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1 Introduction

The purpose of this expository article is to describe a charming and entirely elementary theorem of
Wedderburn, known as the Wedderburn Factorization Theorem. It describes how certain polynomials
over a field F factor completely into linear factors over a division algebra D whose center is F . This
theorem merits being better known than it appears to be, especially given how easy it is to prove,
and our hope, indeed, is that this article will contribute to that goal.

We use this opportunity to also describe the notion of valuations on division algebras, and show
how Wedderburn’s theorem allows us to prove a key result about the uniqueness of such valuations.
We end by giving a construction of an infinite family of division algebras, using the properties of
valuations.

First recall that if K/F is a finite extension of fields, K is said to be normal over F if the minimal
polynomial over F of every element k ∈ K splits completely over K. Normality is thus a measure of
algebraic “fullness” over F , and yields desirable characteristics. For instance, if L/F is an extension
of fields containing K/F as a subextension, then any element of the group of symmetries of L/F
carries K to K. As another example, the group of symmetries of K/F is as large as it can possibly
be, after factoring out the elements purely inseparable over F : we have |Gal(K/F )| = [K : F ins],
where F ins is the set of elements purely inseparable over F . (In general, without the normality
assumption, we would only have |Gal(K/F )| ≤ [K : F ins]).

Now let D be an F -central division algebra, finite-dimensional over F . Any nonzero element
d ∈ D generates over F a commutative subring F [d] of D, which as a set is just {f0 + f1d + · · · +
fkd

k | k ≥ 0, fi ∈ F}. The subring F [d] is necessarily finite-dimensional as a vector space over
F , since D itself is finite-dimensional over F . Hence, the set {1, d, d2, . . . } cannot be F -linearly
independent, and exactly as in the case of field extensions, there exists some (say monic) polynomial
md,F of least degree with coefficients in F satisfied by d (see for instance [Lang, Chapter V, §1]). This
polynomial is necessarily irreducible, for exactly the same reasons as in the field case: Assume that
md,F = fg for polynomials f, g ∈ F [x] of lower degree than md,F . The evaluation map from F [x] to
F [d] that arises from substituting x = d is a ring homomorphism (this would not be true if F were
a more general ring, as we will see in Remark 2.2 Part 1 ahead). Hence, 0 = md,F (d) = f(d)g(d).
Since D is a division ring, either f(d) or g(d) must be zero. But this violates the minimality of md,F .

In analogy with the case of field extensions, it is reasonable to ask if md,F factors completely in
D.

Let us study a simple example, the first and most well-known example of a division algebra. This
is Hamilton’s Quaternions, denoted by H. This is the four-dimensional R-vector space with basis
1, i, j,k, so H = {p(= p · 1) + q · i + r · j + s · k, p, q, r, s ∈ R}. Here, i, j, and k are symbols, and
multiplication is given R-bilinearly, subject to the following rules: ij = k, ji = −k, i2 = j2 = −1
(from which one derives the rules k2 = −1, jk = i, ki = j, kj = −i and ik = −j), and, pi = ip,
pj = jp for all p ∈ R (which yields the rule pk = kp as well). It is easy to see that this is a division
algebra: we have the identity

(p+ qi + rj + sk)(p− qi− rj− sk) = p2 + q2 + r2 + s2 := N(d),
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so if d = p + qi + rj + sk is nonzero, then (p, q, r, s) 6= (0, 0, 0, 0), and we may divide the second
factor on the left above by the nonzero real number N(d) to determine the inverse of d as

d−1 =
p

N(d)
− q

N(d)
i− r

N(d)
j− s

N(d)
k.

In this simple example, it is easy to see that for any nonzero d ∈ H, md,R splits completely in H.
In fact, it splits completely in R[d] itself. This is of course trivial if d ∈ R, since md,R in that case is
just x − d. For d 6∈ R, first note that more generally, for any division algebra D finite-dimensional
over its center F and nonzero d ∈ D, the subring F [d] is necessarily a field. For, if

md,F = xm + fm−1x
m−1 + · · ·+ f1x+ f0,

then f0 6= 0, for otherwise, md,F would admit the nontrivial factor x. We may write

d(dm−1 + fm−1d
m−2 + · · ·+ f1) = −f0

and exactly as in the field case and in the case of H above, we may divide the second factor on the
left by −f0 to find that the inverse of d lies in F [d] itself. Applying this same reasoning to any e 6= 0
in F [d] shows that the inverse of e lies in F [e] ⊆ F [d]. Thus, F [d] is a field.

