(1)*y(3)(2)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{2}{3}{1}{4}, \lam{2}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{2}{3}{1}{4} +(-y_{2, 2} y_{3, 1}+y_{2, 1} y_{3, 2}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{3, 4}) \eps{2}{3}{1}{2} +(y_{3, 1} x_{3, 4}) \eps{2}{4}{1}{2} +(-y_{2, 1} x_{3, 4}) \eps{3}{4}{1}{2} ---------------------------------- Delta: 2,3 1,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 2,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(2)(4)*x(3)(1) Divisor: Delta 2,3 1,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(2)(3)*y(3)(1)+y(2)(1)*y(3)(3) Lead Term of Product: y(2)(3)*y(3)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,3 Quotient: -y(2)(1)*x(3)(4) Lead Term of Product: -y(2)(1)*y(4)(3)*x(3)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(3)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(2)(4)*x(3)(1)+x(2)(1)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(2)(4)*x(3)(1)-y(3)(3)*y(4)(1)*x(2)(1)*x(3)(4)+y(2)(3)*y(4)(1)*x(3)(1)*x(3)(4)-y(2)(1)*y(4)(3)*x(3)(1)*x(3)(4)-y(2)(3)*y(3)(1)*x(3)(1)*x(4)(4)+y(2)(1)*y(3)(3)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{2}{3}{1}{4}, \lam{2}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{2}{3}{1}{4} +(-y_{2, 3} y_{3, 1}+y_{2, 1} y_{3, 3}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{3, 4}) \eps{2}{3}{1}{3} +(y_{3, 1} x_{3, 4}) \eps{2}{4}{1}{3} +(-y_{2, 1} x_{3, 4}) \eps{3}{4}{1}{3} ---------------------------------- Delta: 2,3 1,4 Lam: 2,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(2)(4)*x(3)(1) Divisor: Delta 2,3 1,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(2)(4)*y(3)(1)+y(2)(1)*y(3)(4) Lead Term of Product: y(2)(4)*y(3)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,4 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,4 Quotient: -y(2)(1)*x(3)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(3)(1)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(4)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(2)(4)*x(3)(1)+x(2)(1)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(2)(4)*x(3)(1)-y(3)(4)*y(4)(1)*x(2)(1)*x(3)(4)+y(2)(4)*y(4)(1)*x(3)(1)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(1)*x(3)(4)-y(2)(4)*y(3)(1)*x(3)(1)*x(4)(4)+y(2)(1)*y(3)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{2}{3}{1}{4}, \lam{2}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{2, 4} y_{3, 1}+y_{2, 1} y_{3, 4}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{3, 4}) \eps{2}{3}{1}{4} +(y_{3, 1} x_{3, 4}) \eps{2}{4}{1}{4} +(-y_{2, 1} x_{3, 4}) \eps{3}{4}{1}{4} ---------------------------------- Delta: 2,3 1,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 1,4 Lam: 2,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(2)(4)*x(3)(1) Divisor: Delta 2,3 1,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(3)*y(3)(1)+y(2)(1)*y(3)(3) Lead Term of Product: y(2)(3)*y(3)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: y(2)(2)*y(3)(1)-y(2)(1)*y(3)(2) Lead Term of Product: -y(2)(2)*y(3)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(4)(3)*x(3)(4) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(1)*x(3)(4) Lead Term of Product: -y(2)(1)*y(4)(3)*x(3)(2)*x(3)(4) Lead term is well behaved Divisor: Rho 2,3,3 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(3)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(2)(4)*x(3)(1)+x(2)(1)*x(3)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(2)(4)*x(3)(1)-y(3)(3)*y(4)(2)*x(2)(1)*x(3)(4)+y(2)(3)*y(4)(2)*x(3)(1)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(1)*x(3)(4)-y(2)(3)*y(3)(2)*x(3)(1)*x(4)(4)+y(2)(2)*y(3)(3)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{2}{3}{1}{4}, \lam{2}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{2}{3}{1}{4} +(-y_{2, 3} y_{3, 1}+y_{2, 1} y_{3, 3}) \del{3}{4}{2}{4} +(y_{2, 2} y_{3, 1}-y_{2, 1} y_{3, 2}) \del{3}{4}{3}{4} +(y_{4, 3} x_{3, 4}) \eps{2}{3}{1}{2} +(-y_{4, 2} x_{3, 4}) \eps{2}{3}{1}{3} +(y_{3, 1} x_{3, 4}) \eps{2}{4}{2}{3} +(-y_{2, 1} x_{3, 4}) \eps{3}{4}{2}{3} +(x_{4, 4}) \pho{2}{3}{3}{1}{2}{3} ---------------------------------- Delta: 2,3 1,4 Lam: 2,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(2)(4)*x(3)(1) Divisor: Delta 2,3 1,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(4)*y(3)(1)+y(2)(1)*y(3)(4) Lead Term of Product: y(2)(4)*y(3)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(4)(4)*x(3)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(2)(1)*x(3)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(3)(2)*x(3)(4) Lead term is well behaved Divisor: Rho 2,3,3 1,2,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(2)(4)*x(3)(1)+x(2)(1)*x(3)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(2)(4)*x(3)(1)-y(3)(4)*y(4)(2)*x(2)(1)*x(3)(4)+y(2)(4)*y(4)(2)*x(3)(1)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(1)*x(3)(4)-y(2)(4)*y(3)(2)*x(3)(1)*x(4)(4)+y(2)(2)*y(3)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{2}{3}{1}{4}, \lam{2}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{2, 4} y_{3, 1}+y_{2, 1} y_{3, 4}) \del{3}{4}{2}{4} +(y_{4, 4} x_{3, 4}) \eps{2}{3}{1}{2} +(-y_{4, 2} x_{3, 4}) \eps{2}{3}{1}{4} +(y_{3, 1} x_{3, 4}) \eps{2}{4}{2}{4} +(-y_{2, 1} x_{3, 4}) \eps{3}{4}{2}{4} +(x_{4, 4}) \pho{2}{3}{3}{1}{2}{4} ---------------------------------- Delta: 2,3 1,4 Lam: 2,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(2)(4)*x(3)(1) Divisor: Delta 2,3 1,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(2)(4)*x(3)(1) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(4)*y(3)(1)+y(2)(1)*y(3)(4) Lead Term of Product: y(2)(4)*y(3)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: y(4)(4)*x(3)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(4)(3)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(2)(1)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(1)*x(3)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(3)(3)*x(3)(4) Lead term is well behaved Divisor: Rho 2,3,3 1,3,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(3)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(2)(4)*x(3)(1)+x(2)(1)*x(3)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(2)(4)*x(3)(1)-y(3)(4)*y(4)(3)*x(2)(1)*x(3)(4)+y(2)(4)*y(4)(3)*x(3)(1)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(1)*x(3)(4)-y(2)(4)*y(3)(3)*x(3)(1)*x(4)(4)+y(2)(3)*y(3)(4)*x(3)(1)*x(4)(4) ----------- TeX output: S(\del{2}{3}{1}{4}, \lam{2}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{2}{3}{1}{4} +(-y_{2, 4} y_{3, 1}+y_{2, 1} y_{3, 4}) \del{3}{4}{3}{4} +(y_{4, 4} x_{3, 4}) \eps{2}{3}{1}{3} +(-y_{4, 3} x_{3, 4}) \eps{2}{3}{1}{4} +(y_{3, 1} x_{3, 4}) \eps{2}{4}{3}{4} +(-y_{2, 1} x_{3, 4}) \eps{3}{4}{3}{4} +(x_{4, 4}) \pho{2}{3}{3}{1}{3}{4} ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 2,3,4 1,2,3 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(2)(3)*x(3)(2) Divisor: Delta 2,3 2,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(2)(2)*y(3)(1)+y(2)(1)*y(3)(2) Lead Term of Product: y(2)(2)*y(3)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Lam 2,3,4 1,2,2 Quotient: x(3)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(2)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(2)*x(2)(3)+y(2)(2)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(2)*x(3)(3)-y(2)(2)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(-x(2)(3)*x(3)(2)+x(2)(2)*x(3)(3)) ------- Rewrite: