
Instruction Selection for Compilers that Target
Architectures with Echo Instructions

Philip Brisk, Ani Nahapetian, and Majid Sarrafzadeh

Computer Science Department
University of California, Los Angeles,

Los Angeles, California, 90095
{philip, ani, majid}@cs.ucla.edu

Abstract. Echo Instructions have recently been introduced to allow embedded
processors to provide runtime decompression of LZ77-compressed programs at
a minimal hardware cost compared to other recent decompression schemes. As
embedded architectures begin to adopt echo instructions, new compiler tech-
niques will be required to perform the compression step. This paper describes a
novel instruction selection algorithm that can be integrated into a retargetable
compiler that targets such architectures. The algorithm uses pattern matching to
identify repeated fragments of the compiler’s intermediate representation of a
program. Identical program fragments are replaced with echo instructions,
thereby compressing the program. The techniques presented here can easily be
adapted to perform procedural abstraction, which replaces repeated program
fragments with procedure calls rather than echo instructions.

1 Introduction

For embedded system designers, the mandate to minimize costs such as memory size
and power consumption trumps any desire to optimize performance. For these rea-
sons, one approach that has prevailed in recent years has been to store the program in
compressed form on-chip, thereby reducing the size of on-chip memory. Decompres-
sion in this context may be performed either software or hardware. Software decom-
pression severely limits performance, whereas decompression in hardware requires
custom circuitry. If the goal is to minimize the total transistor count on the chip while
providing runtime decompression, then the savings in storage cost must dominate the
cost of the decompression circuitry. Echo Instructions [1] [2], introduced in 2002,
provide architectural support for the execution of LZ77-compressed programs while
requiring considerably less physical area than comparable hardware-based decom-
pression schemes. Echo instructions are therefore likely to become standard features
in embedded architectures within the next few years. To exploit echo instructions for
the purpose of reducing code size, new compiler techniques will be necessary.

This paper presents a novel instruction selection algorithm for retargetable com-
pilers that target architectures featuring echo instructions. This algorithm identifies

recurring patterns in a program’s intermediate representation and replaces them with
echo instructions, thereby compressing the program. Echo instructions, unlike proce-
dure calls, do not require stack frame manipulation and parameter passing, and thus
allow a higher rate of compression. At the same time, replacement of identical code
sequences with echo instructions imposes additional constraints on the register alloca-
tor, which must assign registers, perform coalescing, and insert spill code in such a
way that the program fragments identified by the instruction selection algorithm are
mapped to identical code sequences in the final program. Identical code fragments
may then be replaced with echo instructions during final code emission.

The paper is organized as follows. Section 2 discusses related work. Section 3 de-
scribes our contribution: an instruction selection algorithm that is tailored to the task
of code compression using echo instructions. Section 4 describes our experimental
results and analysis, which we believe justifies our algorithms and approach. Section
5 concludes the paper.

2 Related Work

2.1 Echo Instructions and LZ77 Compression

Fraser [1] proposed the echo instruction to allow the runtime execution of programs
compressed using a variant of the LZ77 algorithm [3] that analyzes assembly code as
opposed to sequential data. The LZ77 algorithm compresses a character string by
identifying recurring substrings, which are replaced by pointers to the first occurrence
of the substring. Each pointer contains two fields expressed as a pair (offset, length),
which is assumed to be equivalent to a single character. Offset is the distance from
the pointer to the beginning of the first instance of the substring. Length is the num-
ber of characters in the substring. An example of LZ77 compression is shown in
Figure 1.

An echo instruction contains two immediate (constant-valued) fields: offset and
length, exactly like LZ77 compression. The basic sequence of control operations for
a sequential echo instruction is described as follows.

