
Wireless Health and the Smart Phone Conundrum
Jonathan Woodbridge*, Ani Nahapetian*, Hyduke Noshadi*‡,

Majid Sarrafzadeh*, William Kaiser†
*Computer Science Department, University of California, Los Angeles

{jwoodbri,ani,hyduke,majid}@cs.ucla.edu
†Electrical Engineering Department, University of California, Los Angeles

{kaiser}@ee.ucla.edu
‡Google, Inc. 1600 Amphitheater Parkway, Mountain View, CA

ABSTRACT 
This paper presents a study of the five best selling Smart Phones in
terms of their applicability to Wireless Health. Smart Phones are
generally used as central controlling units in Wireless Health
applications. We carried out our investigation by implementing a
wireless health application that performs sensor communication,
data processing, and data visualization. Our overarching goal is to
develop a plug-and-play Wireless Health software platform. Our
task begins with an in depth study of Smart Phones: the central
controller of Wireless health applications.

KEYWORDS 
Wireless Health, Smart Phones, Bluetooth

1. INTRODUCTION
Over the past few years, researchers developed several wireless
health platforms such as [3][14][16][17][22][23]. These platforms
often include a mobile device (such as a PDA or cell phone) as the
central controlling, processing, and visualization unit. Figure 1
depicts one such architecture. Previous work is predominantly
focused on overall architectures and lacks focus on the central
processing unit. Our goal is to analyze several commercial Smart
Phones to determine the best targets for wireless health.

Figure 1. A standard architecture for Wireless Health
Applications. The wearable system acts as a central processing
unit for the patient.

Our comparison is based on a set of libraries developed for wireless
health. We feel that extending current wireless health platforms by
offering an additional software component (set of libraries) for
mobile devices would add tremendous value. Reliability, code
reuse, and decreased development times are just a few of the many
benefits offered by such software.

Implementing a set of libraries requires intimate knowledge of the
target devices. This paper presents an examination of popular Smart
Phone platforms, based off of the design of a simplified application
that uses a few basic components of a wireless health library. We
design our libraries based on a few active research projects here in
our labs at UCLA. We describe these projects in section 2. Next,
we discuss the feasibility of implementing such an application
(including libraries) on several commercial platforms. Finally, we
present the development of our simplified application and libraries
to prove the feasibility of such a software platform.

This paper does not present a complete wireless health software
library. Our library is only representative of a complete
implementation. We use this representative as a basis of
comparison between Smart Phone platforms and prove the
feasibility of a complete wireless health software library.

All platforms compared in this paper support cellular connectivity
(such as CDMA and UMTS). Such devices offer far greater
network coverage than devices that only support technologies such
as Bluetooth and WiFi. In a large number of wireless health
applications, this constant connectivity is required, especially in the
case of applications that require high mobility.

During our comparison of platforms, we analyze feature availability
as well as emulation and debugging environments. We hope this
comparison serves as a guide for those wishing to develop wireless
health applications for deployment on smart phone platforms.

The key contributes of this paper are three fold. First, we provide
an assessment of the five best selling Smart Phones platforms and
their applicability towards wireless health. Second, we determine
the best software runtime environment in applicable to our five
Smart Phone platforms. Finally, we developed a wireless health
application to prove the correctness of our assessments.

2. WIRELESS HEALTH APPLICATIONS
The following section presents a few wireless health projects under
development at UCLA. We use these projects as inspiration for a set
of wireless health libraries. These projects by no means represent
all wireless health applications. However, they do establish a
baseline for comparison.

2.1 SmartCane
Falls are the leading cause of death in the elderly. To mitigate this
phenomenon, The Wireless Health Institute at UCLA has developed
the SmartCane System [27]. This system performs a series of signal
processing algorithms to assess the users current state. These
algorithms assess various attributes such as improper cane usage,
high-risk behaviors, and potential injuries (such as falling). Once
these attributes are detected, the SmartCane can propagate these
attributes to patients, care givers, clinicians, as well as emergency
services. To accomplish signal processing and network

connectivity, the SmartCane connects to a PDA, Cell Phone, or
tablet PC via Bluetooth. This central controlling unit can predict
hazards, store behavioral data, notify health care professionals, as
well as display visual feedback to the user [27].