Now, in our particular case of the Quaternions H, for d 6∈ R, the field R[d] has to be an isomorphic
copy of C, as C is the only nontrivial finite-dimensional field extension of R. Thus, md,R has to split
completely in R[d] as C is algebraically closed. (Alternatively, as deg(md,R) = [C : R] = 2 and x− d
is already a factor in F [d], the other factor of md,R has to be linear.)

But what about more complicated examples of division algebras? This is where the Wedderburn
Factorization Theorem comes in. It shows that if F is any field, and if D is any division algebra
finite-dimensional over its center F , then D/F is normal in the same sense as in field theory: md,F

factors completely in D for any d ∈ D! Wedderburn’s proof of this rather elegant theorem is
elementary. We give his original proof of this theorem, and then describe a nontrivial application
of this theorem to valued division algebras due to Wadsworth [Wa]: we describe how this theorem
can be used to show that if F has a valuation v defined on it, and if this valuation extends to D,
then the extension is completely determined by the valuation on F ! We give examples of valuations
on division algebras extending a given valuation on the center, describing, in the process, a natural
genaralization of Hamilton’s quaternions that yields division algebras of dimension n2 for any integer
n = 2, 3, . . . .

2 Factorization theorem

We describe the Wedderburn Factorization theorem in this section. The theorem appears in Wed-
derburn’s paper [We], where he uses it to study division algebras whose dimension over their centers
is 9. Wedderburn’s proof of his theorem, which we give below, is also described in the texts [Row1]
and [Lam], among others. As already noted in Section 1, the proof is quite elementary; a more
conceptual proof was given later by Jacobson, and can be found in [Row2].

For any ring R (always with 1), let R[t] denote the polynomial ring in one variable t over R,
where t commutes elementwise with R. For a polynomial

f(t) =

n∑
i=0

ait
i

and an element r ∈ R, we define the evaluation of f at r by f(r) :=
∑n

i=0 air
i ∈ R. Note that

(f + g)(d) = f(d) + g(d) for two polynomials f, g ∈ R[t]. Note, too, that to evaluate f = gh ∈ R[t]
at r ∈ R we must first multiply out g and h and write f in the form

∑
ait

i, and then substitute r
for t. (See Remark 2.2, Part 1 below.)
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Definition 2.1. An element r ∈ R is said to be a right root of f ∈ R[t] if f(r) = 0.

Remark 2.2.

1. In general, if f = gh it does not follow that f(r) = g(r)h(r). Indeed, consider a division
algebra D with center F , and d, d1 ∈ D \ {0} are such that dd1 6= d1d. Put g(t) = (t− d), and
h(t) = (t− d1). Then g(d)h(d) = 0, while

gh(d) = (t2 − (d+ d1)t+ dd1)|t=d

= d2 − d2 − d1d+ dd1

= dd1 − d1d
6= 0.

2. Given f , h in R[t], we say that h is a right factor of f if f = gh for some g ∈ R[t]. An
analogous definition holds for left factors.

3. Over a field, a polynomial of degree n has at most n distinct roots. Over a division ring, this
is no longer true. For instance, in the Hamiltonian division algebra H over R, both i and −i
satisfy t2 + 1, but so do ±j and ±k. Further, any element of H of the form ziz−1 with z 6= 0
is also a root of t2 + 1. Indeed, (ziz−1)2 + 1 = zi2z−1 + 1 = z(i2 + 1)z−1 = 0. It is easy
to produce infinitely many distinct elements of the form ziz−1, so t2 + 1 has infinitely many
roots.

4. Let D and F be as in Part 1 of this remark. If f =
∑
ait

i ∈ F [t], and d ∈ D is a root of
f , then any conjugate zdz−1 is also a root. Indeed, zf(t)z−1 =

∑
zait

iz−1 =
∑
ai(ztz

−1)i

(since zai = aiz). Also zf(t)z−1 = f(t).