1. Branch to PC – offset
2. Execute the next length instructions
3. Return to the original call point

Original String: ABCDBCABCDBACABCDBDAABCDBABC
Compressed String: ABCDBC(6, 5)AC(9, 5)DA(12, 5)(13, 3)

Fig. 1. A string compressed using the LZ77 algorithm. Each pair (offset, length) is
assumed to comprise one character. In practice, the actual number of bits required to
encode each pair depends on the number of bits required to express the pointer and
offset, as well as the number of bits required to encode each specific character

Echo instructions are quite similar to procedure calls, however there are several
stark differences. First and foremost, an echo instruction may branch to any arbitrary
location in instruction memory; procedure calls explicitly branch to the first statement
of the procedure body. Secondly, an echo instruction explicitly encodes the number
of instructions that will execute before execution returns to the call point; a procedure
call, in contrast, will continue to execute instructions until a return instruction that
terminates the body of the procedure is encountered. Third, the code sequences refer-
enced by two echo instructions may overlap. For example, repeated patterns may
overlap, as exemplified by patterns ABCDE and ABC in Figure 1. Under procedural
abstraction, these two patterns, despite their redundancy, require two separate subrou-
tine bodies; it should be noted that ABCDE could call ABC as a subroutine itself.
Finally, the echo instruction is a single branch, whereas each procedure call will in-
evitably be coupled with instructions that pass parameters, save and restore register
values, and manipulate the stack frame.

Lau et. al. [2] described the bitmasked echo instruction, which combined the se-
quential echo instruction with predicated execution. The length field is replaced with
a bitmask field. If the ith bit of bitmask is set, then the ith instruction from the begin-
ning of the sequence is executed; otherwise, a NOP is executed. The primary advan-
tage of bitmasked echo instructions is that they allow non-identical code fragments to
reference a common code sequence. Unfortunately, they do not scale well to large
instruction sequences. If we assume that the length and bitmask fields of the sequen-
tial and bitmasked echo instructions both require n bits, then a sequential echo may
reference patterns containing as many as 2n instructions; the bitmasked echo, how-
ever, can only reference sequences containing at most n instructions.

Lau et. al. described an approach for architectural support for echo instructions for
embedded processors. To do this required two registers—one to hold the address of
the original call point, and the other to hold the value length. As each of the length
instructions in step 2 above is executed, length is decremented. When the value of
length reaches zero, control is transferred back to the call point. In addition to the two
registers, a reverse counter, a comparator, and a multiplexer are the only datapath
components required. Of course, hardware corresponding to the appropriate new
controller states must also be accounted for. The issue of hardware cost will be revis-
ited in Section 2.3, when we compare echo instructions to other hardware-based
decompression techniques.

2.2 Procedural Abstraction

Procedural abstraction is a compile-time code-size optimization that identifies re-
peated sequences of instructions in an assembly-level program and replaces them
with procedure calls. The body of each procedure is identical to the sequence it re-
places. Procedural abstraction requires no special hardware, but entails significant
overhead due to parameter passing, saving and restoring registers, and stack frame
manipulation. A substring matching approach based on suffix trees proposed by Fra-
ser et. al. [4] has been a widely recognized algorithm for procedural abstraction. Two
instructions are mapped to the same character if and only if all fields in the instruction

are equal. Fraser’s algorithm performed procedural abstraction at link time, following
register allocation and instruction scheduling. Consequently, it was unable to identify
semantically equivalent instruction sequences that were identical to one another
within a rescheduling of instructions and/or a renaming of registers. The basic algo-
rithm has since been updated with register renaming [5] [6] and instruction reordering
[2] to match a wider variety of patterns. Runeson [7] recently advocated an approach
by which procedural abstraction is performed prior to register allocation, which is
similar to our work in spirit. Register renaming is not applicable here because register
allocation has not yet been performed, nor is instruction reordering applied.

Our approach differentiates itself from these previous techniques by using graph
isomorphism rather than substring matching to identify repeated code fragments. Like
Runeson, our algorithm is performed prior to both register allocation and instruction
scheduling. Therefore, our algorithm detects equivalent patterns based on the depend-
ence structure of operations rather than an arbitrary ordering of quadruples. Another
distinction is that previous approaches operate on the granularity of basic blocks. If
two basic blocks are semantically equivalent, they are replaced with procedure calls;
otherwise, they are not. Our approach identifies recurring patterns within blocks that
may differ only by a few instructions.

