Delta: 1,2 1,2 Epsilon: 1,2 1,2 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Epsilon: 1,2 1,3 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Epsilon: 1,2 2,3 Lead Term of Spoly: -y(2)(2)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: y(2)(2) Lead Term of Product: -y(2)(2)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,3 Quotient: -y(2)(1) Lead Term of Product: y(2)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -x(2)(3) Lead Term of Product: -y(2)(2)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: x(2)(2) Lead Term of Product: y(2)(3)*x(1)(1)*x(2)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) - (y(2)(3))*(-x(1)(2)*x(2)(1)+x(1)(1)*x(2)(2)) ------- Rewrite: -y(2)(2)*x(1)(3)*x(2)(1)+y(2)(3)*x(1)(1)*x(2)(2)-y(1)(3)*x(2)(1)*x(2)(2)+y(1)(2)*x(2)(1)*x(2)(3) ----------- TeX output: S(\del{1}{2}{1}{2}, \eps{1}{2}{2}{3}) = (y_{2, 2}) \del{1}{2}{1}{3} +(-y_{2, 1}) \del{1}{2}{2}{3} +(-x_{2, 3}) \eps{1}{2}{1}{2} +(x_{2, 2}) \eps{1}{2}{1}{3} ---------------------------------- Delta: 1,2 1,2 Epsilon: 1,3 1,2 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Epsilon: 1,3 1,3 Relatively Prime ---------------------------------- Delta: 1,2 1,2 Epsilon: 1,3 2,3 Lead Term of Spoly: -y(3)(2)*x(1)(3)*x(2)(1) Divisor: Delta 1,2 1,3 Quotient: y(3)(2) Lead Term of Product: -y(3)(2)*x(1)(3)*x(2)(1) Lead term is well behaved Divisor: Delta 1,2 2,3 Quotient: -y(3)(1) Lead Term of Product: y(3)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 2,3 1,2 Quotient: -y(1)(3) Lead Term of Product: y(1)(3)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: y(1)(2) Lead Term of Product: -y(1)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(1) Lead Term of Product: y(1)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -x(2)(3) Lead Term of Product: -y(3)(2)*x(1)(1)*x(2)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: x(2)(2) Lead Term of Product: y(3)(3)*x(1)(1)*x(2)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(2)(1))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) - (y(3)(3))*(-x(1)(2)*x(2)(1)+x(1)(1)*x(2)(2)) ------- Rewrite: -y(3)(2)*x(1)(3)*x(2)(1)+y(3)(3)*x(1)(1)*x(2)(2)-y(1)(3)*x(2)(1)*x(3)(2)+y(1)(2)*x(2)(1)*x(3)(3) ----------- TeX output: S(\del{1}{2}{1}{2}, \eps{1}{3}{2}{3}) = (y_{3, 2}) \del{1}{2}{1}{3} +(-y_{3, 1}) \del{1}{2}{2}{3} +(-y_{1, 3}) \del{2}{3}{1}{2} +(y_{1, 2}) \del{2}{3}{1}{3} +(-y_{1, 1}) \del{2}{3}{2}{3} +(-x_{2, 3}) \eps{1}{3}{1}{2} +(x_{2, 2}) \eps{1}{3}{1}{3} ---------------------------------- Delta: 1,2 1,2 Epsilon: 2,3 1,2 Lead Term of Spoly: y(3)(2)*x(1)(1)*x(2)(2) Divisor: Delta 1,3 1,2 Quotient: y(2)(2) Lead Term of Product: -y(2)(2)*x(1)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,2 Quotient: -y(1)(2) Lead Term of Product: y(1)(2)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -x(3)(2) Lead Term of Product: -y(2)(2)*x(1)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: x(2)(2) Lead Term of Product: y(3)(2)*x(1)(1)*x(2)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(1)(2))*(y(3)(2)*x(2)(1)-y(3)(1)*x(2)(2)-y(2)(2)*x(3)(1)+y(2)(1)*x(3)(2)) - (y(3)(2))*(-x(1)(2)*x(2)(1)+x(1)(1)*x(2)(2)) ------- Rewrite: y(3)(2)*x(1)(1)*x(2)(2)-y(3)(1)*x(1)(2)*x(2)(2)-y(2)(2)*x(1)(2)*x(3)(1)+y(2)(1)*x(1)(2)*x(3)(2) ----------- TeX