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ABSTRACT
In this paper, we consider side-channel mechanisms, 

specifically using smart device ambient light sensors, to 

capture information about user computing activity. We 

distinguish keyboard keystrokes using only the ambient 

light sensor readings from a smart watch worn on the user’s 

non-dominant hand. Additionally, we investigate the 

feasibility of capturing screen emanations for determining 

user browser usage patterns. The experimental results 

expose privacy and security risks, as well as the potential 

for new mobile user interfaces and applications. 
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1. INTRODUCTION
The variety and sensitivity of sensors on smart watches and 

smart phones has opened up both new possibilities and new 

security and privacy vulnerabilities. In this paper, we 

consider the ambient light sensor for the purposes of 

capturing user computing activity. We specifically look at 

the effectiveness with which the ambient light sensor can 

allow applications and/or attackers to capture the 

keystrokes and the browsing activity of a user working on a 

computer. 

This can enable new application possibilities, including 

allowing blind users to monitor screen information and 

enable smart watch users to capture keyboard activity 

without accessing to the computer where the data is being 

entered. 

Unfortunately, the ambient light sensors, if accessed by 

simple malware, can also be used to violate user privacy by 

eavesdropping on the user’s computing activity. 

In fact, this paper expands the currently known security 

weaknesses inherent in the availability powerful sensors on 

mobile devices. This is especially pernicious considering 

the deeply pervasive access that mobile phones commonly 

have in user lives.  

Figure 1. LuxLeak attack model overview, where smart device 

ambient light sensors are used for capturing screen 

emanations for monitoring computing activity. 

As summarized in Figure 1, we examine the quantity and 

accuracy of computing activity data (i.e. what you are 

typing on a keyboard and what you are reading on the web) 
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collected via (malicious) software on a mobile device worn 

on the user’s wrist or placed adjacent to the user.  

The paper focuses on a sensor readily available on most 

mobile devices, namely the ambient light sensor, for the 

recovery of users’ adjacent computer usage activity with 

screen emanation sensing. 

A series of experiments are carried out to the determine the 

accuracy and precision with which keystrokes on a laptop 

can be determined, just by measuring the changes in 

ambient light caused by the subtle movements of the user’s 

wrist towards and away from the laptop screen. Similarly, 

experiments are carried out regarding the differences in 

light emanations from different websites, as registered by a 

smart device placed adjacent to the screen. 

To the best of our knowledge, this is the first investigation 

of using mobile device ambient light sensors for 

eavesdropping. 

2. RELATED WORK 
Smart watches and smart phones are equipped with a 

variety of sensors that have long been leveraged for activity 

classification, gestures recognition, and keystroke detection. 

Specifically in terms of keystroke detection cameras, 

microphones, and motion sensors (including accelerometers 

and gyroscopes) have been used, with a comprehensive 

survey provided in [1].  

In terms of using smart phones being placed next to a 

computer for the purposes of eavesdropping, researchers 

have looked at using the accelerometer to detect vibrations 

caused by typing as registered by an adjacent phone [2]. 

Similarly, researchers have looked at capturing sound 

emanations from keystrokes [3].  

Smart watches motion sensors have been used for smart 

phone numeric keystroke classification [4][5] and keyboard 

keystroke classification [6].  

Ambient light sensors has previously been considered for 

body position classification [7] and indoor/outdoor 

detection for the purpose of connectivity optimization [8]. 

In this work, for the first time, we determine the 

effectiveness of using the ambient light sensors for 

extracting computing activity. 

3. AMBIENT LIGHT SENSORS 
Ambient light sensors are ubiquitous in smart phones and 

tablets, and they are commonly available on high-end smart 

watches and wrist-worn activity trackers, including SONY 

Smart Watch 3, Samsung Gear S, Moto 360 Sport, and 

FitBit Blaze. The light sensors are typically photodiodes, 

whose generated current increases under brighter lighting. 