2.2 Code Compression in Hardware

Lefurgy et. al. [8] proposed a form of dictionary compression which assigns variable-
length codewords to sequences based on the frequency with which each sequence
occurs. Each codeword is translated into an index value, which is used to access a
dictionary that holds a decompressed instruction sequence corresponding to each
codeword. The dictionary access is incorporated into the processor’s instruction fetch
mechanism. The Call Dictionary (CALD) instruction, introduced by Liao et. al. [9],
exploits repeated code fragments in a similar manner to echo instructions. The in-
struction sequences are placed into an external cache, which is referenced by CALD
instructions. Echo instructions, alternatively, always refer to the main instruction
stream, thereby eliminating the need for the external cache.

The Compressed Code RISC Processor (CCRP) [10] [11] allows a compiler to di-
vide a program into blocks, which are then compressed using Huffman encoding.
Blocks are decompressed when they are brought into the instruction cache, requiring
a Huffman decoder circuit to be placed between memory and cache. The CPU re-
mains oblivious to the runtime decompression mechanism; only the cache is redes-
igned. A similar approach was taken by IBM’s CodePack [12] [13] [14], which di-
vided 32-bit instructions into 16-bit halves that are compressed independently. A
decompression circuit is similarly placed between memory and cache.

In the above examples, the cost of the hardware that performs the decompression
is a potential limiting factor. Echo instructions require considerably less hardware that
dictionaries—which are essentially memory elements—and Huffman decoders. We
do not argue that echo instructions provide the highest quality compression compared
to these schemes. The key to the future success of echo instructions is their low
physical cost, which translates to a lower price paid by the consumer.

3 Instruction Selection for Echo Instructions

The traditional problem of instruction selection in compiler theory involves trans-
forming a program represented in the intermediate representation (IR) to a linear list
of machine instructions. An echo instruction, in contrast, is a placeholder that repre-
sents a finite-length linear sequence of instructions. The technique presented here
decouples the traditional instruction selection and the detection of code sequences to
be replaced with echo instructions. We present an algorithm that identifies repeating
patterns within the IR. Each instance of each pattern is replaced by an echo instruc-
tion. The algorithm is placed between the traditional instruction selection and register
allocation phases of a compiler. This work, it should be noted, does not consider
bitmasked echo instructions [2].

A basic block is a maximal-length instruction sequence that begins with the target
of a branch and contains no interleaving branch or branch target instructions. We
represent each basic block with a Dataflow Graph (DFG). Vertices represent machine
instructions, and edges represent dependencies between instructions. The advantage
of the DFG representation is no explicit ordering is imposed on the set of the instruc-
tions. The only scheduling constraints are imposed by dependencies in the DFG.
DFGs are directed acyclic graphs, where vertices represent operations and edges
represent direct data dependencies between operations. Two graphs G1 =(V1, E1) and
G2 = (V2, E2) are isomorphic if there exists a function f: V1 V2 satisfying

221121))(),((),(EvfvfEvv ∈⇔∈ (1)

The graph isomorphism problem has not been proven NP-Hard; however, no

polynomial-time solution has been found either [15]. To perform isomorphism test-
ing, we used the publicly available VF2 algorithm [16], which has a worst-case time
complexity of O(nn!), but runs efficiently for the majority of DFGs we tested.

A pattern is defined to be a subgraph of any DFG. Patterns are assigned integer
labels such that two patterns have equal labels if and only if they are isomorphic. To
reduce the number of isomorphism tests required to label a pattern, we store the set of
patterns in a hash table. For pattern p, a hash function h(p) is computed over some
combination of invariant properties of p. Invariant properties are numeric properties
of the graph that must be equal if the two graphs are isomorphic. For example, we
consider the number of vertices and edges in p, the critical path length of p, and the
frequency distribution of vertex and/or edge labels in p. Using this approach, we must
only test p for isomorphism against patterns p’ satisfying h(p’) = h(p).

Any non-overlapping set of patterns that are isomorphic may be replaced by echo
instructions. Our intuition is that patterns that occur with great frequency throughout
the IR are the best candidates to be replaced by echo instructions. The most fre-
quently occurring patterns will most likely be small—containing just one or two op-
erations, but may be embedded within larger patterns that occur less frequently. A
competent scheduling algorithm could account for this fact when scheduling the in-
struction sequences referenced by echo instructions to maximize pattern overlap.