y(3)(1)*y(4)(2)*x(2)(3)*x(3)(2)-y(3)(2)*y(4)(1)*x(2)(2)*x(3)(3)+y(2)(2)*y(4)(1)*x(3)(2)*x(3)(3)-y(2)(1)*y(4)(2)*x(3)(2)*x(3)(3)-y(2)(2)*y(3)(1)*x(3)(2)*x(4)(3)+y(2)(1)*y(3)(2)*x(3)(2)*x(4)(3) ----------- TeX output: S(\del{2}{3}{2}{3}, \lam{2}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \del{2}{3}{2}{3} +(-y_{2, 2} y_{3, 1}+y_{2, 1} y_{3, 2}) \del{3}{4}{2}{3} +(x_{3, 3}) \lam{2}{3}{4}{1}{2}{2} ---------------------------------- Delta: 2,3 2,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 2,3,4 1,3,3 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(2)(3)*x(3)(2) Divisor: Delta 2,3 2,3 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(2)(3)*y(3)(1)+y(2)(1)*y(3)(3) Lead Term of Product: y(2)(3)*y(3)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(4)(1)*x(3)(3) Lead Term of Product: -y(3)(3)*y(4)(1)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(3)(1)*x(3)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(1)*x(3)(3) Lead Term of Product: -y(2)(1)*y(4)(3)*x(3)(2)*x(3)(3) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: x(3)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(3)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(3)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(-x(2)(3)*x(3)(2)+x(2)(2)*x(3)(3)) ------- Rewrite: y(3)(1)*y(4)(3)*x(2)(3)*x(3)(2)-y(3)(3)*y(4)(1)*x(2)(2)*x(3)(3)+y(2)(3)*y(4)(1)*x(3)(2)*x(3)(3)-y(2)(1)*y(4)(3)*x(3)(2)*x(3)(3)-y(2)(3)*y(3)(1)*x(3)(2)*x(4)(3)+y(2)(1)*y(3)(3)*x(3)(2)*x(4)(3) ----------- TeX output: S(\del{2}{3}{2}{3}, \lam{2}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \del{2}{3}{2}{3} +(-y_{2, 3} y_{3, 1}+y_{2, 1} y_{3, 3}) \del{3}{4}{2}{3} +(-y_{4, 1} x_{3, 3}) \eps{2}{3}{2}{3} +(y_{3, 1} x_{3, 3}) \eps{2}{4}{2}{3} +(-y_{2, 1} x_{3, 3}) \eps{3}{4}{2}{3} +(x_{3, 3}) \lam{2}{3}{4}{1}{2}{3} ---------------------------------- Delta: 2,3 2,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 2,3,4 2,3,3 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(2)(3)*x(3)(2) Divisor: Delta 2,3 2,3 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(2)(3)*y(3)(2)+y(2)(2)*y(3)(3) Lead Term of Product: y(2)(3)*y(3)(2)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(4)(2)*x(3)(3) Lead Term of Product: -y(3)(3)*y(4)(2)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(3)(2)*x(3)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(2)*x(3)(3) Lead Term of Product: -y(2)(2)*y(4)(3)*x(3)(2)*x(3)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(3)*y(4)(2)*x(2)(3)+y(3)(2)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(-x(2)(3)*x(3)(2)+x(2)(2)*x(3)(3)) ------- Rewrite: y(3)(2)*y(4)(3)*x(2)(3)*x(3)(2)-y(3)(3)*y(4)(2)*x(2)(2)*x(3)(3)+y(2)(3)*y(4)(2)*x(3)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(2)*x(3)(3)-y(2)(3)*y(3)(2)*x(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(3)(2)*x(4)(3) ----------- TeX output: S(\del{2}{3}{2}{3}, \lam{2}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \del{2}{3}{2}{3} +(-y_{2, 3} y_{3, 2}+y_{2, 2} y_{3, 3}) \del{3}{4}{2}{3} +(-y_{4, 2} x_{3, 3}) \eps{2}{3}{2}{3} +(y_{3, 2} x_{3, 3}) \eps{2}{4}{2}{3} +(-y_{2, 2} x_{3, 3}) \eps{3}{4}{2}{3} ---------------------------------- Delta: 2,3 2,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 2,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(2)(4)*x(3)(2) Divisor: Delta 2,3 2,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(2)*y(3)(1)+y(2)(1)*y(3)(2) Lead Term of Product: y(2)(2)*y(3)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Lam 2,3,4 1,2,2 Quotient: x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(2)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(2)*x(2)(4)+y(2)(2)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(2)*x(3)(4)-y(2)(2)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(2)(4)*x(3)(2)+x(2)(2)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(2)(4)*x(3)(2)-y(3)(2)*y(4)(1)*x(2)(2)*x(3)(4)+y(2)(2)*y(4)(1)*x(3)(2)*x(3)(4)-y(2)(1)*y(4)(2)*x(3)(2)*x(3)(4)-y(2)(2)*y(3)(1)*x(3)(2)*x(4)(4)+y(2)(1)*y(3)(2)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{2}{3}{2}{4}, \lam{2}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{2}{3}{2}{4} +(-y_{2, 2} y_{3, 1}+y_{2, 1} y_{3, 2}) \del{3}{4}{2}{4} +(x_{3, 4}) \lam{2}{3}{4}{1}{2}{2} ---------------------------------- Delta: 2,3 2,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 2,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(2)(4)*x(3)(2) Divisor: Delta 2,3 2,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(3)*y(3)(1)+y(2)(1)*y(3)(3) Lead Term of Product: y(2)(3)*y(3)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(1)*x(3)(4) Lead Term of Product: -y(2)(1)*y(4)(3)*x(3)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(3)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(2)(4)*x(3)(2)+x(2)(2)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(2)(4)*x(3)(2)-y(3)(3)*y(4)(1)*x(2)(2)*x(3)(4)+y(2)(3)*y(4)(1)*x(3)(2)*x(3)(4)-y(2)(1)*y(4)(3)*x(3)(2)*x(3)(4)-y(2)(3)*y(3)(1)*x(3)(2)*x(4)(4)+y(2)(1)*y(3)(3)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{2}{3}{2}{4}, \lam{2}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{2}{3}{2}{4} +(-y_{2, 3} y_{3, 1}+y_{2, 1} y_{3, 3}) \del{3}{4}{2}{4} +(-y_{4, 1} x_{3, 4}) \eps{2}{3}{2}{3} +(y_{3, 1} x_{3, 4}) \eps{2}{4}{2}{3} +(-y_{2, 1} x_{3, 4}) \eps{3}{4}{2}{3} +(x_{3, 4}) \lam{2}{3}{4}{1}{2}{3} ---------------------------------- Delta: 2,3 2,4 Lam: 2,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(2)(4)*x(3)(2) Divisor: Delta 2,3 2,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(4)*y(3)(1)+y(2)(1)*y(3)(4) Lead Term of Product: y(2)(4)*y(3)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(2)(1)*x(3)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(3)(2)*x(3)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,2,4 Quotient: x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(4)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(2)(4)*x(3)(2)+x(2)(2)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(2)(4)*x(3)(2)-y(3)(4)*y(4)(1)*x(2)(2)*x(3)(4)+y(2)(4)*y(4)(1)*x(3)(2)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(2)*x(3)(4)-y(2)(4)*y(3)(1)*x(3)(2)*x(4)(4)+y(2)(1)*y(3)(4)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{2}{3}{2}{4}, \lam{2}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{2, 4} y_{3, 1}+y_{2, 1} y_{3, 4}) \del{3}{4}{2}{4} +(-y_{4, 1} x_{3, 4}) \eps{2}{3}{2}{4} +(y_{3, 1} x_{3, 4}) \eps{2}{4}{2}{4} +(-y_{2, 1} x_{3, 4}) \eps{3}{4}{2}{4} +(x_{3, 4}) \lam{2}{3}{4}{1}{2}{4} ---------------------------------- Delta: 2,3 2,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 2,4 Lam: 2,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(2)(4)*x(3)(2) Divisor: Delta 2,3 2,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(3)*y(3)(2)+y(2)(2)*y(3)(3) Lead Term of Product: y(2)(3)*y(3)(2)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(3)(2)*x(3)(4) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(2)*x(3)(4) Lead Term of Product: -y(2)(2)*y(4)(3)*x(3)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(3)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(2)(4)*x(3)(2)+x(2)(2)*x(3)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(2)(4)*x(3)(2)-y(3)(3)*y(4)(2)*x(2)(2)*x(3)(4)+y(2)(3)*y(4)(2)*x(3)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(2)*x(3)(4)-y(2)(3)*y(3)(2)*x(3)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{2}{3}{2}{4}, \lam{2}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{2}{3}{2}{4} +(-y_{2, 