For our next definition, let D be a division algebra with center F , and D∗ the set of its nonzero
elements. A conjugacy class in D is the set of all conjugates zdz−1 of a fixed nonzero element d of
D, as z varies through D∗.

Definition 2.3. We say that a conjugacy class A is algebraic over F if one (and hence all) of its
element is algebraic over F .

Lemma 2.4. Let D be a division ring and let f = gh ∈ D[t]. Let d ∈ D be such that a := h(d) 6= 0.
Then

f(d) = g(ada−1)h(d).

In particular, if d is a root of f but not of h, then ada−1 is a root of g.

Proof. Let g =
∑
bit

i and h =
∑
cjt

j . Then f =
(∑

bit
i
) (∑

cjt
j
)

=
∑∑

bicjt
i+j , so

f(d) =
∑∑

bicjd
i+j =

∑
bi

(∑
cjd

j
)
di

=
∑

bi (h(d)) di =
∑

biad
i

=
∑

biad
ia−1a

=
∑

bi(ada
−1)ia

= g(ada−1)h(d).

The last statement of the lemma follows because D is a division ring and has no zero divisors.
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Lemma 2.5. For f(t) ∈ D[t] and d ∈ D, we have

f(t) = q(t)(t− d) + f(d).

In particular, d is a root of f if and only if t− d is a right factor of f .

Proof. We proceed by induction on deg f(t). If deg f(t) = 1, f(t) = at + b, then f(t) = a(t −
d) + ad + b, i.e., we can take q(t) = a. Suppose deg f = n > 1 and let dn ∈ D be the leading
coefficient of f(t). Put g(t) = f − dnt

n−1(t − d)= f − dntn + dndt
n−1, then deg g < deg f , and

g(d) = f(d) − dndn + dndd
n−1 = f(d). Thus, by the induction there exists q1 ∈ D[t] such that

g(t) = f(t)− dntn−1(t− d) = q1(t− d) + g(d). Hence, f(t) = (q1 + dnt
n−1)(t− d) + f(d).

Proposition 2.6. Let D be a central division algebra over F and A a conjugacy class of D which
is algebraic over F with minimal polynomial f ∈ F [t]. If a polynomial h ∈ D[t] \ {0} vanishes
identically on A, then deg h ≥ deg f .

Proof. We may assume that h is monic, since if h = emt
m+em−1t

m−1+ · · ·+e0, then d is a root of h
if and only if d is a root of tn +e−1m em−1t

m−1 + · · ·+e−1m d0. Let h = tm +d1t
m−1 + · · ·+dm ∈ D[t] be

such that h(A) = 0 and m = deg h < deg f is as small as possible. Observe that h /∈ F [t], as f is the
polynomial of least degree from F [t] that vanishes on A. Hence some coefficient di is not in F , and
therefore there is an s ∈ D such that dis 6= sdi. For any a ∈ A, h(a) = am + d1a

m−1 + · · ·+ dm = 0.
Hence

0 = (sas−1)m + d1(sas−1)m−1 + · · ·+ dm.

On the other hand, using sdja
m−js−1 = sdjs

−1sam−js−1 = (sdjs
−1)(sas−1)m−j we also have

0 = (sas−1)m + (sd1s
−1)(sas−1)m−1 + · · ·+ (sdms

−1).

Hence the polynomial
m∑
j=1

(dj − sdjs−1)tm−j

vanishes on sAs−1 = A. Since dis 6= sdi, the above polynomial is nonzero, and its degree < m. This
contradicts the choice of m.

Theorem 2.7 (Wedderburn’s Factorization theorem). Let D be a division algebra with center F .
Let A be a conjugacy class of D which is algebraic over F , with minimal (monic) polynomial f ∈ F [t]
of degree n. Then there exists a1, . . . , an ∈ A such that f =

∏n
i=1(t− ai) ∈ D[t]. Also, f is product

of the same linear factors, permuted cyclically. The element a1 ∈ A can be arbitrarily prescribed.