They are ostensibly used for dimming the screen according 

to the light conditions, to improve screen visibility and 

conserve battery power. Differences between cloudy and 

sunny days, as well as indoor versus outdoor conditions, is 

readily determined. Figure 2 demonstrates the positioning 

of the sensor on three different smart watch models 

available on the market today. 

  

 

Figure 2. Identification of smart watch ambient light sensor 

location, for three commercially available smart watches 

(Moto360 1st Generation, Sony 3, and Moto360 Sport, from 

left to right). 

Light sensors readings, in unit lux (lx), give the luminance 

per unit area. 

The distance of the sensors from the light source impacts 

the reading. As shown in Figure 3 and Figure 4, increased 

distance from the computer screen, given in centimeters, 

clearly impacts the lux readings. The tests shown in Figures 

3 and 4 were started at 0 cm from the screen and extended 

back to 30 cm from the screen over a 30 second time 

period. The tests, averaged over three runs, were carried out 

in a completely dark room with only a white screen 

providing light. Figure 3 gives the lux readings with the 

smart watch screen facing the screen. Figure 4 gives the lux 

reading with the smart watch screen perpendicular to the 

screen, as is commonly expected during keyboard usage. 

The results of the tests suggest that the ambient light sensor 

can be used to determine the hand position relative to the 

screen. 

 

 

Figure 3. Lux values as distance from screen is increased 1 cm 

per second for 30 seconds, averaged over 3 runs. The Moto360 

smart watch was used with the watch positioned with its face 

pointing to the screen. 
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Figure 4. Lux values as distance from screen is increased 1 cm 

per second for 30 seconds, averaged over 3 runs. The Moto360 

smart watch was positioned with its face perpendicular to the 

screen. 

4. KEYSTOKE DETECTION 
Consider the scenario and attack model where the user is 

wearing a smart watch with an ambient light sensor, while 

typing on a computer with a laptop or desktop keyboard. 

We investigate the accuracy with which an application or an 

attacker can determine the keystrokes and hence the 

information being typed on the keyboard. 

An attacker can use this information to limit the search 

space for a password, determine Google search entries, 

infer a website being visited, and/or the language being 

typed. 

As the smart watch is typically worn only on the non-

dominant hand, language constructs and linguistic 

knowledge will have to make up for the missed characters 

entered by the dominant hand. 

5. EXPERIMENTAL SET-UP 
A series of experiments were carried out to determine the 

feasibility and accuracy of using smart watch ambient light 

sensors to determined keystrokes on a computer keyboard.  

The experimentation was carried out in a dark room with 

limited to no outside light. The laptop screen was the main 

source of light in the room, with the screen set to full 

brightness. 

A Moto360 first generation smart watch running Android 

5.1, paired with a Nexus 5X smart phone running Android 

6.0, was worn by a right-handed user, on the user’s non-

dominant left hand with the screen facing up. 

Keys were typed on a Dell XPS laptop with a 15 inch 

screen and a backlit keyboard, running Linux Debian 8. 

To carry out the experimentation, each character was typed 

one character per second for 10 seconds. Then the hands 

were rested at the home keys for 10 seconds, with the 

character being typed again once per second for 10 seconds. 

This test was repeated 3 times, for each character. In other 

words, there were 20 key presses per test with 3 tests per 

character, giving a total of 60 key presses per character. All 

the experiments were conducted across different 3 days. 

Resting the hands at the home keys, involves placing the 

index fingers at the keys ‘F’ and ‘J’, without pressing any 

keys. 

The reason the hands were rested on the home keys is two-

fold. First, we wanted to move the hand around the 

keyboard to replicate actual keyboard use. Second, the 

resting data was used to determine the effectiveness of 

distinguishing a key press from a non-key press. 

All the number keys were typed by the left hand. The letters 

typed were all those on the left side of a standard 

QWERTY keyboard. The left shift key and the space bar 

were also included in the experiments. The shift key 

provides insight into the keys being typed by the right hand, 

especially when the space bar is entered by the right hand. 