3. Smart Shoe
Smart Shoe is an orthotic shoe developed in our labs at UCLA
[8][21]. Through the use of gyroscopes, accelerometers, and a few
well-placed pressure sensors, Smart Shoe is able to monitor feet
motion and pressure distribution to evaluate the state of a patient.
The Smart Shoe can currently detect the formation of foot ulcers in
patients with diabetes. Similar work has been done in other labs.
For instance, [19] have developed a shoe-integrated sensor system
for gait analysis. Like the SmartCane, Smart Shoe wirelessly
connects (via Bluetooth) to a cell phone or PDA for data processing,
visualization, and network connectivity.

4. Developing Wireless Health Applications
Projects presented in section 2 share many of the same
requirements. The following lists a series of features required by
the aforementioned projects:

• Short Range Connectivity (such as Bluetooth or Zigbee)
• Internet Connectivity (through Wifi, CDMA, etc…)
• Visualization (such as OpenGL ES)
• Data Storage (such as SQL)
• GPS Services

Usability is an important addition to our technical requirements.
End users range from health care professionals to patients (who are
often elderly). Therefore, we can expect a large percentage of non-
technical users who are not computer savvy. A successful wireless
health application must provide a usable experience that integrates
seamlessly into a patient’s life. Otherwise, we risk low adoption
rates.

4.1 Sample Application
To provide a basis of comparison, we created a wireless health
application that interfaces with UCLA’s Smart Shoe. This
application connects to wireless sensors via Bluetooth and displays
their output graphically. This application requires four main
modules:

• Connectivity module for Bluetooth (Zigbee was not supported by
any of our Smart Phones)
• Graphical module for displaying data
• Data storage module for archiving sensor data
• GPS module for associating locations with data
 
Our comparison is limited to Smart Phones to account for Internet
connectivity. Other mobile platforms such as PDAs typically
connect to the Internet through WiFi. Wireless Health Applications
require a constant level of connectivity regardless of locality. This
requirement cannot be satisfied with WiFi alone. Therefore, we
require a more ubiquitous network such as CDMA or GSM. With
such networks, patients are constantly connected regardless of their
locations. However, even cell coverage has its limitations in remote
locations and may experience dead spots in urban areas. However,
we feel that there is no technology that offers a higher level of
connectivity. Also, dead spots could often be mitigated through
WiFi (supported by many Smart Phone platforms).

 
Figure 2. Our Simplified Library Architecture

5. Mobile Devices
The list of potential wireless devices is practically endless. In order
to provide a useful survey, we limited our set of devices to five.
Our devices include Symbian, Rim Blackberry, Windows Mobile,
Android, and iPhone. Symbian, RIM Blackberry, and Windows
Mobile have the three highest world market shares at 57.1%, 17.4%,
and 12% respectively [1]. iPhone holds the fifth largest market
share at 2.8% and offers a unique user interface paradigm unlike the
four preceding platforms (Linux being number 4 at 7.3%). We
chose Android to represent the Linux platform. There are several
Linux platforms in the mobile market. Android was chosen due to
its openness, support, and standardization offered by Google;
thereby lending itself as an attractive research platform. Android
also offers a similar user experience to the iPhone and serves as a
suitable comparison. Android was also chosen due to Google's past
record and market penetration by their other products.

 Figure 3. Smartphone market share

5.1 BlackBerry/Symbian/Windows Mobile
Blackberry, Symbian and Windows Mobile support a standard
J2ME port. Applications can be compiled to a jar file and loaded to
all three devices without the need for recompilation. However,
while developing for such platforms, we must verify support for
required JSRs for each device. Many JSRs are optional such as JSR
82 for Bluetooth support. However, we found that many of the
latest devices (such as Nokia’s N95) advertise support for all JSRs
listed above.

5.2 Android
Android is built upon an open Linux Kernel and consists of a virtual
machine optimized for mobile environments. Android uses the Java

57.10% 

17.40% 

12% 

7.30%  2.80% 
3.40% 

Smart Phone Market Share 

Symbian 

Blackberry 

Windows Mobile 

Linux 

iPhone 

Other 

programming language. However, their JAVA port is for the
Dalvik JVM. This port consists of a mix of standard JAVA and
Android specific APIs. Therefore, JAVA applets compiled against
standard ports, such as J2ME, are not compatible with Android.