Proof. Fix a1 ∈ A, so a1 is a root of f and hence t−a1 is a right factor of f . Consider a factorization
of f

f = g(t)(t− ar) · · · (t− a1)

with g ∈ D[t], ai ∈ A, where r is chosen as large as possible. We claim that h = (t− ar) · · · (t− a1)
vanishes identically on A. Indeed, for a ∈ A we have f(a) = 0. If h(a) 6= 0 then by lemma 2.4,
g(ar+1) = 0 for a conjugate ar+1 of a. Then we can write g = g1(t)(t − ar+1) for some g1 ∈ D[t],
and thus f has a right factor (t− ar+1)(t− ar) · · · (t− a1), which contradicts the choice of r. Hence
h(a) = 0 for every a ∈ A. Hence by Lemma 2.6, deg h ≥ deg f . Since deg f ≥ deg h by construction,
we find f(t) =

∏n
i=1(t− ai).

To prove the last assertion, we show that for f ∈ F [t] if f = gh ∈ D[t], then f = hg ∈ D[t].
Indeed, for g ∈ D[t], we have gf = fg since the coefficients of f are in F . Thus, gf = fg = ghg,
i.e., g(f − hg) = 0 ∈ D[t]. Hence, f = hg.
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An interesting paper of Laffey and Meehan ([LM]) carries Wedderburn’s computations much fur-
ther. For an arbitrary ring R, the authors analyze the factorization over R of an arbitrary polynomial
in Z(R)[t], where Z(R) is the center of R. They show that under a certain existence condition, the
polynomial factors into conjugate linear factors, exactly as in the Wedderburn factorization. They
apply their result then to matrix rings Mn(F ) over arbitrary fields F of characteristic zero, and show
that any polynomial of degree n with coefficients in F factors over the matrix ring into conjugate
linear factors.

3 Valuation on a division algebra

In this section, we consider valuations on fields and division algebras finite-dimensional over their
centers.

Recall that an abelian group Γ is totally ordered if it is linearly ordered as a set, and if g ≤ h
implies g + k ≤ h+ k for all g, h, k ∈ Γ.

Definition 3.1. [Jac, Chapter 9, Definition 9.4′] A valuation v on a field F is a map

v : F → Γ ∪ {∞},

where Γ is a totally ordered abelian group, and ∞ a symbol such that

γ <∞ and γ +∞ =∞+∞ =∞ for all γ ∈ Γ, (3.1)

subject to the following conditions: for all x, y ∈ F ,

1. v(x) =∞ if and only if x = 0;

2. v(x+ y) ≥ min{v(x), v(y)};

3. v(xy) = v(x) + v(y).

We denote v
(
F \ {0}

)
by ΓF . It is called the value group of F and is indeed a subgroup of Γ.

Note that by Part 3 of the definition, v is a group homomorphism from F \{0} to ΓF . In particular,
v(1) = 0, and the relation −1 · −1 = 1 then shows that v(−1) = 0. The field and its valuation are
often jointly referred to as (F, v).

It is useful to observe that if x ∈ F has positive value, then v(1 + x) = 0. For, by Definition
3.1 Part 2, v(1 + x) ≥ min(v(1), v(x)) = 0. If v(1 + x) were positive, we would find v(1) =
v ((1 + x)− x) ≥ min (v(1 + x), v(−x)), and since v(−x) = v(−1 · x) = v(−1) + v(x) = v(x) > 0, we
would find v(1) > 0, a contradiction.

It follows from this that if v(x) < v(y) then v(x + y) = v(x). For, v(x + y) = v
(
x(1 + x−1y

)
.

Now, from xx−1 = 1 we find v(x−1) = −v(x), so v(x−1y) = v(y)− v(x) > 0. Hence by what we just
showed, v

(
x(1 + x−1y)

)
= v(x) + v(1 + x−1y) = v(x).

Example 3.2. Let F = E(x) be the rational function field in one variable over a field E. Note that
Z is naturally a totally ordered abelian group. We define a valuation vx : F → Z ∪ {∞} as follows:
If 0 6= f ∈ E[x] is such that f = arx

r + ar+1x
r+1 + · · ·+ ar+sx

r+s where ar 6= 0, then define

vx(f) = r.

For any nonzero element f/g ∈ F we define v(f/g) = v(f)− v(g), and v(0) =∞.