In terms of sample rate, SENSOR_DELAY_FASTEST, 

which uses 0 microseconds of delay between data pulls was 

used. Varying the sample rate will clearly affect the 

accuracy of the results. 

6. EXPERIMENTAL RESULTS 
Figure 5 and Figure 6 give the scatter plots for the lux 

readings for typing the number ‘9’ and the letter ‘D’. As 

noted in the previous section, the first 10 seconds are where 

the character is being typed. During the second 10 seconds 

the hands are not typing and are at rest on the home keys. 

During the third 10 seconds the hands are again typing the 

character. 

 

 

Figure 5. Scatter plot of the lux readings for the number ‘9’. 

The 1st 10 seconds and 3rd 10 seconds show the readings as the 

number is being typed. The 2nd 10 seconds show the readings 

as the hand returns to the home keys. 
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Figure 6. Scatter plot of the lux reading values for the letter 

‘D’. The 1st 10 seconds and 3rd 10 seconds show the readings 

as the number is being typed. The 2nd 10 seconds show the 

readings as the hand returns to the home keys. 

As can be seen from the comparison of Figure 5 and Figure 

6, the letter ‘D’ (which is part of the home keys) shows only 

a small difference between the typing activity and the rest 

activity. In other words, the lux readings are similar when 

the hands are resting at D and typing D. 

However, with the number ‘9’, there is a difference in the 

values registered when the number is being typed and when 

the hands are at rest at the home keys (which do not include 

the number ‘9’). 

Figure 7 provides the average lux readings registered by the 

smart watch ambient light sensor during all the number key 

presses. The standard deviation of the readings is provided 

by the error bars. The readings clearly increase as the hand 

moves from the left side of the keyboard to the right side of 

the keyboard. This is expected as the smart watch screen 

faces the laptop screen when the hand is positioned to press 

the numbers on the right side of the keyboard. Figure 8 

provides the same data, but for the letters, space bar, and 

left shift key.  

Figure 9 provides the heat map of all of the characters, 

including the numbers, letters, space bar, and left shift key, 

entered on the keyboard in our experimentation. In the heat 

map, red represents higher readings than orange, and so on, 

with green reflecting the lowest lux readings. As the heat 

map demonstrates, the numbers are clearly distinguishable 

from the rest of the characters, with their higher lux 

readings. Similarly, the letters closer to the left edge of the 

keyboard have lower lux readings. This is again expected, 

as the face of the watch would face away from the screen as 

these letters are being entered. Finally, the letters ‘C’ and 

‘V’ have the lowest average readings, since the palm of the 

hand, and hence the back of the smart watch screen, are 

almost parallel with the screen when those letters are typed. 

Figure 7. Average lux readings registered by smart watch 

ambient light sensor for numbers, along with bars 

demonstrating the standard deviation of the readings. 

 

Figure 8. Average readings and standard deviation of lux 

values collected for the letters, space bar, and shift key; along 

with bars demonstrating the standard deviation of the 

readings. 

Figure 10 provides the heat map of the standard deviation 

of the lux readings. It is interesting that the higher lux 

averages are correlated with higher standard deviation in 

the readings. 

 

 

Figure 9. Heat map of the average lux readings for the 

numbers, letters, space bar, and left shift key. Colors reflect 

lux value, with red being larger and green being smaller. 
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Figure 10. Heat map of the lux reading standard deviation for 

numbers, letters, space bar, and left shift key. Colors reflect 

lux value, with red being larger and green being smaller. 

7. COMPUTING ACTIVITY DETECTION 
In this section, we investigate whether screen emanations 

captured by smart device ambient light sensors can be used 

to determine user web browsing activity. Ten popular 

websites, including YouTube and Gmail, are considered in 

the experimentation. An Android app is developed to 

determine the accuracy with which the lux readings can be 

used to predict the website a user is visiting. 