Android is open source lending itself nicely to research and
industry. Developers can run their custom Android builds on
unlocked hardware available through Google. Android also makes
no distinction between applications; all applications, whether static
core applications or dynamic third-party applications, are treated
identically and have equal access to the device's functionality [2].

5.3 iPhone
iPhone OS offers a similar platform to MAC OS X. IPhone OS
runs a variant of the same Mach kernel used by MAC OS X. This
enables iPhone to support standard core services such as BSD
Sockets and POSIX Threads. Also, objective C is a superset of C
and C++. For these reasons, open source projects can be trivially
ported to the iPhone. While working with this device we ported a
simple JSON interpreter [12]. The port consisted of importing the
necessary headers and source files and compiling. We found this
functionality an attractive feature of iPhone. Unfortunately, it was
the only platform in our selection to offer standard core OS
services. 
6. Platform Comparison
To host our sample application, our platforms must provide several
APIs including Security, Bluetooth, GPS, storage APIs (such as
SQL), standard networking APIs, and graphical APIs. Platforms
must also provide a user-friendly interaction model. While not
required, a large touch screen is highly attractive for such
applications. Large touch screens allow us to display large text,
graphics and controllers (such as buttons and lists). Much of our
work is often targeted towards the elderly where vision and finger
acuity is diminished. Large touch screen displays afford an
experience much better suited to such users.

Both iPhone and Android had no programmatic support for any low
power wireless protocols (such as Bluetooth and Zigbee). Wireless
sensors are typically connected via Bluetooth or Zigbee. Support for
such APIs is a strong requirement for wireless health. Without such
APIs, wireless platforms are severely limited. Unfortunately,
Zigbee was supported by none of our Smart Phone platforms. This
is quite a drawback since Zigbee provides an extremely energy
efficient wireless alternative to Bluetooth [6]. However, it is
important to note that Google has announced Bluetooth support in
future SDKs.

Our initial goal was to choose a single mobile device to serve our
research interests. However, as we researched several devices, we
found that many of these devices are extremely similar and creating
a library that extends several platforms was possible.

For these reasons, we targeted Symbian, BlackBerry, and Windows
Mobile. Each of these mobile platforms supports J2ME. This
allows us to create libraries that we can share across all 3 platforms
without the need for recompilation. Also, J2ME offers JSRs that
support security (JSR 219), Open GL ES (JSR 177/239), GPS (JSR
179) and Bluetooth (JSR-82) [15]. By choosing J2ME as our target,
we include a much larger set of mobile devices than those we
present in this paper. These include mobile devices mot considered
Smart Phones (such as low end cell phones and other embedded
devices).

Figure 2 lists our APIs of interest and their respective support by

our five Smart Phones. (Symbian, Windows Mobile, and
BlackBerry were merged to J2ME).

Table 1: List of supported APIs

 J2ME iPhone Android
Bluetooth √ - -

WiFi - √ √
ZigBee - - -

GPS √ √ √
Open GL ES √ √ √
Security Suite √ √ √

SQL √ √ √
Touch Screen √ √ √

 
6.1 Ease of Deployment
Ease of deployment refers to a developers‘ ability to deploy
applications to a handset. For our purposes, applications are often
cable loaded. We found loading applications to J2ME and Android
trivial. Neither platform required any licensing. Tools were free
and easy to access. iPhone, on the other hand, requires developers
to join their Developer Program. This process required an
application as well as a nominal fee. For us, the entire process took
several weeks. While we understand the business justifications for
such a process, we feel that it quite a deterrent to the academic
community.

6.2 Emulation and Debugging
We found Androids debug environment impressive. First, Android
emulates several features such as GPS coordinates, network speeds
(such as UMTS and GSM), SMS, and voice calls. Android also
contains a debugger for stepping through code while monitoring
various attributes such as thread states, heap usage (with manual
garbage collection), and file system state. All of this is
accomplished through the Eclipse IDE with no external tools with a
minimal startup time. We were able to load an application and start
using all these features in about 45 minutes with a little help from
Androids documentation.