Fig. 2. Generating, Labeling, and Clustering a Pattern Between Two Supernodes

The algorithm described in the next section generates patterns in terms of smaller

sub-patterns. The process of labeling, and clustering a pattern composed of subpat-
terns is shown in Figure 2. The bold edge shows that there are data dependencies
between the sub-patterns, and the dashed edges represent the actual dependencies.
The resulting pattern is assigned a uniquely identifying integer label, which is com-
puted using the isomorphism testing technique described above.

3.1 Algorithm Description

The instruction selection algorithm presented here is based on a framework for regu-
larity extraction described in [17]. The algorithm, shown in Figure 3, is applied be-
tween an instruction selection pass that is unaware of echo instructions and a register
allocation pass that ensures reusability among pattern instances. To avoid complica-
tions due to control flow, the pattern detection algorithm ignores branches. The input
to the algorithm is a set of DFGs G*. A local variable, M, is a function that maps
vertices, edges, and patterns to a set of integer labels. These labels are used to identify
semantically equivalent operations. Since register allocation has not been performed,
it is unnecessary to consider register usage in our definition of operation equivalence.

The algorithm begins by calling Label_Vertices_and_Edges(…). This function
assigns integer labels to vertices such that two vertices are assigned equal labels if
and only if their opcodes match, and all immediate operands—if any—have the same
value. Edges are assigned labels to distinguish whether or not they are the left or right
inputs to a commutative operator. These edge labels allow us distinguish the seem-
ingly dissimilar instructions c = a – b and c = b – a. Note that for a commutative op-
eration o , a o b and b o a are semantically equivalent.

Compute
Label L

L

Algorithm: Echo_Instr_Select(G*, Threshold, Limit)

Parameters: G* := {Gi = (Vi, Ei)} : set of n DFGs

 Threshold, Limit : integer

Variables: M : mapping from vertices, edges, and pat-
terns to labels.

 Pi : set of patterns
 Conflict(Gi, p) : conflict graph
 MIS(Gi, p) : independent set
 gain(p), best_gain : integer
 best_ptrn : pattern (DFG)

1. For i = 1 to n
2. Label_Vertices_and_Edges(M, Gi)
3. Generate_Edge_Patterns(M, Gi)
4. EndFor
5. For each pattern p in M
6. gain(p) := 0
7. For i := 1 to n
8. Pi := Generate_Overlapping_Patterns(Gi, p)
9. If Pi is not empty
10. Conflict(Gi, p) :=
 Compute_Conflict_Graph(Pi)
11. MIS(Gi, p) := Compute_MIS(G, Limit)
12. gain(p) := gain(p) + |MIS(Gi, p)|
13. EndIf
14. EndFor
15. EndFor
16. best_gain := max{gain(p)}
17. best_ptrn := p s.t. gain(p) = best_gain
18. While best_gain > Threshold
19. For i := 1 to n
20. Cluster_Indep_Patterns(M, Gi, MIS(Gi, best_ptrn))
21. Update_Patterns(M, Gi, MIS(Gi, best_ptrn))
22. EndFor
23. best_gain := max{gain(p)}
24. best_ptrn := p s.t. gain(p) = best_gain
25. EndWhile

 Fig. 3. Echo Instruction Selection Algorithm

Next, the algorithm enumerates a set of patterns using the function Gener-

ate_Edge_Patterns(…). For each edge e = (u, v), the subgraph Ge = ({u, v}, {e}) is
generated as a candidate pattern. Each candidate pattern is assigned a label as de-
scribed in the previous section.

The next step is to identify the pattern that offers the greatest gain in terms of
compression. Lines 5-17 of the algorithm accomplish this task. Given a pattern p and
a DFG G, the gain associated with p, denoted gain(p) is the number of subgraphs of
G that can be covered by instances of pattern p, under the assumption that overlap-
ping patterns are not allowed.