Example 3.3. Let F = E(x, y) be the rational function field over E in two variables. Note that
Z × Z is a totally ordered abelian group under the reverse lexicographic ordering: (a, b) > (c, d)
if b > d, or else, b = d and a > c. Define a valuation v : F → (Z × Z) ∪ {∞} as follows: Let
0 6= f ∈ E(x)[y] and write f in the form f = fry

r + fr+1y
r+1 + · · ·+ fr+sy

r+s, where fi ∈ E(x) and
fr 6= 0. Define

v(f) :=
(
vx(fr), r

)
.

5



For any nonzero element f/g ∈ F we define v(f/g) = v(f) − v(g), and v(0) = ∞. In particular,
v(x) = (1, 0) and v(y) = (0, 1). Note that the zero element in Z×Z is (0, 0) and v(e) = (0, 0) for all
e ∈ E.

In what follows, we restrict our attention to division algebras finite-dimensional over their centers.

Definition 3.4 (Valuation on a division algebra). Let D be a division algebra, finite-dimensional
over its center. A valuation on D is a function

vD : D → Γ ∪ {∞},

where Γ and ∞ are as in Definition 3.1, subject to the following conditions: for all x, y ∈ D,

1. vD(x) =∞ if and only if x = 0;

2. vD(x+ y) ≥ min{vD(x), vD(y)};

3. vD(xy) = vD(x) + vD(y).

We denote vD
(
D \ {0}

)
by ΓD. It is called the value group of D and is indeed a subgroup of Γ.

Just as in the field case, vD is a group homomorphism from D \ {0} to ΓD, so vD(1) = vD(−1) = 0.
The division algebra and its valuation are often jointly referred to as (D, vD).

Definitions 3.4 and 3.1 are clearly very similar. Indeed, if F is the center of D, then vD restricts
to a valuation on F in the sense of Definition 3.1. In the other direction, if (F, v) is a valued field
and D is a division algebra with center F , we say a valuation vD on D extends v if vD|F = v. In
general, a valuation v on F need not extend to D, but the remarkable fact is that if it does extend, it
does so uniquely, via a simple formula that determines it completely in terms of v. The derivation of
this formula, which we describe in Proposition 3.5 below, is a lovely application of the Wedderburn
Factorization Theorem.

To understand the ingredients in the formula, it is useful to know certain key facts about division
algebras. While full proofs of these will take us deep into a study of a more general family of algebras
known as simple algebras, the facts themselves can be described easily. We refer the reader to [Draxl,
Part I, §5] or [Jac, Chapter 4, §4.6] for more details. A key result is that if F is an algebraic closure
of F , then D⊗F F is isomorphic to the matrix algebra Mt(F ) for some t. Since the F dimension of
Mt(F ) is t2, we find from the tensor product description that the dimension of any division algebra
over its center is a perfect square. The square root of this dimension is called the index of the
division algebra.

Next, given d ∈ D, we may work with its matrix avatar Md = d⊗1 in Mt(F ) under the embedding

D
d7→d⊗1
↪−−−−→ D ⊗F F ∼= Mt(F ),

and consider its determinant. A second key result is that det(Md) lies in F , not just in F ! The
value of this determinant is called the reduced norm of d, and is denoted Nrd(d). It can be shown
to be independent of the specific isomorphism D ⊗F F ∼= Mt(F ) (there can be several) and is thus
intrinsic to D. (In fact, the expression N(d) = p2 + q2 + r2 + s2 obtained in Section 1 from the
quaternion d = p+ qi + rj + sk is nothing more than Nrd(d), a tidy formula for the reduced norm
in the case of the Quaternions!)

A third key result relates the reduced norm of d to its norm from F [d] to F as defined via field
theory. If [F [d] : F ] = n, the result is that

Nrd(d) =
(
NF [d]/F (d)

)ind (D)/n
,

where NF [d]/F (d) stands for the field theoretic norm, and ind (D) denotes the index of D as defined
above.

We can now describe the formula for the extension of v to D (assuming such an extension exists).
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Proposition 3.5. (Wadsworth [Wa]) Let D be a finite-dimensional central division algebra over a
valued field (F, v). Assume that w is a valuation on D extending v. For all a ∈ D∗ we have

w(a) =
1

ind (D)
v(Nrd(a)).

In particular, if v extends to D, then the extension is uniquely determined by v.