However, we found two areas of improvement for Android. First,
we would like to see a graphical CPU monitoring that works on the
device as well as the emulator. CPU monitoring only worked on the
emulator. Also, the output was a small line drawn on the upper part
of the screen. A graphical display that allows us to save info and
correlate CPU usage to its respective code segments would be quite
useful. Second, GPS simulations only worked for the emulator (as
for all devices presented by this paper). We would like to see GPS
simulation supported by the device as well.

For J2ME, on device debugging is quite device specific. Several
manufacturers do release their own device specific debugging tools
that integrate with common IDEs such as EclipseME [9] and
Netbeans [20]. However, we found this fragmented experience to
be quite a limitation of J2ME. While the other two platforms
provided a uniform and robust debugging framework, J2ME's on
device debugging support relied solely on the device manufacturer
(granted, iPhone is developed for only Apple hardware).

 
Figure 4. Android's Debugging Environment

We used the Java Debugger (jdb) from sun while debugging on the
Simulator. We ran this tool from the command line as well as
NetBeans and found the debugger to be quite rudimentary. We
were able to set break point, check variables, and step through code
as with most debuggers. However, we felt that jdb lacked the
advanced features offered by Android and iPhone. The emulator
supported standard simulated features, such as GPS and telephony
features

 
Figure 5. Apple's Instruments Tool

iPhone had the most impressive statistical tools out of the mobile
devices we compared. Apple offers their Instruments tool that
allows developers to graphically monitor several features such as
memory usage, CPU usage, frame rate, etc. Instruments also allows
developers to save traces to later analyze or send to fellow
developers. Instruments not only worked for the simulator, but for
the device as well. For intensive applications that require a high
level of optimizations, we rank iPhone as the clear winner for
support tools. 
However, we were unable to emulate GPS coordinates from the
simulator. While we were able to create an instance of their
Location API, the API consistently returned the same coordinates at
Cupertino, Ca.

7. ANALYSIS
While comparing mobile platforms, we quickly realized that
development of Wireless Health libraries could extend across
multiple mobile platforms using Java. With Java's compile once run
anywhere environment, we gain a level of standardization that not
only improves our code portability, but also provides a set of
standard APIs shared across mobile devices. Of the five platforms
compared, three supported a standard Java implementation
(specifically J2ME). We found these three platforms tended to
provide necessary APIs we need for Wireless Health such as

security, Open GL ES, GPS and Bluetooth. We also found that
functional requirements such as threads and background
applications were supported. Through providing a standard
environment, Java has not only provided a portable platform, but an
environment inclusive of our requirements for Wireless Health.

Interesting to note, we also ran our initial libraries on standard
Windows XP and Mac OSx laptops. Porting to such platforms
involved a simple integration with the BlueCove library provided by
[5] and some changes to our visual APIs. This exercise provided us
with a much higher level of optimism for our Wireless Health
libraries. As Java moves across many new embedded platforms,
our libraries can be leveraged not only in mobile devices (such as
mobile phones and PDAs) and laptops, but also by any embedded
device supporting a standard implementation of Java.

With these observations, it was abundantly clear that J2ME offers
the best runtime environment for wireless health applications. This
does leave out both Android and iPhone in the interim. Since
iPhone runs a similar kernel (Mach) as standard OSX, it is possible
for apple to include a standard Java virtual machine (J2ME or
J2SE). As for Android, the Dalvik JVM is not a far reach from
Sun's J2ME standard. In fact, much of our code on both J2ME
implementations and Android could be shared. We feel that our
Wireless Health libraries could extend to Android with increased
API support from Android as well as some ingenuity from us.

Android and iPhone currently have limitations that severely hinder
wireless health applications. The most noticeable limitation was the
lack of a low power networking APIs for technologies such as
Zigbee or Bluetooth. While these devices do support WiFi, we feel
this technology is too power hungry for wireless health applications.
However, both of these devices do offer hardware support for
Bluetooth 2.0 and could very well provide API  support in the
future. iPhone also lacks the ability to run background applications
(without using discouraged means such as jail breaking). Wireless
Health applications are often required to constantly monitor their
environment. However, when using a mobile device such as a
mobile phone, we must remember that these devices are intended
for multiple purposes. While our medical monitoring is extremely
important we cannot completely control the device rendering other
functionalities inaccessible. As stated earlier, one of our
requirements is the ability to seamlessly (as possible) add our
applications into patients' lives.