3} y_{3, 2}+y_{2, 2} y_{3, 3}) \del{3}{4}{2}{4} +(-y_{4, 2} x_{3, 4}) \eps{2}{3}{2}{3} +(y_{3, 2} x_{3, 4}) \eps{2}{4}{2}{3} +(-y_{2, 2} x_{3, 4}) \eps{3}{4}{2}{3} ---------------------------------- Delta: 2,3 2,4 Lam: 2,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(2)(4)*x(3)(2) Divisor: Delta 2,3 2,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(4)*y(3)(2)+y(2)(2)*y(3)(4) Lead Term of Product: y(2)(4)*y(3)(2)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: y(3)(2)*x(3)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(2)(2)*x(3)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(3)(2)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(2)(4)*x(3)(2)+x(2)(2)*x(3)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(2)(4)*x(3)(2)-y(3)(4)*y(4)(2)*x(2)(2)*x(3)(4)+y(2)(4)*y(4)(2)*x(3)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(2)*x(3)(4)-y(2)(4)*y(3)(2)*x(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{2}{3}{2}{4}, \lam{2}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{2, 4} y_{3, 2}+y_{2, 2} y_{3, 4}) \del{3}{4}{2}{4} +(-y_{4, 2} x_{3, 4}) \eps{2}{3}{2}{4} +(y_{3, 2} x_{3, 4}) \eps{2}{4}{2}{4} +(-y_{2, 2} x_{3, 4}) \eps{3}{4}{2}{4} ---------------------------------- Delta: 2,3 2,4 Lam: 2,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(2)(4)*x(3)(2) Divisor: Delta 2,3 2,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(2)(4)*x(3)(2) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(4)*y(3)(2)+y(2)(2)*y(3)(4) Lead Term of Product: y(2)(4)*y(3)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(4)(4)*x(3)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(4)(3)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(2)(2)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(3)(2)*x(3)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(2)*x(3)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(3)(3)*x(3)(4) Lead term is well behaved Divisor: Rho 2,3,3 2,3,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(3)*x(3)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(2))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(2)(4)*x(3)(2)+x(2)(2)*x(3)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(2)(4)*x(3)(2)-y(3)(4)*y(4)(3)*x(2)(2)*x(3)(4)+y(2)(4)*y(4)(3)*x(3)(2)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(2)*x(3)(4)-y(2)(4)*y(3)(3)*x(3)(2)*x(4)(4)+y(2)(3)*y(3)(4)*x(3)(2)*x(4)(4) ----------- TeX output: S(\del{2}{3}{2}{4}, \lam{2}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{2}{3}{2}{4} +(-y_{2, 4} y_{3, 2}+y_{2, 2} y_{3, 4}) \del{3}{4}{3}{4} +(y_{4, 4} x_{3, 4}) \eps{2}{3}{2}{3} +(-y_{4, 3} x_{3, 4}) \eps{2}{3}{2}{4} +(y_{3, 2} x_{3, 4}) \eps{2}{4}{3}{4} +(-y_{2, 2} x_{3, 4}) \eps{3}{4}{3}{4} +(x_{4, 4}) \pho{2}{3}{3}{2}{3}{4} ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 2,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(2)(4)*x(3)(3) Divisor: Delta 2,3 3,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(2)*y(3)(1)+y(2)(1)*y(3)(2) Lead Term of Product: y(2)(2)*y(3)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: x(3)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(3)(2)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(2)*x(2)(4)+y(2)(2)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(2)*x(3)(4)-y(2)(2)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(2)(4)*x(3)(3)+x(2)(3)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(2)(4)*x(3)(3)-y(3)(2)*y(4)(1)*x(2)(3)*x(3)(4)+y(2)(2)*y(4)(1)*x(3)(3)*x(3)(4)-y(2)(1)*y(4)(2)*x(3)(3)*x(3)(4)-y(2)(2)*y(3)(1)*x(3)(3)*x(4)(4)+y(2)(1)*y(3)(2)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{2}{3}{3}{4}, \lam{2}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{2}{3}{3}{4} +(-y_{2, 2} y_{3, 1}+y_{2, 1} y_{3, 2}) \del{3}{4}{3}{4} +(x_{3, 4}) \lam{2}{3}{4}{1}{2}{3} ---------------------------------- Delta: 2,3 3,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 2,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(2)(4)*x(3)(3) Divisor: Delta 2,3 3,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(3)*y(3)(1)+y(2)(1)*y(3)(3) Lead Term of Product: y(2)(3)*y(3)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 2,3,4 1,3,3 Quotient: x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(2)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(3)(3)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(2)(4)*x(3)(3)+x(2)(3)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(2)(4)*x(3)(3)-y(3)(3)*y(4)(1)*x(2)(3)*x(3)(4)+y(2)(3)*y(4)(1)*x(3)(3)*x(3)(4)-y(2)(1)*y(4)(3)*x(3)(3)*x(3)(4)-y(2)(3)*y(3)(1)*x(3)(3)*x(4)(4)+y(2)(1)*y(3)(3)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{2}{3}{3}{4}, \lam{2}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{2}{3}{3}{4} +(-y_{2, 3} y_{3, 1}+y_{2, 1} y_{3, 3}) \del{3}{4}{3}{4} +(x_{3, 4}) \lam{2}{3}{4}{1}{3}{3} ---------------------------------- Delta: 2,3 3,4 Lam: 2,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(2)(4)*x(3)(3) Divisor: Delta 2,3 3,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(4)*y(3)(1)+y(2)(1)*y(3)(4) Lead Term of Product: y(2)(4)*y(3)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(4)(1)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(3)(1)*x(3)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(1)*x(3)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(3)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,3,4 Quotient: x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(2)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(3)(4)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(2)(4)*x(3)(3)+x(2)(3)*x(3)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(2)(4)*x(3)(3)-y(3)(4)*y(4)(1)*x(2)(3)*x(3)(4)+y(2)(4)*y(4)(1)*x(3)(3)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(3)*x(3)(4)-y(2)(4)*y(3)(1)*x(3)(3)*x(4)(4)+y(2)(1)*y(3)(4)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{2}{3}{3}{4}, \lam{2}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{2}{3}{3}{4} +(-y_{2, 4} y_{3, 1}+y_{2, 1} y_{3, 4}) \del{3}{4}{3}{4} +(-y_{4, 1} x_{3, 4}) \eps{2}{3}{3}{4} +(y_{3, 1} x_{3, 4}) \eps{2}{4}{3}{4} +(-y_{2, 1} x_{3, 4}) \eps{3}{4}{3}{4} +(x_{3, 4}) \lam{2}{3}{4}{1}{3}{4} ---------------------------------- Delta: 2,3 3,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,3 3,4 Lam: 2,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(2)(4)*x(3)(3) Divisor: Delta 2,3 3,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(3)*y(3)(2)+y(2)(2)*y(3)(3) Lead Term of Product: y(2)(3)*y(3)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 2,3,4 2,3,3 Quotient: x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(2)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(3)(3)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(2)(4)*x(3)(3)+x(2)(3)*x(3)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(2)(4)*x(3)(3)-y(3)(3)*y(4)(2)*x(2)(3)*x(3)(4)+y(2)(3)*y(4)(2)*x(3)(3)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(3)*x(3)(4)-y(2)(3)*y(3)(2)*x(3)(3)*x(4)(4)+y(2)(2)*y(3)(3)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{2}{3}{3}{4}, \lam{2}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{2}{3}{3}{4} +(-y_{2, 3} y_{3, 2}+y_{2, 2} y_{3, 3}) \del{3}{4}{3}{4} +(x_{3, 4}) \lam{2}{3}{4}{2}{3}{3} ---------------------------------- Delta: 2,3 3,4 Lam: 2,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(2)(4)*x(3)(3) Divisor: Delta 2,3 3,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(4)*y(3)(2)+y(2)(2)*y(3)(4) Lead Term of Product: y(2)(4)*y(3)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(4)(2)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(3)(2)*x(3)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(2)*x(3)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(3)(3)*x(3)(4) Lead term is well behaved Divisor: Lam 2,3,4 2,3,4 Quotient: x(3)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(2)(4)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(2)(4)*x(3)(3)+x(2)(3)*x(3)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(2)(4)*x(3)(3)-y(3)(4)*y(4)(2)*x(2)(3)*x(3)(4)+y(2)(4)*y(4)(2)*x(3)(3)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(3)*x(3)(4)-y(2)(4)*y(3)(2)*x(3)(3)*x(4)(4)+y(2)(2)*y(3)(4)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{2}{3}{3}{4}, \lam{2}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{2}{3}{3}{4} +(-y_{2, 4} y_{3, 2}+y_{2, 2} y_{3, 4}) \del{3}{4}{3}{4} +(-y_{4, 2} x_{3, 4}) \eps{2}{3}{3}{4} +(y_{3, 2} x_{3, 4}) \eps{2}{4}{3}{4} +(-y_{2, 2} x_{3, 4}) \eps{3}{4}{3}{4} +(x_{3, 4}) \lam{2}{3}{4}{2}{3}{4} ---------------------------------- Delta: 2,3 3,4 Lam: 2,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(2)(4)*x(3)(3) Divisor: Delta 2,3 3,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(2)(4)*x(3)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(4)*y(3)(3)+y(2)(3)*y(3)(4) Lead Term of Product: y(2)(4)*y(3)(3)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(4)(3)*x(3)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(3)(3)*x(3)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(2)(3)*x(3)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(3)*x(3)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(3)(3)*x(3)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(3))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(2)(4)*x(3)(3)+x(2)(3)*x(3)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(2)(4)*x(3)(3)-y(3)(4)*y(4)(3)*x(2)(3)*x(3)(4)+y(2)(4)*y(4)(3)*x(3)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(3)*x(3)(4)-y(2)(4)*y(3)(3)*x(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(3)(3)*x(4)(4) ----------- TeX output: S(\del{2}{3}{3}{4}, \lam{2}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{2}{3}{3}{4} +(-y_{2, 4} y_{3, 3}+y_{2, 3} y_{3, 4}) \del{3}{4}{3}{4} +(-y_{4, 3} x_{3, 4}) \eps{2}{3}{3}{4} +(y_{3, 3} x_{3, 4}) \eps{2}{4}{3}{4} +(-y_{2, 3} x_{3, 4}) \eps{3}{4}{3}{4} ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 2,3,4 1,2,2 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(2)(2)*x(4)(1) Divisor: Delta 2,4 1,2 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(2)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,2 Quotient: -y(2)(2)*y(4)(1)+y(2)(1)*y(4)(2) Lead Term of Product: y(2)(2)*y(4)(1)*x(3)(2)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(1)*x(4)(2) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(1)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: y(3)(1)*x(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(1)*x(4)(2) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(2)(1)*x(4)(2) Lead Term of Product: -y(2)(1)*y(4)(2)*x(3)(1)*x(4)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(2)*y(4)(1)*x(2)(2)+y(3)(1)*y(4)(2)*x(2)(2)+y(2)(2)*y(4)(1)*x(3)(2)-y(2)(1)*y(4)(2)*x(3)(2)-y(2)(2)*y(3)(1)*x(4)(2)+y(2)(1)*y(3)(2)*x(4)(2)) - (-y(3)(2)*y(4)(1))*(-x(2)(2)*x(4)(1)+x(2)(1)*x(4)(2)) ------- Rewrite: y(3)(1)*y(4)(2)*x(2)(2)*x(4)(1)+y(2)(2)*y(4)(1)*x(3)(2)*x(4)(1)-y(2)(1)*y(4)(2)*x(3)(2)*x(4)(1)-y(3)(2)*y(4)(1)*x(2)(1)*x(4)(2)-y(2)(2)*y(3)(1)*x(4)(1)*x(4)(2)+y(2)(1)*y(3)(2)*x(4)(1)*x(4)(2) ----------- TeX output: S(\del{2}{4}{1}{2}, \lam{2}{3}{4}{1}{2}{2}) = (-y_{3, 1} y_{4, 2}) \del{2}{4}{1}{2} +(-y_{2, 2} y_{4, 1}+y_{2, 1} y_{4, 2}) \del{3}{4}{1}{2} +(-y_{4, 1} x_{4, 2}) \eps{2}{3}{1}{2} +(y_{3, 1} x_{4, 2}) \eps{2}{4}{1}{2} +(-y_{2, 1} x_{4, 2}) \eps{3}{4}{1}{2} ---------------------------------- Delta: 2,4 1,2 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,2 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 2,3,4 1,2,3 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(2)(3)*x(4)(1) Divisor: Delta 2,4 1,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(2)(2)*y(4)(1)+y(2)(1)*y(4)(2) Lead Term of Product: y(2)(2)*y(4)(1)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(1)*x(4)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: y(3)(1)*x(4)(3) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(2)(1)*x(4)(3) Lead Term of Product: -y(2)(1)*y(4)(2)*x(3)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(2)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(2)*x(2)(3)+y(2)(2)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(2)*x(3)(3)-y(2)(2)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(-x(2)(3)*x(4)(1)+x(2)(1)*x(4)(3)) ------- Rewrite: y(3)(1)*y(4)(2)*x(2)(3)*x(4)(1)+y(2)(2)*y(4)(1)*x(3)(3)*x(4)(1)-y(2)(1)*y(4)(2)*x(3)(3)*x(4)(1)-y(3)(2)*y(4)(1)*x(2)(1)*x(4)(3)-y(2)(2)*y(3)(1)*x(4)(1)*x(4)(3)+y(2)(1)*y(3)(2)*x(4)(1)*x(4)(3) ----------- TeX output: S(\del{2}{4}{1}{3}, \lam{2}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \del{2}{4}{1}{3} +(-y_{2, 2} y_{4, 1}+y_{2, 1} y_{4, 2}) \del{3}{4}{1}{3} +(-y_{4, 1} x_{4, 3}) \eps{2}{3}{1}{2} +(y_{3, 1} x_{4, 3}) \eps{2}{4}{1}{2} +(-y_{2, 1} x_{4, 3}) \eps{3}{4}{1}{2} ---------------------------------- Delta: 2,4 1,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 2,3,4 1,3,3 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(2)(3)*x(4)(1) Divisor: Delta 2,4 1,3 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(2)(3)*y(4)(1)+y(2)(1)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(1)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(4)(1)*x(4)(3) Lead Term of Product: -y(3)(3)*y(4)(1)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: y(3)(1)*x(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 3,4 1,3 Quotient: -y(2)(1)*x(4)(3) Lead Term of Product: -y(2)(1)*y(4)(3)*x(3)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(3)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(-x(2)(3)*x(4)(1)+x(2)(1)*x(4)(3)) ------- Rewrite: y(3)(1)*y(4)(3)*x(2)(3)*x(4)(1)+y(2)(3)*y(4)(1)*x(3)(3)*x(4)(1)-y(2)(1)*y(4)(3)*x(3)(3)*x(4)(1)-y(3)(3)*y(4)(1)*x(2)(1)*x(4)(3)-y(2)(3)*y(3)(1)*x(4)(1)*x(4)(3)+y(2)(1)*y(3)(3)*x(4)(1)*x(4)(3) ----------- TeX output: S(\del{2}{4}{1}{3}, \lam{2}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \del{2}{4}{1}{3} +(-y_{2, 3} y_{4, 1}+y_{2, 1} y_{4, 3}) \del{3}{4}{1}{3} +(-y_{4, 1} x_{4, 3}) \eps{2}{3}{1}{3} +(y_{3, 1} x_{4, 3}) \eps{2}{4}{1}{3} +(-y_{2, 1} x_{4, 3}) \eps{3}{4}{1}{3} ---------------------------------- Delta: 2,4 1,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 2,3,4 2,3,3 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(2)(3)*x(4)(1) Divisor: Delta 2,4 1,3 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(3)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,3 Quotient: -y(2)(3)*y(4)(2)+y(2)(2)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(2)*x(3)(3)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(4)(3)*x(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(4)(2)*x(4)(3) Lead Term of Product: -y(3)(3)*y(4)(2)*x(2)(1)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(3)(1)*x(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(1)*x(4)(3) Lead