Proof. Let 0 6= a ∈ D and f(t) = tn + αn−1t
n−1 + · · · + α0 ∈ F [t] be the minimal polynomial of a

over F . Thus, n = [F (a) : F ], NF [a]/F (a) = (−1)nα0, so by the third key result described above,

Nrd(a) = (−1)ind (D)α
ind (D)/n
0 . Hence, v(Nrd(a)) = ind (D)

n v(α0). By Wedderburn’s Factorization
theorem (2.7), we may find conjugates of a,

ai = diad
−1
i (1 ≤ i ≤ n)

such that f(t) = (t−a1) · · · (t−an). In particular, α0 = (−1)na1a2 . . . an. Now w(ai) = w(diad
−1
i ) =

w(di) +w(a) +w(d−1), and the relation did
−1
i = 1 shows us that w(di) = −w(d−1i ). Hence, w(ai) =

w(a) for all i, from which it it follows that w(α0) = n · w(a); hence v(Nrd(a)) = ind (D)w(a).

Example 3.6. Let E be a field containing a primitive n-th root of unity ω. Let F = E(x, y) be
the rational function field over E in two variables. Let v be the valuation on F defined in (Example
3.3).

Define an F -algebra generated by i, j with the following relations:

in = x, jn = y, ij = ωji.

We denote this algebra by (x, y)n. It is easy to see that an arbitrary element of this algebra

can be written uniquely in the form

n−1∑
k,l=0

ckl i
kjl, where ckl ∈ F , so the various powers ik, jl,

k, l,= 0, . . . , n− 1 form an F basis.
Note that 1

n

(
Z× Z

)
is a totally ordered abelian group under the reverse lexicographic ordering,

just like its subgroup Z× Z. Consider the mapping vD : (x, y)n → 1
n

(
Z× Z

)
∪ {∞} given by

vD

( n−1∑
k,l=0

ckl i
kjl
)

= min
k,l

(
v(ckl) +

k

n
(1, 0) +

l

n
(0, 1)

)
. (3.2)

In particular,

vD(i) =
1

n
(1, 0), vD(j) =

1

n
(0, 1) and vD(α) = v(α) for α ∈ F. (3.3)

Notice that
vD(ikjl) ∈ ΓF if and only if k ∈ nZ and l ∈ nZ.

Furthermore, we can show, exactly as we did for valuations on fields above, that the function vD on
(x, y)n also satisfies vD(1 + e) = 0 if vD(e) is positive, and vD(d+ e) = vD(d) if vD(d) < vD(e) and
if d is invertible in (x, y)n.

We first show that vD satisfies all properties listed in Parts 1, 2, and 3 of Definition 3.4.

Suppose that vD

( n−1∑
k,l=0

ckl i
kjl
)

= ∞. Then v(ckl) + k
n (1, 0) + l

n (0, 1) = ∞ for every k, l, i.e.,

v(ckl) = ∞ for every k, l. Since v is a valuation on F , we have ckl = 0 for every k, l. Hence,
n−1∑
k,l=0

ckl i
kjl = 0, establishing Part 1.
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We have

vD

( n−1∑
k,l=0

ckl i
kjl +

n−1∑
k,l=0

dkl i
kjl
)

= vD

( n−1∑
k,l=0

(ckl + dkl) i
kjl
)

= min
k,l

(
v(ckl + dkl) + vD(ikjl)

)
≥ min

k,l

(
min

(
v(ckl), v(dkl)

)
+ vD(ikjl)

)
= min

k,l

(
min

(
v(ckl + vD(ikjl)), v(dkl + vD(ikjl)

))
= min

(
min
k,l

(
v(ckl) + vD(ikjl), v(dkl) + vD(ikjl)