7.1 User Experience
As noted earlier, user experience is critical to wireless heath
applications. End users may or may not be technically savvy.
Therefore, applications should be intuitive. In addition, many
wireless health applications are intended for the elderly, such as
SmartCane and Smart Shoe (described in section 2). In general,
eyesight and finger dexterity decrease with age. Enhanced features
such as larger attributes (such as fonts, images, and inputs) and
better color contrasts are necessary to address the needs of the
elderly [10][11]. Large touch screens cater to these attributes quite
well. Fortunately, all five platforms presented in this paper support
such displays. Hardware support was the largest limiting factor
when considering user experience. We found that both Android and
iPhone excelled in the area of user experience. While Blackberry,
Windows Mobile, and Symbian support similar displays, there are
few commercial products that utilize such a display.

8. SECURITY
This paper has purposely left out an in depth comparison of security

related features. We feel that security is extremely important and
includes such a broad area, that this topic deserves its own
dedicated analysis. For the purpose of this paper, we only
compared whether each application supports a suite of security
APIs. It is important to note that security in wireless health as well
as mobile/embedded devices is an area of ongoing research.
 Authors in [4][13] have noted several areas of security concerns in
protecting health information (wireless health info for [13]) such as
authentication, confidentiality, secure links for data exchange, data
integrity, and access protection for stored data. Authors in [26]
have noted several potential solutions for these issues. Authors in
[7][18][24] have discussed how resource constrained embedded
platforms offer a new set of requirements for security measures
beyond their "wired" counterparts. We feel that future work should
include a survey of all these aspects and how current mobile
platforms and their respective security suites help alleviate issues in
security for wireless health.

9. IMPLEMENTATION
Our Analysis was completed with an implementation of a simplified
library on the J2ME platform. J2ME lends its self quite nicely to
developing wireless health libraries. As noted earlier, Bluetooth,
GPS, SQL, OpenGL, and a security suite are all supported by
J2ME.

9.1 Implementation Details
We used a similar configuration as [26] in our implementation. Our
shoe consists of one MicroLeap [3] processor for both the left and
right shoe. This processor connects two pressure sensors (one in the
heel and toe) as well as an accelerometer and gyroscope in all three,
X, Y, and Z, axes. Figure 9 shows our application running on the
Nokia N95.

 
Figure 9. J2ME Application running on the Nokia N95

Our JAVA library consists of MicroLeap, data storage, graphic, and
data processing abstractions. Each of these abstractions hides the
intimate details of their respective functionalities. We also retrieve
and store GPS data through the data storage APIs.

Once activated, the application retrieves sensor input from the
pressure sensors, accelerometer and gyroscope. We sampled data at
about 50Hz (although, much higher sampling rates are possible).
This data is processed by the data processing API and stored by the
data storage API. We performed basic analysis of the shoe’s
sensory data at runtime to determine the person’s current balance.

We used a basic algorithm that compared data from the left and
right shoe to determine symmetry. This was accomplished by
comparing the standard deviation of the X, Y, and Z accelerometer
data for each foot. This rudimentary algorithm was able to
determine if a person was walking abnormally (such as limping,
stumbling, or shuffling).

Data stored on the device was later transferred to a PC where we
could do more complex data processing. We implemented a
playback mechanism for our PC using the same Java libraries. This
mechanism allowed us to visually replay data retrieved by our
Smart Phones

9.2 Implementation Analysis
We found some discrepancies while deploying our libraries on
Windows Mobile, BlackBerry, and Nokia devices. For Windows
Mobile, we used an HP iPaq. While the device has Bluetooth and
GPS support, JSR 82 and JSR 179 were not a part of their JVM.
For Blackberry, we used the Blackberry Pearl. This device
fortunately does support JSR 82 and JSR 179. However, some
minor features were not supported. For example, when using
Bluetooth serial port profile (btspp) we could not set the server as
the master node. This issue was also present on the Nokia N95.
Fortunately, we were able to work around this dilemma with our
implementation. However, this could be an issue for other
implementations.