Term of Product: -y(2)(1)*y(4)(3)*x(3)(2)*x(4)(3) Lead term is well behaved Divisor: Rho 2,3,4 1,2,3 Quotient: x(4)(3) Lead Term of Product: -y(2)(3)*y(3)(2)*x(4)(1)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(3)*y(4)(2)*x(2)(3)+y(3)(2)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(-x(2)(3)*x(4)(1)+x(2)(1)*x(4)(3)) ------- Rewrite: y(3)(2)*y(4)(3)*x(2)(3)*x(4)(1)+y(2)(3)*y(4)(2)*x(3)(3)*x(4)(1)-y(2)(2)*y(4)(3)*x(3)(3)*x(4)(1)-y(3)(3)*y(4)(2)*x(2)(1)*x(4)(3)-y(2)(3)*y(3)(2)*x(4)(1)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(1)*x(4)(3) ----------- TeX output: S(\del{2}{4}{1}{3}, \lam{2}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \del{2}{4}{1}{3} +(-y_{2, 3} y_{4, 2}+y_{2, 2} y_{4, 3}) \del{3}{4}{1}{3} +(y_{4, 3} x_{4, 3}) \eps{2}{3}{1}{2} +(-y_{4, 2} x_{4, 3}) \eps{2}{3}{1}{3} +(y_{3, 1} x_{4, 3}) \eps{2}{4}{2}{3} +(-y_{2, 1} x_{4, 3}) \eps{3}{4}{2}{3} +(x_{4, 3}) \pho{2}{3}{4}{1}{2}{3} ---------------------------------- Delta: 2,4 1,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 2,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(2)(4)*x(4)(1) Divisor: Delta 2,4 1,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(2)(2)*y(4)(1)+y(2)(1)*y(4)(2) Lead Term of Product: y(2)(2)*y(4)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,2 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,2 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(4)(2)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(2)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(2)*x(2)(4)+y(2)(2)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(2)*x(3)(4)-y(2)(2)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(2)(4)*x(4)(1)+x(2)(1)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(2)(4)*x(4)(1)+y(2)(2)*y(4)(1)*x(3)(4)*x(4)(1)-y(2)(1)*y(4)(2)*x(3)(4)*x(4)(1)-y(3)(2)*y(4)(1)*x(2)(1)*x(4)(4)-y(2)(2)*y(3)(1)*x(4)(1)*x(4)(4)+y(2)(1)*y(3)(2)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{2}{4}{1}{4}, \lam{2}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{2}{4}{1}{4} +(-y_{2, 2} y_{4, 1}+y_{2, 1} y_{4, 2}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{4, 4}) \eps{2}{3}{1}{2} +(y_{3, 1} x_{4, 4}) \eps{2}{4}{1}{2} +(-y_{2, 1} x_{4, 4}) \eps{3}{4}{1}{2} ---------------------------------- Delta: 2,4 1,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 2,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(2)(4)*x(4)(1) Divisor: Delta 2,4 1,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(2)(3)*y(4)(1)+y(2)(1)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,3 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,3 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(4)(3)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(3)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(2)(4)*x(4)(1)+x(2)(1)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(2)(4)*x(4)(1)+y(2)(3)*y(4)(1)*x(3)(4)*x(4)(1)-y(2)(1)*y(4)(3)*x(3)(4)*x(4)(1)-y(3)(3)*y(4)(1)*x(2)(1)*x(4)(4)-y(2)(3)*y(3)(1)*x(4)(1)*x(4)(4)+y(2)(1)*y(3)(3)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{2}{4}{1}{4}, \lam{2}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{2}{4}{1}{4} +(-y_{2, 3} y_{4, 1}+y_{2, 1} y_{4, 3}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{4, 4}) \eps{2}{3}{1}{3} +(y_{3, 1} x_{4, 4}) \eps{2}{4}{1}{3} +(-y_{2, 1} x_{4, 4}) \eps{3}{4}{1}{3} ---------------------------------- Delta: 2,4 1,4 Lam: 2,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(2)(4)*x(4)(1) Divisor: Delta 2,4 1,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(2)(4)*y(4)(1)+y(2)(1)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(1)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 1,4 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 1,4 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(3)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(4)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(2)(4)*x(4)(1)+x(2)(1)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(2)(4)*x(4)(1)+y(2)(4)*y(4)(1)*x(3)(4)*x(4)(1)-y(2)(1)*y(4)(4)*x(3)(4)*x(4)(1)-y(3)(4)*y(4)(1)*x(2)(1)*x(4)(4)-y(2)(4)*y(3)(1)*x(4)(1)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{2}{4}{1}{4}, \lam{2}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{2}{4}{1}{4} +(-y_{2, 4} y_{4, 1}+y_{2, 1} y_{4, 4}) \del{3}{4}{1}{4} +(-y_{4, 1} x_{4, 4}) \eps{2}{3}{1}{4} +(y_{3, 1} x_{4, 4}) \eps{2}{4}{1}{4} +(-y_{2, 1} x_{4, 4}) \eps{3}{4}{1}{4} ---------------------------------- Delta: 2,4 1,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 1,4 Lam: 2,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(2)(4)*x(4)(1) Divisor: Delta 2,4 1,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(2)(3)*y(4)(2)+y(2)(2)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(4)(3)*x(4)(4) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(4)(3)*x(3)(2)*x(4)(4) Lead term is well behaved Divisor: Rho 2,3,4 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(2)(3)*y(3)(2)*x(4)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(3)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(2)(4)*x(4)(1)+x(2)(1)*x(4)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(2)(4)*x(4)(1)+y(2)(3)*y(4)(2)*x(3)(4)*x(4)(1)-y(2)(2)*y(4)(3)*x(3)(4)*x(4)(1)-y(3)(3)*y(4)(2)*x(2)(1)*x(4)(4)-y(2)(3)*y(3)(2)*x(4)(1)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{2}{4}{1}{4}, \lam{2}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{2}{4}{1}{4} +(-y_{2, 3} y_{4, 2}+y_{2, 2} y_{4, 3}) \del{3}{4}{1}{4} +(y_{4, 3} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{4, 2} x_{4, 4}) \eps{2}{3}{1}{3} +(y_{3, 1} x_{4, 4}) \eps{2}{4}{2}{3} +(-y_{2, 1} x_{4, 4}) \eps{3}{4}{2}{3} +(x_{4, 4}) \pho{2}{3}{4}{1}{2}{3} ---------------------------------- Delta: 2,4 1,4 Lam: 2,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(2)(4)*x(4)(1) Divisor: Delta 2,4 1,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(2)(4)*y(4)(2)+y(2)(2)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(2)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: y(4)(4)*x(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(3)(2)*x(4)(4) Lead term is well behaved Divisor: Rho 2,3,4 1,2,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(2)*x(4)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(2)(4)*x(4)(1)+x(2)(1)*x(4)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(2)(4)*x(4)(1)+y(2)(4)*y(4)(2)*x(3)(4)*x(4)(1)-y(2)(2)*y(4)(4)*x(3)(4)*x(4)(1)-y(3)(4)*y(4)(2)*x(2)(1)*x(4)(4)-y(2)(4)*y(3)(2)*x(4)(1)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{2}{4}{1}{4}, \lam{2}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{2}{4}{1}{4} +(-y_{2, 4} y_{4, 2}+y_{2, 2} y_{4, 4}) \del{3}{4}{1}{4} +(y_{4, 4} x_{4, 4}) \eps{2}{3}{1}{2} +(-y_{4, 2} x_{4, 4}) \eps{2}{3}{1}{4} +(y_{3, 1} x_{4, 4}) \eps{2}{4}{2}{4} +(-y_{2, 1} x_{4, 4}) \eps{3}{4}{2}{4} +(x_{4, 4}) \pho{2}{3}{4}{1}{2}{4} ---------------------------------- Delta: 2,4 1,4 Lam: 2,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(2)(4)*x(4)(1) Divisor: Delta 2,4 1,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(2)(4)*x(4)(1) Lead term is well behaved Divisor: Delta 3,4 1,4 Quotient: -y(2)(4)*y(4)(3)+y(2)(3)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(3)*x(3)(4)*x(4)(1) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: y(4)(4)*x(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 1,4 Quotient: -y(4)(3)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(2)(1)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(3)(3)*x(4)(4) Lead term is well behaved Divisor: Rho 2,3,4 1,3,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(3)*x(4)(1)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(1))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(2)(4)*x(4)(1)+x(2)(1)*x(4)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(2)(4)*x(4)(1)+y(2)(4)*y(4)(3)*x(3)(4)*x(4)(1)-y(2)(3)*y(4)(4)*x(3)(4)*x(4)(1)-y(3)(4)*y(4)(3)*x(2)(1)*x(4)(4)-y(2)(4)*y(3)(3)*x(4)(1)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(1)*x(4)(4) ----------- TeX output: S(\del{2}{4}{1}{4}, \lam{2}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{2}{4}{1}{4} +(-y_{2, 4} y_{4, 3}+y_{2, 3} y_{4, 4}) \del{3}{4}{1}{4} +(y_{4, 4} x_{4, 4}) \eps{2}{3}{1}{3} +(-y_{4, 3} x_{4, 4}) \eps{2}{3}{1}{4} +(y_{3, 1} x_{4, 4}) \eps{2}{4}{3}{4} +(-y_{2, 1} x_{4, 4}) \eps{3}{4}{3}{4} +(x_{4, 4}) \pho{2}{3}{4}{1}{3}{4} ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 2,3,4 1,2,3 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(2)(3)*x(4)(2) Divisor: Delta 2,4 2,3 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(2)(2)*y(4)(1)+y(2)(1)*y(4)(2) Lead Term of Product: y(2)(2)*y(4)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Lam 2,3,4 1,2,2 Quotient: x(4)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(2)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(2)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(2)*x(2)(3)+y(2)(2)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(2)*x(3)(3)-y(2)(2)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(2)*x(4)(3)) - (-y(3)(2)*y(4)(1))*(-x(2)(3)*x(4)(2)+x(2)(2)*x(4)(3)) ------- Rewrite: y(3)(1)*y(4)(2)*x(2)(3)*x(4)(2)+y(2)(2)*y(4)(1)*x(3)(3)*x(4)(2)-y(2)(1)*y(4)(2)*x(3)(3)*x(4)(2)-y(3)(2)*y(4)(1)*x(2)(2)*x(4)(3)-y(2)(2)*y(3)(1)*x(4)(2)*x(4)(3)+y(2)(1)*y(3)(2)*x(4)(2)*x(4)(3) ----------- TeX output: S(\del{2}{4}{2}{3}, \lam{2}{3}{4}{1}{2}{3}) = (-y_{3, 1} y_{4, 2}) \del{2}{4}{2}{3} +(-y_{2, 2} y_{4, 1}+y_{2, 1} y_{4, 2}) \del{3}{4}{2}{3} +(x_{4, 3}) \lam{2}{3}{4}{1}{2}{2} ---------------------------------- Delta: 2,4 2,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 2,3,4 1,3,3 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(2)(3)*x(4)(2) Divisor: Delta 2,4 2,3 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(2)(3)*y(4)(1)+y(2)(1)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(1)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(4)(1)*x(4)(3) Lead Term of Product: -y(3)(3)*y(4)(1)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(3)(1)*x(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(1)*x(4)(3) Lead Term of Product: -y(2)(1)*y(4)(3)*x(3)(2)*x(4)(3) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: x(4)(3) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(3)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(3)*y(4)(1)*x(2)(3)+y(3)(1)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(1)*x(3)(3)-y(2)(1)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(1)*x(4)(3)+y(2)(1)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(1))*(-x(2)(3)*x(4)(2)+x(2)(2)*x(4)(3)) ------- Rewrite: y(3)(1)*y(4)(3)*x(2)(3)*x(4)(2)+y(2)(3)*y(4)(1)*x(3)(3)*x(4)(2)-y(2)(1)*y(4)(3)*x(3)(3)*x(4)(2)-y(3)(3)*y(4)(1)*x(2)(2)*x(4)(3)-y(2)(3)*y(3)(1)*x(4)(2)*x(4)(3)+y(2)(1)*y(3)(3)*x(4)(2)*x(4)(3) ----------- TeX output: S(\del{2}{4}{2}{3}, \lam{2}{3}{4}{1}{3}{3}) = (-y_{3, 1} y_{4, 3}) \del{2}{4}{2}{3} +(-y_{2, 3} y_{4, 1}+y_{2, 1} y_{4, 3}) \del{3}{4}{2}{3} +(-y_{4, 1} x_{4, 3}) \eps{2}{3}{2}{3} +(y_{3, 1} x_{4, 3}) \eps{2}{4}{2}{3} +(-y_{2, 1} x_{4, 3}) \eps{3}{4}{2}{3} +(x_{4, 3}) \lam{2}{3}{4}{1}{2}{3} ---------------------------------- Delta: 2,4 2,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 2,3,4 2,3,3 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(2)(3)*x(4)(2) Divisor: Delta 2,4 2,3 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(3)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,3 Quotient: -y(2)(3)*y(4)(2)+y(2)(2)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(2)*x(3)(3)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(4)(2)*x(4)(3) Lead Term of Product: -y(3)(3)*y(4)(2)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(3)(2)*x(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(2)*x(4)(3) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(2)*x(4)(3) Lead Term of Product: -y(2)(2)*y(4)(3)*x(3)(2)*x(4)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(3)*y(4)(2)*x(2)(3)+y(3)(2)*y(4)(3)*x(2)(3)+y(2)(3)*y(4)(2)*x(3)(3)-y(2)(2)*y(4)(3)*x(3)(3)-y(2)(3)*y(3)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(3)) - (-y(3)(3)*y(4)(2))*(-x(2)(3)*x(4)(2)+x(2)(2)*x(4)(3)) ------- Rewrite: y(3)(2)*y(4)(3)*x(2)(3)*x(4)(2)+y(2)(3)*y(4)(2)*x(3)(3)*x(4)(2)-y(2)(2)*y(4)(3)*x(3)(3)*x(4)(2)-y(3)(3)*y(4)(2)*x(2)(2)*x(4)(3)-y(2)(3)*y(3)(2)*x(4)(2)*x(4)(3)+y(2)(2)*y(3)(3)*x(4)(2)*x(4)(3) ----------- TeX output: S(\del{2}{4}{2}{3}, \lam{2}{3}{4}{2}{3}{3}) = (-y_{3, 2} y_{4, 3}) \del{2}{4}{2}{3} +(-y_{2, 3} y_{4, 2}+y_{2, 2} y_{4, 3}) \del{3}{4}{2}{3} +(-y_{4, 2} x_{4, 3}) \eps{2}{3}{2}{3} +(y_{3, 2} x_{4, 3}) \eps{2}{4}{2}{3} +(-y_{2, 2} x_{4, 3}) \eps{3}{4}{2}{3} ---------------------------------- Delta: 2,4 2,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 2,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(2)(4)*x(4)(2) Divisor: Delta 2,4 2,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(2)*y(4)(1)+y(2)(1)*y(4)(2) Lead Term of Product: y(2)(2)*y(4)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Lam 2,3,4 1,2,2 Quotient: x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(2)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(2)*x(2)(4)+y(2)(2)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(2)*x(3)(4)-y(2)(2)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(2)(4)*x(4)(2)+x(2)(2)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(2)(4)*x(4)(2)+y(2)(2)*y(4)(1)*x(3)(4)*x(4)(2)-y(2)(1)*y(4)(2)*x(3)(4)*x(4)(2)-y(3)(2)*y(4)(1)*x(2)(2)*x(4)(4)-y(2)(2)*y(3)(1)*x(4)(2)*x(4)(4)+y(2)(1)*y(3)(2)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{2}{4}{2}{4}, \lam{2}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{2}{4}{2}{4} +(-y_{2, 2} y_{4, 1}+y_{2, 1} y_{4, 2}) \del{3}{4}{2}{4} +(x_{4, 4}) \lam{2}{3}{4}{1}{2}{2} ---------------------------------- Delta: 2,4 2,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 2,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(2)(4)*x(4)(2) Divisor: Delta 2,4 2,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(3)*y(4)(1)+y(2)(1)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(4)(3)*x(3)(2)*x(4)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(3)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(2)(4)*x(4)(2)+x(2)(2)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(2)(4)*x(4)(2)+y(2)(3)*y(4)(1)*x(3)(4)*x(4)(2)-y(2)(1)*y(4)(3)*x(3)(4)*x(4)(2)-y(3)(3)*y(4)(1)*x(2)(2)*x(4)(4)-y(2)(3)*y(3)(1)*x(4)(2)*x(4)(4)+y(2)(1)*y(3)(3)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{2}{4}{2}{4}, \lam{2}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{2}{4}{2}{4} +(-y_{2, 3} y_{4, 1}+y_{2, 1} y_{4, 3}) \del{3}{4}{2}{4} +(-y_{4, 1} x_{4, 4}) \eps{2}{3}{2}{3} +(y_{3, 1} x_{4, 4}) \eps{2}{4}{2}{3} +(-y_{2, 1} x_{4, 4}) \eps{3}{4}{2}{3} +(x_{4, 4}) \lam{2}{3}{4}{1}{2}{3} ---------------------------------- Delta: 