))
= min

(
vD
( n−1∑
k,l=0

ckl i
kjl
)
, vD

( n−1∑
k,l=0

dkl i
kjl
))
,

establishing Part 2
To establish Part 3 needs a little more work. First, let us refer to an expression such as ckli

kjl

for 0 ≤ k < n, 0 ≤ l < n as a monomial. Note that any monomial is invertible: this follows from the
fact that the inverse of ik is x−1in−k for 1 ≤ k < n, and the inverse of jl is y−1jn−l for 1 ≤ l < n.
First, we will show that if m1 and m2 are two monomials, then vD(m1m2) = vD(m1) + vD(m2).
Note that if m1 = ckli

kjl and m2 = dk′l′i
k′
jl

′
, then, setting ζ = ωk′l we have the following relations:

m1m2 =


(ckldk′l′ ζ)ik+k′

jl+l′ if k + k′ < n and l + l′ < n

(ckldk′l′ ζx)ik+k′−njl+l′ if k + k′ ≥ n and l + l′ < n

(ckldk′l′ ζy)ik+k′
jl+l′−n if k + k′ < n and l + l′ ≥ n

(ckldk′l′ ζxy)ik+k′−njl+l′−n if k + k′ ≥ n and l + l′ ≥ n

Notice that from the expressions for m1m2 above that if m1 and m2 are monomials, then m1m2

is also a monomial.
We will show that vD(m1m2) = vD(m1) + vD(m2) in the second of the four cases above; the

proof for the other cases is similar. We apply the formula for vD for a single monomial, which is
implicit in Definition 3.2:

vD(m1m2) = v(ckldk′l′ ζx) + k+k′−n
n (1, 0) + l+l′

n (0, 1)

= v(ckl) + v(dk′l′) + v(ζ) + v(x) + k+k′−n
n (1, 0) + l+l′

n (0, 1)

= v(ckl) + v(dk′l′) + (0, 0) + (1, 0) + (k+k′

n − 1)(1, 0) + l+l′

n (0, 1)

= v(ckl) + k
n (1, 0) + l

n (0, 1) + v(dk′l′) + k′

n (1, 0) + l′

n (0, 1)

= vD(m1) + vD(m2).

Here we have used the fact that v(ζ) = (0, 0), this is because ζn = 1, so nv(ζ) = v(1) = (0, 0).
Now consider arbitrary elements d =

∑
k,l ckl i

kjl and e =
∑

k,l dkl i
kjl of (x, y)n. Since vD(ikjl)

and vD(ik
′
jl

′
) are in different cosets of Z×Z in 1

n

(
Z×Z

)
if (k, l) 6= (k′l′), vD(ckli

kjl) 6= vD(dk′l′i
k′
jl

′
).

Hence we find that there is a unique monomial m0 in d that has the lowest value of vD, so by
definition, vD(d) = vD(m0). Similarly, there is a unique monomial n0 in e that has the lowest value
of vD and vD(e) = vD(n0). Let us write d = m0 +m1 + · · · , where m1, · · · are the other monomials
in d: all of these have higher value of vD than m0. Similarly, let us write e = n0 + n1 + · · · .
Then m1m2 = m0n0 +

∑
(i,j)6=(0,0)minj . Note that the various monomial products msnt need not

be in distinct cosets of Z × Z in 1
n (Z × Z), but that will not concern us. Since we have already
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seen that vD(mimj) = vD(mi) + vD(mj), we see that all the monomial products other than m0n0
have values of vD higher than vD(m0n0). Thus we write, m1m2 = m0n0 + w, and it follows
from Part 2 of Definition 3.4, which we have already established, that vD(w) > vD(m0n0). Now
m1m2 is invertible (since we have observed that m1m2 is a monomial and that every monomial is
invertible), so it follows from what we have noted above that vD(m1m2 + w) = vD(m1m2). Thus,
vD(de) = vD(m1m2) = vD(m1) + vD(m2) = vD(d) + vD(e). This establishes Part 3.

Note that Parts 1 and 3 show that (x, y)n has no zero divisors, since if d 6= 0 and e 6= 0, then
vD(d) 6= ∞ and vD(e) 6= ∞, so vD(de) = vD(d) + vD(e) 6= ∞. The arguments in Section 1 which
show that md,F is irreducible and from this that d is invertible in F [d] only relied on the finite-
dimensionality of D and the fact that it has no zero divisors. Applying this to (x, y)n, we find that
every nonzero element d of (x, y)n is invertible, with inverse in F [d], showing that (x, y)n is a division
algebra.

By Proposition 3.5, vD is the unique valuation on (x, y)n that extends the valuation v on F .
Notice that the algebras (x, y)n form a very nice generalization of H. These algebras are clearly

of index n, and thus furnish examples of division algebras of arbitrary index.
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