output: S(\del{1}{2}{1}{2}, \eps{2}{3}{1}{2}) = (y_{2, 2}) \del{1}{3}{1}{2} +(-y_{1, 2}) \del{2}{3}{1}{2} +(-x_{3, 2}) \eps{1}{2}{1}{2} +(x_{2, 2}) \eps{1}{3}{1}{2} ---------------------------------- Delta: 1,2 1,2 Epsilon: 2,3 1,3 Lead Term of Spoly: y(3)(3)*x(1)(1)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: -y(3)(1) Lead Term of Product: y(3)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 1,2 Quotient: y(2)(3) Lead Term of Product: -y(2)(3)*x(1)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: y(2)(1) Lead Term of Product: -y(2)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 1,2 Quotient: -y(1)(3) Lead Term of Product: y(1)(3)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(1) Lead Term of Product: y(1)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -x(3)(2) Lead Term of Product: -y(2)(3)*x(1)(1)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: x(2)(2) Lead Term of Product: y(3)(3)*x(1)(1)*x(2)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(1)(2))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) - (y(3)(3))*(-x(1)(2)*x(2)(1)+x(1)(1)*x(2)(2)) ------- Rewrite: y(3)(3)*x(1)(1)*x(2)(2)-y(3)(1)*x(1)(2)*x(2)(3)-y(2)(3)*x(1)(2)*x(3)(1)+y(2)(1)*x(1)(2)*x(3)(3) ----------- TeX output: S(\del{1}{2}{1}{2}, \eps{2}{3}{1}{3}) = (-y_{3, 1}) \del{1}{2}{2}{3} +(y_{2, 3}) \del{1}{3}{1}{2} +(y_{2, 1}) \del{1}{3}{2}{3} +(-y_{1, 3}) \del{2}{3}{1}{2} +(-y_{1, 1}) \del{2}{3}{2}{3} +(-x_{3, 2}) \eps{1}{2}{1}{3} +(x_{2, 2}) \eps{1}{3}{1}{3} ---------------------------------- Delta: 1,2 1,2 Epsilon: 2,3 2,3 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Epsilon: 1,2 1,2 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Epsilon: 1,2 1,3 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Epsilon: 1,2 2,3 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Epsilon: 1,3 1,2 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Epsilon: 1,3 1,3 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Epsilon: 1,3 2,3 Relatively Prime ---------------------------------- Delta: 1,2 1,3 Epsilon: 2,3 1,2 Lead Term of Spoly: -y(3)(1)*x(1)(3)*x(2)(2) Divisor: Delta 1,2 2,3 Quotient: y(3)(1) Lead Term of Product: -y(3)(1)*x(1)(3)*x(2)(2) Lead term is well behaved Divisor: Delta 1,3 1,3 Quotient: y(2)(2) Lead Term of Product: -y(2)(2)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: -y(2)(1) Lead Term of Product: y(2)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(1)(2) Lead Term of Product: y(1)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: y(1)(1) Lead Term of Product: -y(1)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -x(3)(3) Lead Term of Product: -y(2)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: x(2)(3) Lead Term of Product: y(3)(2)*x(1)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(1)(3))*(y(3)(2)*x(2)(1)-y(3)(1)*x(2)(2)-y(2)(2)*x(3)(1)+y(2)(1)*x(3)(2)) - (y(3)(2))*(-x(1)(3)*x(2)(1)+x(1)(1)*x(2)(3)) ------- Rewrite: -y(3)(1)*x(1)(3)*x(2)(2)+y(3)(2)*x(1)(1)*x(2)(3)-y(2)(2)*x(1)(3)*x(3)(1)+y(2)(1)*x(1)(3)*x(3)(2) ----------- TeX output: S(\del{1}{2}{1}{3}, \eps{2}{3}{1}{2}) = (y_{3, 1}) \del{1}{2}{2}{3} +(y_{2, 2}) \del{1}{3}{1}{3} +(-y_{2, 1}) \del{1}{3}{2}{3} +(-y_{1, 