Several mobile devices and laptops require a passkey when pairing
with a Bluetooth device. Typically embedded devices account for
this with a hard coded passkey in their firmware. However, we
found lacking support in some of our prototype hardware. While
this is an issue of the embedded hardware, developers should be
aware of such technicalities.

Overall, we still feel that J2ME is the best target for developing
wireless health libraries. However, we found that some devices had
no support for GPS and/or Bluetooth (even when hardware support
was present).

We also feel that J2ME’s debugging utilities are lacking. While the
current jdb is sufficient for debugging issues (such as the Bluetooth
discrepancies we described earlier), the experience is quite
fragmented. iPhone and Android, on the other hand, offer a
completely seamless debug experience with a series of tools for
optimization. We hope to see similar support in J2ME in the future.

iPhone and Android are severely limited by their lack of low power
connectivity APIs (such as Bluetooth and Zigbee). However, their
platforms may suite intensive data processing quite well due to their
optimization tools (especially iPhone). However, iPhone also lacks
the ability to run background processes; a requirement necessary for
wireless heath applications similar to those described in section 2.

10. CONCLUSIONS
Our initial intent was to find the best mobile platform for wireless
health applications. We based our comparison on the development
of a simplified wireless health library. The requirements for this
library were based on several ongoing research projects in our labs
at UCLA.

We developed these libraries (where possible) on five mobile
platforms (Windows Mobile, Blackberry, Symbian, iPhone, and
Android). Through this process, we became quite familiar with all
five environments. During this process, we noticed several
advantages afforded by J2ME such as a unified runtime

environment across a large number of devices. These advantages,
along with the lack of necessary functionality by both iPhone and
Andoird, led us to a J2ME implementation.

This exercise proved that J2ME was indeed a prime candidate for
developing wireless health applications. However, we found
support for GPS and Bluetooth varied across devices. Therefore, the
number of devices that can actually host such applications is smaller
than preferred. We hope to see a more unified support for
Bluetooth and GPS on J2ME devices. We also hope for a better
debugging environment, similar to that of Android and iPhone. 
11. REFERENCES

[1] 2008 Press Releases, Gartner, Inc., 2008.
http://www.gartner.com/it/page.jsp?id=754112

[2] Android, Open Handset Alliance, 2008.
http://www.openhandsetalliance.com/android_overview.html

[3] AU, L. K., WU, W. H., BATALIN, M. A., MCINTIRE D. H.,
KAISER, W. J. 2007. MicroLEAP: Energy-aware Wireless
Sensor Platform for Biomedical Sensing Applications.
Biomedical Circuits and Systems Conference, BIOCAS 2007.
Montreal, Canada, November 2007, 158–162

[4] BlackBerry Developer Zone, Research In Motion Limited.
2008. http://na.blackberry.com/eng/developers/

[5] BlueCove, BlueCove.org. 2008. http://www.bluecove.org
[6] CALLAWAY, E., GORDAY, P., HESTER, L.,

GUTIERREZ, J. A., NAEVE, M., HEILE, B., BAHL, V.
2002. Home Networking with IEEE 802.15.4: A Developing
Standard for Low-Rate Wireless Personal Area Networks.
IEEE Communications Magazine, 40(8), August 2002, 70–
77.

[7] CLAYTON P. D. 1997. For the Record: Protecting Electronic
Health Information. National Research Council, National
Academy Press. Washington DC. 1997.

[8] DABIRI, F., VAHDATPOUR, A., NOSHADI, H.,
HAGOPIAN, H., SARRAFZADEH M. 2008. Ubiquitous
Personal Assistive System for Neuropathy. The 2nd
International Workshop on Systems and Networking Support
for Healthcare and Assisted Living Environments
(HealthNet), in conjunction with ACM MobiSys,
Breckenridge, Colorado, July 2008.