2,4 2,4 Lam: 2,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(2)(4)*x(4)(2) Divisor: Delta 2,4 2,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(4)*y(4)(1)+y(2)(1)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(1)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(3)(2)*x(4)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,2,4 Quotient: x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(4)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(4)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(2)(4)*x(4)(2)+x(2)(2)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(2)(4)*x(4)(2)+y(2)(4)*y(4)(1)*x(3)(4)*x(4)(2)-y(2)(1)*y(4)(4)*x(3)(4)*x(4)(2)-y(3)(4)*y(4)(1)*x(2)(2)*x(4)(4)-y(2)(4)*y(3)(1)*x(4)(2)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{2}{4}{2}{4}, \lam{2}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{2}{4}{2}{4} +(-y_{2, 4} y_{4, 1}+y_{2, 1} y_{4, 4}) \del{3}{4}{2}{4} +(-y_{4, 1} x_{4, 4}) \eps{2}{3}{2}{4} +(y_{3, 1} x_{4, 4}) \eps{2}{4}{2}{4} +(-y_{2, 1} x_{4, 4}) \eps{3}{4}{2}{4} +(x_{4, 4}) \lam{2}{3}{4}{1}{2}{4} ---------------------------------- Delta: 2,4 2,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 2,4 Lam: 2,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(2)(4)*x(4)(2) Divisor: Delta 2,4 2,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(3)*y(4)(2)+y(2)(2)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(2)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,3 Quotient: y(3)(2)*x(4)(4) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,3 Quotient: -y(2)(2)*x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(3)*x(3)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(3)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(2)(4)*x(4)(2)+x(2)(2)*x(4)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(2)(4)*x(4)(2)+y(2)(3)*y(4)(2)*x(3)(4)*x(4)(2)-y(2)(2)*y(4)(3)*x(3)(4)*x(4)(2)-y(3)(3)*y(4)(2)*x(2)(2)*x(4)(4)-y(2)(3)*y(3)(2)*x(4)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{2}{4}{2}{4}, \lam{2}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{2}{4}{2}{4} +(-y_{2, 3} y_{4, 2}+y_{2, 2} y_{4, 3}) \del{3}{4}{2}{4} +(-y_{4, 2} x_{4, 4}) \eps{2}{3}{2}{3} +(y_{3, 2} x_{4, 4}) \eps{2}{4}{2}{3} +(-y_{2, 2} x_{4, 4}) \eps{3}{4}{2}{3} ---------------------------------- Delta: 2,4 2,4 Lam: 2,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(2)(4)*x(4)(2) Divisor: Delta 2,4 2,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(4)*y(4)(2)+y(2)(2)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(2)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 2,4 Quotient: y(3)(2)*x(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 2,4 Quotient: -y(2)(2)*x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(3)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(2)(4)*x(4)(2)+x(2)(2)*x(4)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(2)(4)*x(4)(2)+y(2)(4)*y(4)(2)*x(3)(4)*x(4)(2)-y(2)(2)*y(4)(4)*x(3)(4)*x(4)(2)-y(3)(4)*y(4)(2)*x(2)(2)*x(4)(4)-y(2)(4)*y(3)(2)*x(4)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{2}{4}{2}{4}, \lam{2}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{2}{4}{2}{4} +(-y_{2, 4} y_{4, 2}+y_{2, 2} y_{4, 4}) \del{3}{4}{2}{4} +(-y_{4, 2} x_{4, 4}) \eps{2}{3}{2}{4} +(y_{3, 2} x_{4, 4}) \eps{2}{4}{2}{4} +(-y_{2, 2} x_{4, 4}) \eps{3}{4}{2}{4} ---------------------------------- Delta: 2,4 2,4 Lam: 2,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(2)(4)*x(4)(2) Divisor: Delta 2,4 2,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(2)(4)*x(4)(2) Lead term is well behaved Divisor: Delta 3,4 2,4 Quotient: -y(2)(4)*y(4)(3)+y(2)(3)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(3)*x(3)(4)*x(4)(2) Lead term is well behaved Divisor: Epsilon 2,3 2,3 Quotient: y(4)(4)*x(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,3 2,4 Quotient: -y(4)(3)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(2)(2)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(3)(2)*x(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(2)*x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(3)(3)*x(4)(4) Lead term is well behaved Divisor: Rho 2,3,4 2,3,4 Quotient: x(4)(4) Lead Term of Product: -y(2)(4)*y(3)(3)*x(4)(2)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(2))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(2)(4)*x(4)(2)+x(2)(2)*x(4)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(2)(4)*x(4)(2)+y(2)(4)*y(4)(3)*x(3)(4)*x(4)(2)-y(2)(3)*y(4)(4)*x(3)(4)*x(4)(2)-y(3)(4)*y(4)(3)*x(2)(2)*x(4)(4)-y(2)(4)*y(3)(3)*x(4)(2)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(2)*x(4)(4) ----------- TeX output: S(\del{2}{4}{2}{4}, \lam{2}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{2}{4}{2}{4} +(-y_{2, 4} y_{4, 3}+y_{2, 3} y_{4, 4}) \del{3}{4}{2}{4} +(y_{4, 4} x_{4, 4}) \eps{2}{3}{2}{3} +(-y_{4, 3} x_{4, 4}) \eps{2}{3}{2}{4} +(y_{3, 2} x_{4, 4}) \eps{2}{4}{3}{4} +(-y_{2, 2} x_{4, 4}) \eps{3}{4}{3}{4} +(x_{4, 4}) \pho{2}{3}{4}{2}{3}{4} ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 2,3,4 1,2,4 Lead Term of Spoly: y(3)(1)*y(4)(2)*x(2)(4)*x(4)(3) Divisor: Delta 2,4 3,4 Quotient: -y(3)(1)*y(4)(2) Lead Term of Product: y(3)(1)*y(4)(2)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(2)*y(4)(1)+y(2)(1)*y(4)(2) Lead Term of Product: y(2)(2)*y(4)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 2,3,4 1,2,3 Quotient: x(4)(4) Lead Term of Product: -y(3)(2)*y(4)(1)*x(2)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(3)(2)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(2)*x(2)(4)+y(2)(2)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(2)*x(3)(4)-y(2)(2)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(2)*x(4)(4)) - (-y(3)(2)*y(4)(1))*(-x(2)(4)*x(4)(3)+x(2)(3)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(2)*x(2)(4)*x(4)(3)+y(2)(2)*y(4)(1)*x(3)(4)*x(4)(3)-y(2)(1)*y(4)(2)*x(3)(4)*x(4)(3)-y(3)(2)*y(4)(1)*x(2)(3)*x(4)(4)-y(2)(2)*y(3)(1)*x(4)(3)*x(4)(4)+y(2)(1)*y(3)(2)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{2}{4}{3}{4}, \lam{2}{3}{4}{1}{2}{4}) = (-y_{3, 1} y_{4, 2}) \del{2}{4}{3}{4} +(-y_{2, 2} y_{4, 1}+y_{2, 1} y_{4, 2}) \del{3}{4}{3}{4} +(x_{4, 4}) \lam{2}{3}{4}{1}{2}{3} ---------------------------------- Delta: 2,4 3,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 2,3,4 1,3,4 Lead Term of Spoly: y(3)(1)*y(4)(3)*x(2)(4)*x(4)(3) Divisor: Delta 2,4 3,4 Quotient: -y(3)(1)*y(4)(3) Lead Term of Product: y(3)(1)*y(4)(3)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(3)*y(4)(1)+y(2)(1)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 2,3,4 1,3,3 Quotient: x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(2)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(3)(3)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(1))*(-x(2)(4)*x(4)(3)+x(2)(3)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(3)*x(2)(4)*x(4)(3)+y(2)(3)*y(4)(1)*x(3)(4)*x(4)(3)-y(2)(1)*y(4)(3)*x(3)(4)*x(4)(3)-y(3)(3)*y(4)(1)*x(2)(3)*x(4)(4)-y(2)(3)*y(3)(1)*x(4)(3)*x(4)(4)+y(2)(1)*y(3)(3)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{2}{4}{3}{4}, \lam{2}{3}{4}{1}{3}{4}) = (-y_{3, 1} y_{4, 3}) \del{2}{4}{3}{4} +(-y_{2, 3} y_{4, 1}+y_{2, 1} y_{4, 3}) \del{3}{4}{3}{4} +(x_{4, 4}) \lam{2}{3}{4}{1}{3}{3} ---------------------------------- Delta: 2,4 3,4 Lam: 2,3,4 1,4,4 Lead Term of Spoly: y(3)(1)*y(4)(4)*x(2)(4)*x(4)(3) Divisor: Delta 2,4 3,4 Quotient: -y(3)(1)*y(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(4)*y(4)(1)+y(2)(1)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(1)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(4)(1)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(1)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(3)(1)*x(4)(4) Lead Term of Product: y(3)(1)*y(4)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(1)*x(4)(4) Lead Term of Product: -y(2)(1)*y(4)(4)*x(3)(3)*x(4)(4) Lead term is well behaved Divisor: Lam 2,3,4 1,3,4 Quotient: x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(1)*x(2)(4)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(3)(4)*y(4)(1)*x(2)(4)+y(3)(1)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(1)*x(3)(4)-y(2)(1)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(1)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(1))*(-x(2)(4)*x(4)(3)+x(2)(3)*x(4)(4)) ------- Rewrite: y(3)(1)*y(4)(4)*x(2)(4)*x(4)(3)+y(2)(4)*y(4)(1)*x(3)(4)*x(4)(3)-y(2)(1)*y(4)(4)*x(3)(4)*x(4)(3)-y(3)(4)*y(4)(1)*x(2)(3)*x(4)(4)-y(2)(4)*y(3)(1)*x(4)(3)*x(4)(4)+y(2)(1)*y(3)(4)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{2}{4}{3}{4}, \lam{2}{3}{4}{1}{4}{4}) = (-y_{3, 1} y_{4, 4}) \del{2}{4}{3}{4} +(-y_{2, 4} y_{4, 1}+y_{2, 1} y_{4, 4}) \del{3}{4}{3}{4} +(-y_{4, 1} x_{4, 4}) \eps{2}{3}{3}{4} +(y_{3, 1} x_{4, 4}) \eps{2}{4}{3}{4} +(-y_{2, 1} x_{4, 4}) \eps{3}{4}{3}{4} +(x_{4, 4}) \lam{2}{3}{4}{1}{3}{4} ---------------------------------- Delta: 2,4 3,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 2,4 3,4 Lam: 2,3,4 2,3,4 Lead Term of Spoly: y(3)(2)*y(4)(3)*x(2)(4)*x(4)(3) Divisor: Delta 2,4 3,4 Quotient: -y(3)(2)*y(4)(3) Lead Term of Product: y(3)(2)*y(4)(3)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(3)*y(4)(2)+y(2)(2)*y(4)(3) Lead Term of Product: y(2)(3)*y(4)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Lam 2,3,4 2,3,3 Quotient: x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(2)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(3)(3)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(3)*x(2)(4)+y(2)(3)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(3)*x(3)(4)-y(2)(3)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(4)) - (-y(3)(3)*y(4)(2))*(-x(2)(4)*x(4)(3)+x(2)(3)*x(4)(4)) ------- Rewrite: y(3)(2)*y(4)(3)*x(2)(4)*x(4)(3)+y(2)(3)*y(4)(2)*x(3)(4)*x(4)(3)-y(2)(2)*y(4)(3)*x(3)(4)*x(4)(3)-y(3)(3)*y(4)(2)*x(2)(3)*x(4)(4)-y(2)(3)*y(3)(2)*x(4)(3)*x(4)(4)+y(2)(2)*y(3)(3)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{2}{4}{3}{4}, \lam{2}{3}{4}{2}{3}{4}) = (-y_{3, 2} y_{4, 3}) \del{2}{4}{3}{4} +(-y_{2, 3} y_{4, 2}+y_{2, 2} y_{4, 3}) \del{3}{4}{3}{4} +(x_{4, 4}) \lam{2}{3}{4}{2}{3}{3} ---------------------------------- Delta: 2,4 3,4 Lam: 2,3,4 2,4,4 Lead Term of Spoly: y(3)(2)*y(4)(4)*x(2)(4)*x(4)(3) Divisor: Delta 2,4 3,4 Quotient: -y(3)(2)*y(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(4)*y(4)(2)+y(2)(2)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(2)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(4)(2)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(2)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(3)(2)*x(4)(4) Lead Term of Product: y(3)(2)*y(4)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(2)*x(4)(4) Lead Term of Product: -y(2)(2)*y(4)(4)*x(3)(3)*x(4)(4) Lead term is well behaved Divisor: Lam 2,3,4 2,3,4 Quotient: x(4)(4) Lead Term of Product: -y(3)(3)*y(4)(2)*x(2)(4)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(3)(4)*y(4)(2)*x(2)(4)+y(3)(2)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(2)*x(3)(4)-y(2)(2)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(2)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(2))*(-x(2)(4)*x(4)(3)+x(2)(3)*x(4)(4)) ------- Rewrite: y(3)(2)*y(4)(4)*x(2)(4)*x(4)(3)+y(2)(4)*y(4)(2)*x(3)(4)*x(4)(3)-y(2)(2)*y(4)(4)*x(3)(4)*x(4)(3)-y(3)(4)*y(4)(2)*x(2)(3)*x(4)(4)-y(2)(4)*y(3)(2)*x(4)(3)*x(4)(4)+y(2)(2)*y(3)(4)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{2}{4}{3}{4}, \lam{2}{3}{4}{2}{4}{4}) = (-y_{3, 2} y_{4, 4}) \del{2}{4}{3}{4} +(-y_{2, 4} y_{4, 2}+y_{2, 2} y_{4, 4}) \del{3}{4}{3}{4} +(-y_{4, 2} x_{4, 4}) \eps{2}{3}{3}{4} +(y_{3, 2} x_{4, 4}) \eps{2}{4}{3}{4} +(-y_{2, 2} x_{4, 4}) \eps{3}{4}{3}{4} +(x_{4, 4}) \lam{2}{3}{4}{2}{3}{4} ---------------------------------- Delta: 2,4 3,4 Lam: 2,3,4 3,4,4 Lead Term of Spoly: y(3)(3)*y(4)(4)*x(2)(4)*x(4)(3) Divisor: Delta 2,4 3,4 Quotient: -y(3)(3)*y(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(2)(4)*x(4)(3) Lead term is well behaved Divisor: Delta 3,4 3,4 Quotient: -y(2)(4)*y(4)(3)+y(2)(3)*y(4)(4) Lead Term of Product: y(2)(4)*y(4)(3)*x(3)(4)*x(4)(3) Lead term is well behaved Divisor: Epsilon 2,3 3,4 Quotient: -y(4)(3)*x(4)(4) Lead Term of Product: -y(3)(4)*y(4)(3)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 2,4 3,4 Quotient: y(3)(3)*x(4)(4) Lead Term of Product: y(3)(3)*y(4)(4)*x(2)(3)*x(4)(4) Lead term is well behaved Divisor: Epsilon 3,4 3,4 Quotient: -y(2)(3)*x(4)(4) Lead Term of Product: -y(2)(3)*y(4)(4)*x(3)(3)*x(4)(4) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(4)(3))*(-y(3)(4)*y(4)(3)*x(2)(4)+y(3)(3)*y(4)(4)*x(2)(4)+y(2)(4)*y(4)(3)*x(3)(4)-y(2)(3)*y(4)(4)*x(3)(4)-y(2)(4)*y(3)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(4)) - (-y(3)(4)*y(4)(3))*(-x(2)(4)*x(4)(3)+x(2)(3)*x(4)(4)) ------- Rewrite: y(3)(3)*y(4)(4)*x(2)(4)*x(4)(3)+y(2)(4)*y(4)(3)*x(3)(4)*x(4)(3)-y(2)(3)*y(4)(4)*x(3)(4)*x(4)(3)-y(3)(4)*y(4)(3)*x(2)(3)*x(4)(4)-y(2)(4)*y(3)(3)*x(4)(3)*x(4)(4)+y(2)(3)*y(3)(4)*x(4)(3)*x(4)(4) ----------- TeX output: S(\del{2}{4}{3}{4}, \lam{2}{3}{4}{3}{4}{4}) = (-y_{3, 3} y_{4, 4}) \del{2}{4}{3}{4} +(-y_{2, 4} y_{4, 3}+y_{2, 3} y_{4, 4}) \del{3}{4}{3}{4} +(-y_{4, 3} x_{4, 4}) \eps{2}{3}{3}{4} +(y_{3, 3} x_{4, 4}) \eps{2}{4}{3}{4} +(-y_{2, 3} x_{4, 4}) \eps{3}{4}{3}{4} ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,2 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 1,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,3 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 2,4 Lam: 2,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,3 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,3 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,3 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,3 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,3 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,3 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,3 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,3 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,3 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,3 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,2,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 1,3,4 3,4,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 2,3,4 1,2,2 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 2,3,4 1,2,3 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 2,3,4 1,2,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 2,3,4 1,3,3 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 2,3,4 1,3,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 2,3,4 1,4,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 2,3,4 2,3,3 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 2,3,4 2,3,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 2,3,4 2,4,4 Relatively Prime ---------------------------------- Delta: 3,4 3,4 Lam: 2,3,4 3,4,4 Relatively Prime ----------------------------------