2}) \del{2}{3}{1}{3} +(y_{1, 1}) \del{2}{3}{2}{3} +(-x_{3, 3}) \eps{1}{2}{1}{2} +(x_{2, 3}) \eps{1}{3}{1}{2} ---------------------------------- Delta: 1,2 1,3 Epsilon: 2,3 1,3 Lead Term of Spoly: y(3)(3)*x(1)(1)*x(2)(3) Divisor: Delta 1,3 1,3 Quotient: y(2)(3) Lead Term of Product: -y(2)(3)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(1)(3) Lead Term of Product: y(1)(3)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: -x(3)(3) Lead Term of Product: -y(2)(3)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: x(2)(3) Lead Term of Product: y(3)(3)*x(1)(1)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(1)(3))*(y(3)(3)*x(2)(1)-y(3)(1)*x(2)(3)-y(2)(3)*x(3)(1)+y(2)(1)*x(3)(3)) - (y(3)(3))*(-x(1)(3)*x(2)(1)+x(1)(1)*x(2)(3)) ------- Rewrite: y(3)(3)*x(1)(1)*x(2)(3)-y(3)(1)*x(1)(3)*x(2)(3)-y(2)(3)*x(1)(3)*x(3)(1)+y(2)(1)*x(1)(3)*x(3)(3) ----------- TeX output: S(\del{1}{2}{1}{3}, \eps{2}{3}{1}{3}) = (y_{2, 3}) \del{1}{3}{1}{3} +(-y_{1, 3}) \del{2}{3}{1}{3} +(-x_{3, 3}) \eps{1}{2}{1}{3} +(x_{2, 3}) \eps{1}{3}{1}{3} ---------------------------------- Delta: 1,2 1,3 Epsilon: 2,3 2,3 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Epsilon: 1,2 1,2 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Epsilon: 1,2 1,3 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Epsilon: 1,2 2,3 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Epsilon: 1,3 1,2 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Epsilon: 1,3 1,3 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Epsilon: 1,3 2,3 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Epsilon: 2,3 1,2 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Epsilon: 2,3 1,3 Relatively Prime ---------------------------------- Delta: 1,2 2,3 Epsilon: 2,3 2,3 Lead Term of Spoly: y(3)(3)*x(1)(2)*x(2)(3) Divisor: Delta 1,3 2,3 Quotient: y(2)(3) Lead Term of Product: -y(2)(3)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(1)(3) Lead Term of Product: y(1)(3)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 2,3 Quotient: -x(3)(3) Lead Term of Product: -y(2)(3)*x(1)(2)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 2,3 Quotient: x(2)(3) Lead Term of Product: y(3)(3)*x(1)(2)*x(2)(3) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(1)(3))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) - (y(3)(3))*(-x(1)(3)*x(2)(2)+x(1)(2)*x(2)(3)) ------- Rewrite: y(3)(3)*x(1)(2)*x(2)(3)-y(3)(2)*x(1)(3)*x(2)(3)-y(2)(3)*x(1)(3)*x(3)(2)+y(2)(2)*x(1)(3)*x(3)(3) ----------- TeX output: S(\del{1}{2}{2}{3}, \eps{2}{3}{2}{3}) = (y_{2, 3}) \del{1}{3}{2}{3} +(-y_{1, 3}) \del{2}{3}{2}{3} +(-x_{3, 3}) \eps{1}{2}{2}{3} +(x_{2, 3}) \eps{1}{3}{2}{3} ---------------------------------- Delta: 1,3 1,2 Epsilon: 1,2 1,2 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Epsilon: 1,2 1,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Epsilon: 1,2 2,3 Lead Term of Spoly: -y(2)(2)*x(1)(3)*x(3)(1) Divisor: Delta 1,3 1,3 Quotient: y(2)(2) Lead Term of Product: -y(2)(2)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: -y(2)(1) Lead Term of Product: y(2)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Delta 2,3 1,2 Quotient: y(1)(3) Lead Term of Product: -y(1)(3)*x(2)(2)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 1,3 Quotient: -y(1)(2) Lead Term of Product: y(1)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: y(1)(1) Lead Term of Product: -y(1)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,2 1,2 Quotient: -x(3)(3) Lead Term of Product: -y(2)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,2 1,3 Quotient: x(3)(2) Lead Term of Product: y(2)(3)*x(1)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(y(2)(3)*x(1)(2)-y(2)(2)*x(1)(3)-y(1)(3)*x(2)(2)+y(1)(2)*x(2)(3)) - (y(2)(3))*(-x(1)(2)*x(3)(1)+x(1)(1)*x(3)(2)) ------- Rewrite: -y(2)(2)*x(1)(3)*x(3)(1)-y(1)(3)*x(2)(2)*x(3)(1)+y(1)(2)*x(2)(3)*x(3)(1)+y(2)(3)*x(1)(1)*x(3)(2) ----------- TeX output: S(\del{1}{3}{1}{2}, \eps{1}{2}{2}{3}) = (y_{2, 2}) \del{1}{3}{1}{3} +(-y_{2, 1}) \del{1}{3}{2}{3} +(y_{1, 3}) \del{2}{3}{1}{2} +(-y_{1, 2}) \del{2}{3}{1}{3} +(y_{1, 1}) \del{2}{3}{2}{3} +(-x_{3, 3}) \eps{1}{2}{1}{2} +(x_{3, 2}) \eps{1}{2}{1}{3} ---------------------------------- Delta: 1,3 1,2 Epsilon: 1,3 1,2 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Epsilon: 1,3 1,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Epsilon: 1,3 2,3 Lead Term of Spoly: -y(3)(2)*x(1)(3)*x(3)(1) Divisor: Delta 1,3 1,3 Quotient: y(3)(2) Lead Term of Product: -y(3)(2)*x(1)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 1,3 2,3 Quotient: -y(3)(1) Lead Term of Product: y(3)(1)*x(1)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 1,3 1,2 Quotient: -x(3)(3) Lead Term of Product: -y(3)(2)*x(1)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 1,3 1,3 Quotient: x(3)(2) Lead Term of Product: y(3)(3)*x(1)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(y(3)(3)*x(1)(2)-y(3)(2)*x(1)(3)-y(1)(3)*x(3)(2)+y(1)(2)*x(3)(3)) - (y(3)(3))*(-x(1)(2)*x(3)(1)+x(1)(1)*x(3)(2)) ------- Rewrite: -y(3)(2)*x(1)(3)*x(3)(1)+y(3)(3)*x(1)(1)*x(3)(2)-y(1)(3)*x(3)(1)*x(3)(2)+y(1)(2)*x(3)(1)*x(3)(3) ----------- TeX output: S(\del{1}{3}{1}{2}, \eps{1}{3}{2}{3}) = (y_{3, 2}) \del{1}{3}{1}{3} +(-y_{3, 1}) \del{1}{3}{2}{3} +(-x_{3, 3}) \eps{1}{3}{1}{2} +(x_{3, 2}) \eps{1}{3}{1}{3} ---------------------------------- Delta: 1,3 1,2 Epsilon: 2,3 1,2 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Epsilon: 2,3 1,3 Relatively Prime ---------------------------------- Delta: 1,3 1,2 Epsilon: 2,3 2,3 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Epsilon: 1,2 1,2 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Epsilon: 1,2 1,3 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Epsilon: 1,2 2,3 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Epsilon: 1,3 1,2 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Epsilon: 1,3 1,3 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Epsilon: 1,3 2,3 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Epsilon: 2,3 1,2 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Epsilon: 2,3 1,3 Relatively Prime ---------------------------------- Delta: 1,3 1,3 Epsilon: 2,3 2,3 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Epsilon: 1,2 1,2 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Epsilon: 1,2 1,3 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Epsilon: 1,2 2,3 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Epsilon: 1,3 1,2 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Epsilon: 1,3 1,3 