Fig. 4. Overlapping patterns (a), a Conflict Graph (b), and Independent Set (c)

An example of a DFG with a set of overlapping patterns is shown in Figure 4 (a).

Given a set of overlapping patterns, determining the largest set of non-overlapping
patterns is akin to finding a maximum independent set (MIS), a well-known NP-
Complete Problem [15]. An overlap graph for the example in Figure 4 (a) is shown in
Figure 4 (b). The shaded vertices in Figure 4 (b) represent one of several MISs. The
resulting set of non-overlapping patterns is shown in Figure 4 (c).

The function Compute_Conflict_Graph(…) creates the conflict graph, and the
function Compute_MIS(…) computes its MIS. To compute the MIS, we use a ran-
domized iterative improvement algorithm described in [18]. The algorithm begins
with a randomly generated independent set (IS). During each iteration, the algorithm
randomly adds and removes vertices to and from the independent set. The algorithm
terminates after it undergoes a fixed number (Limit) of iterations without improving
the size of the largest MIS. Limit is set to 500 for our experiments.

The cardinality of the MIS is the gain associated with pattern p for DFG G. This is
because each pattern instance combines two nodes and/or patterns into a single pat-
tern, for a net reduction in code size of one. The best gain is computed by summing
the gain of each pattern over all DFGs. The pattern with the largest net gain is the
best pattern, pbest. Each pattern instance is replaced with a supernode that maintains
the internal input-output connectivity of the original pattern. Furthermore, all of the
original data dependencies must be maintained. We refer to the process of replacing a
pattern instance with a supernode as clustering. Once all instances of a given pattern
are clustered, we update the set of patterns and adjust their respective gains. Then, we
can once again identify the best pattern, and decide whether or not to continue.

Clustering is performed by the function Cluster_Independent_Patterns(…) and
is illustrated in Figure 5 (a) and (b). The dashed edges in Figure 5 (b) indicate data
dependencies that must be maintained across pattern boundaries; these edges are
technically removed from the graph and replaced with bold edges that represent de-
pendencies between patterns. Figure 5 (b) illustrates this process. Each addition op-
eration has been subsumed into a supernode. Technically, each dashed edge is re-
moved from the graph, and replaced with a bold edge between supernodes. Bold
edges are characterized by the fact that at least one of their incident vertices is a su-
pernode; they are also used to generate larger patterns from smaller ones in future
iterations of the algorithm, as illustrated in Figure 2.

A

B

C

D

E

F G

A

B

C

D

E

F G

A,B A,D

B,E C,B

D,E

(a) (b) (c)

Fig. 5. A DFG (a) with a set of patterns replaced by supernodes (b), after a second
iteration (c), and with one of the supernodes replaced with an echo instruction (d). If the
pattern existed elsewhere in the program, both could be replaced with echo instructions (e)

Now that an initial set of patterns has been generated, we must update the fre-

quency count for all remaining patterns in G. The function Update_Patterns(…)
performs this task. In particular, the bold edges enable several different 3 and 4-node
patterns to be generated. The most favorable pattern is then selected for clustering,
and the algorithm repeats again. The algorithm terminates when the best gain is less-
than-or-equal-to a user-specific parameter, Threshold; we set threshold to 1.

Figure 5 (c) shows a second iteration of the algorithm. The resulting patterns
subsume the patterns generated previously during the algorithm, yielding larger pat-
tern instances. At this point, no further patterns can be generated that occur more than
once in the DFG, so the algorithm terminates. One of the two resulting pattern in-
stances is replaced with an echo instruction, which references the other instance as
shown in Figure 5 (d). At least one instance of each uniquely identifiable pattern must
be left in the program; otherwise, it simply couldn’t execute. For example, if an in-
stance existed elsewhere in the program, both instances could be replaced with echo
instructions, as illustrated in Figure 5 (e). Ideally, the pattern that is left intact should
reside in a portion of the program that executes frequently—namely a loop body.