 

           (a)          (b) 

Figure 11. Experimental setup for monitoring browsing 

activity using ambient light sensors; with (a) the tablet 

placed on a 10cm platform centered in front of the 

screen; and (b) the tablet placed on the table to the left 

of the screen. 

 

The experimental set-up is shown in Figure 11. Two 

different set-ups were used. First, the tablet was placed on a 

10 cm platform centered in front of the computer monitor. 

Second, the tablet was placed face up on a desk left of the 

computer monitor. 

The data was collected in a fully darkened room with the 

DELL PC screen light as the only source of illumination. 

The ambient light sensor of a Nexus 7 tablet running 

Android 4.4 was used for capturing the lux readings. Each 

set-up collected data for a period of one minute, with the 

SENSOR_DELAY_FASTEST sampling setting.  

For each of the experimental set-ups, i.e. elevated or left of 

the screen, two further variations were considered. First, the 

average lux values were collected for when the computer 

monitor displayed the homepage of the website. Second, the 

average lux readings were collected when the page down 

key (to move further down the website) was pressed once 

before recording the lux readings. 

Table 1 provides the average lux readings and the standard 

deviation of the results from the data collection.  

The readings from the elevated set-up, where the tablet was 

centered and raised to nearly the level of the screen are 

significantly better. Although, smart phones and tablets are 

more likely to be placed on a table adjacent to the computer 

screen, smart watches worn by the user during keyboard use 

are closer to the screen and hence would register more lux 

information. 

The results from the classification of these 10 popular 

websites is promising. A simple comparison of the lux 

readings with a prerecorded average website lux value is 

sufficient to distinguish the web browsing activity of the 

user, using only a smart device’s ambient light sensor. 

8. CONCLUSION 
In this paper, we presented a series of experimental results 

that considered the effectiveness with which a smart 

device’s ambient light sensor can be used to monitor user 

computing activity, namely keystrokes on a keyboard and 

web browsing activity. In the case of smart watches, light 

emanations from the computer screen are used to determine 

the distance of the wrist from the screen, and hence the keys 

being pressed. Additionally, the average light values and 

variations registered by a mobile device are used to 

determine the website a user has up on the computer screen. 

The results demonstrate the security vulnerabilities and the 

user interface possibilities of the often overlooked ambient 

light sensor are more significant than originally perceived. 
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Table 1. Average lux values (lx) and standard deviation for ambient light sensor readings across 4 different experimental set-ups for 

10 popular websites.  

Setup  YouTube Twitter Tumblr Gmail Facebook Amazon Wikipedia Google Yahoo eBay 

Elevated 20.9847,  

2.7206 

34.2444, 

2.6185 

13.6990, 

2.3881 

32.4649, 

2.6091 

28.8918, 

1.9763 

28.5638, 

1.9419 

31.0806, 

2.6597 

34.6453, 

2.6734 

18.6063, 

2.3489 

15.6806, 

2.3978 

 

Elevated, 

Page 

Down 

21.7827, 

2.5985 

34.6312, 

2.5433 

7.8442, 

2.2292 

32.6678, 

2.6702 

30.1597, 

2.4913 

33.1120, 

1.9875 

33.2917, 

2.6436 

34.6453, 

2.6734 

30.5259, 

2.4631 

24.4727,

2.4665 

Left of 

Screen 

1.3507, 

1.2647 

1.7088, 

1.3977 

1.0417, 

1.0455 

2.6738, 

0.9470 

1.3881, 

1.3010 

1.3118, 

1.2406 

2.0998, 

1.8028 

1.5420, 

1.3593 

1.2697, 

1.2238 

1.2552, 

1.2010 

Left of 

Screen, 

Page 

down 

2.0561, 

1.7838 

1.6740, 

1.3940 

1.0000, 

1.0074 

2.1024, 

1.7854 

1.4971, 

1.3537 

1.3650, 

1.2865 

1.4987, 

1.3261 

1.5420, 

1.3593 

1.1349, 

1.1421 

1.1382, 

1.1308 
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