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Epsilon: 1,3 2,3 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Epsilon: 2,3 1,2 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Epsilon: 2,3 1,3 Relatively Prime ---------------------------------- Delta: 1,3 2,3 Epsilon: 2,3 2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Epsilon: 1,2 1,2 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Epsilon: 1,2 1,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Epsilon: 1,2 2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Epsilon: 1,3 1,2 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Epsilon: 1,3 1,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Epsilon: 1,3 2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Epsilon: 2,3 1,2 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Epsilon: 2,3 1,3 Relatively Prime ---------------------------------- Delta: 2,3 1,2 Epsilon: 2,3 2,3 Lead Term of Spoly: -y(3)(2)*x(2)(3)*x(3)(1) Divisor: Delta 2,3 1,3 Quotient: y(3)(2) Lead Term of Product: -y(3)(2)*x(2)(3)*x(3)(1) Lead term is well behaved Divisor: Delta 2,3 2,3 Quotient: -y(3)(1) Lead Term of Product: y(3)(1)*x(2)(3)*x(3)(2) Lead term is well behaved Divisor: Epsilon 2,3 1,2 Quotient: -x(3)(3) Lead Term of Product: -y(3)(2)*x(2)(1)*x(3)(3) Lead term is well behaved Divisor: Epsilon 2,3 1,3 Quotient: x(3)(2) Lead Term of Product: y(3)(3)*x(2)(1)*x(3)(2) Lead term is well behaved test difference: 0 all lead terms worked and remainder was zero S-poly: (-x(3)(1))*(y(3)(3)*x(2)(2)-y(3)(2)*x(2)(3)-y(2)(3)*x(3)(2)+y(2)(2)*x(3)(3)) - (y(3)(3))*(-x(2)(2)*x(3)(1)+x(2)(1)*x(3)(2)) ------- Rewrite: -y(3)(2)*x(2)(3)*x(3)(1)+y(3)(3)*x(2)(1)*x(3)(2)-y(2)(3)*x(3)(1)*x(3)(2)+y(2)(2)*x(3)(1)*x(3)(3) ----------- TeX output: S(\del{2}{3}{1}{2}, \eps{2}{3}{2}{3}) = (y_{3, 2}) \del{2}{3}{1}{3} +(-y_{3, 1}) \del{2}{3}{2}{3} +(-x_{3, 3}) \eps{2}{3}{1}{2} +(x_{3, 2}) \eps{2}{3}{1}{3} ---------------------------------- Delta: 2,3 1,3 Epsilon: 1,2 1,2 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Epsilon: 1,2 1,3 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Epsilon: 1,2 2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Epsilon: 1,3 1,2 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Epsilon: 1,3 1,3 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Epsilon: 1,3 2,3 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Epsilon: 2,3 1,2 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Epsilon: 2,3 1,3 Relatively Prime ---------------------------------- Delta: 2,3 1,3 Epsilon: 2,3 2,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Epsilon: 1,2 1,2 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Epsilon: 1,2 1,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Epsilon: 1,2 2,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Epsilon: 1,3 1,2 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Epsilon: 1,3 1,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Epsilon: 1,3 2,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Epsilon: 2,3 1,2 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Epsilon: 2,3 1,3 Relatively Prime ---------------------------------- Delta: 2,3 2,3 Epsilon: 2,3 2,3 Relatively Prime ----------------------------------