[9] EclipseME, EclipseME.org. 2008. http://eclipseme.org/
[10] HANSON, V. L. 200. Web access for elderly citizens, in

Proceedings of the Workshop on Universal on Accessibility
of Ubiquitous Computing, WUAUC’01, Alccer do Sal,
Portugal, May 2000, 17 – 24.

[11] HANSON, V. L. 2004. The user experience: designs and
adaptations. In W4A: Proceedings of the international cross-
disciplinary workshop on Web accessibility, New York, NY,
USA. May 2004. 1-11.

[12] Introducing JSON, JSON. 2008. www.json.org
[13] iPhone Developer Center, Apple. 2008.

http://developer.apple.com/iphone/
[14] JAFARI, R., BAJCSY, S., GLASER, B. GNADE, M.

SGROI, and SASTRY, S. 2007. Platform design for health-
care monitoring applications. In Workshop on High

Confidence Medical Devices, Software, and Systems and
Medical Device Plug-and-Play Interoperability, Boston, MA,
USA, June 2007, pp. 88–94.

[15] Java ME at a Glance, Sun MicroSystems. 2008.
http://java.sun.com/javame/index.jsp

[16] JOVANOV E., PRICE J., RASKOVIC D., KAVI K.,
MARTIN T., and ADHAMI R. 2008. Wireless Personal Area
Networks in Telemedical Environment. In Proc. 3rd Int. Conf.
Inf. Technol. Biomed. Arlington, VA, Nov. 2000, 22-27.

[17] LO, B., THIEMJARUS, S., KING R., and YANG, G.Z. 2005.
Body Sensor Network - A Wireless Sensor Platform for
Pervasive Healthcare Monitoring. In Adjunct Proceedings of
the 3rd International Conference on Pervasive Computing,
May 2005, Munich, Germany, 77-80.

[18] MILLER, S. K. 2001. Facing the Challenges of Wireless
Security. In IEEE Transactions on Computers, July 2001, 46–
48.

[19] MORRIS, S.J. and PARADISO, J.A. 2002. A compact
wearable sensor package for clinical gait monitoring.
Motorola Journal, 2002. 7-15

[20] NetBeans, NetBeans.org. 2008. http://www.netbeans.org/
[21] NOSHADI, H., AHMADIAN, S., DABIRI, F.,

NAHAPETIAN A., STATHOPOULUS, T., BATALIN, M.,
KAISER, W., SARRAFZADEH, M. 2008. Smart Shoe for
Balance, Fall Risk Assessment and Applications in Wireless
Health. Microsoft eScience Workshop Indianapolis, IN,
December 2008.

[22] OTTOAND, C., MILENKOVIC, A., et al. 2006. System
Architecture of a Wireless Body Area Sensor Network for
Ubiquitous Health Monitoring. Journal of Mobile
Multimedia. 1(4), 307–326.

[23] PENTLAND A. 2004. Healthware: Medical Technology
Becomes Wearable. IEEE Computer, 37(5), May 2004, 42-
49.

[24] POTLAPALLY, N., RAVI, S., RAGHUNATHAN, A., and
LAKSHMINARAYANA G. 2002. Algorithm exploration for
efficient public-key security processing on wireless handsets.
In Design, Automation and Test in Europe (DATE), Nice,
France, Mar. 2002, 42-46.

[25] SHNAYDER, V., CHEN, B., LORINEZ, K., FULFORD-
JONES, T. R. F., WELSCH, M. 2005. Sensor Networks for
Medical Care. In Harvard University Technical Report TR-
08-05, 2005.

[26] WARREN, S., LEBAK, J., YAO, J., CREEKMORE, J.,
MILENKOVIC, A., and JOVANOV, E. 2005.
Interoperability and Security in Wireless Body Area Network
Infrastructures. In Proceedings of the 27th Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society, Shanghai, China, 2005. 3837-
3840.

[27] WU, W., AU, L., JORDAN, B., STATHOPOULOS T.,
BATALIN M., KAISER, W., VAHDATPOUR, A.,
SARRAFZADEH, M., FANG M., CHODOSH, J. 2008. The
Smart-Cane System: An Assistive Device for Geriatrics.
Third International Conference on Body Area Networks
(BodyNets 2008), Florence, Italy, March

 