(a) (b)

+

+ +

+

+

+ +

+

*

+

+ +

+

+

+ +

+

*

+

+ +

+

+

+ +

+

* *

Echo

Echo

(c) (e)

+

+ +

+

*
(d)

Echo

3.2 Implications for Register Allocation

The algorithm presented in the previous section identifies patters that occur
throughout the compiler’s intermediate representation of the program; it does not,
however, ensure that these patterns will be mapped to identical code sequences in the
final program. In particular, the compiler must enforcing identical register usage
among instances of identical patterns.

A register allocator performs three primary functions: mapping live ranges to
physical registers, inserting spill code, and coalescing redundant move instructions,
effectively eliminating them. To the best of our knowledge, no existing register allo-
cation techniques maximize reuse of previously identified code fragments.

To ensure pattern reuse, corresponding live ranges in instances of identical patterns
must be mapped to the same physical register. Inserting spill code into a fragment
eliminates all possibilities for its re-use, unless identical spill code is inserted into
other instances of the same pattern. The same goes for coalescing: if a move instruc-
tion contained in one pattern instance is coalesced, then that pattern instance will no
longer have the same topology as previously identical pattern instances—unless cor-
responding move instructions are coalesced in those pattern instances as well. Of
course, inserting spill code and coalescing move instructions outside of reusable pro-
gram fragments is not problematic.

At this point, it is not immediately clear how to best optimize a register allocator
for code reuse. We suspect, for example, that strictly enforcing register assignment
constraints for all identical pattern instances may lead to an inordinate amount of spill
code inserted around pattern boundaries, which may lead to sub-optimal results in
terms of code size. Similarly, enforcing all-or-none constraints for spill code insertion
and coalescing within patterns may be problematic as well.

Because of these problems, it may be necessary to instantiate several non-identical
code sequences for each unique pattern; each instance must therefore be made identi-
cal to exactly one of these sequences. Alternatively, the best option may be to simply
discard certain pattern instance, choosing not to replace them with echo instructions.
This approach could alleviate the amount of spill code that is inserted if pattern re-use
leads to inordinate register pressure in certain program locations.

At this point, we have not implemented a register allocation scheme; this issue is
sufficiently complicated to warrant a separate investigation, and is left as future work.

3.3 Application to Procedural Abstraction

It should be obvious to the reader that the algorithm described in Section 3.1 could
easily be adapted to perform procedural abstraction. Pattern instances are replaced by
procedure calls rather than echo instructions. Procedure calls, however, have addi-
tional overhead associated with them: parameter passing, stack frame allocation and
deallocation, and saving and restoring register values to memory. This will entail a
different approach to estimating the potential gain of each pattern, which must incor-
porate the number of inputs and outputs to each pattern as well as the number of
nodes in the pattern. Since this work focuses on architectures supporting echo instruc-
tions, we leave this investigation as an open avenue for future work.

4 Experimental Methodology and Results

4.1 Motivation and Goals

In this section, we evaluate the effectiveness of the instruction selection algorithm
described in Section 3. Since we have not yet implemented a register allocation
scheme, a complete evaluation of our compression technique is impossible. The re-
sults presented in this section therefore count the number of IR operations that have
been subsumed by patterns; they do not reflect actual final code sizes. In particular,
we cannot know, a priori, exactly how many move instructions will be coalesced by
the register allocator; moreover, we cannot immediately determine how much spill
code the allocator will introduce, or where it will be introduced. Finally, we cannot
determine whether or not our pattern re-use will lead to the introduction of additional
move instructions (or spill code) that the allocator would otherwise not have inserted.

Instead, we decouple our evaluation of the instruction selection technique from the
register allocator. The purpose of the experiments presented here are twofold. First,
we wish to show that the instruction selection algorithm is capable of achieving fa-
vorable compression under an ideal register allocator. This is necessary to justify a
future foray into register allocation. Secondly, we recognize that our demands for
pattern reuse may impede the register allocator’s ability to reduce code size by coa-
lescing move instructions. Admittedly, we cannot explore this tradeoff without a
register allocator in place. To compensate, we measure the effectiveness of our in-
struction selection technique under both ideal and less-than-ideal assumptions regard-
ing the allocator.

Ideally, we would like to compare the results of our technique with Lau et. al. [2];
unfortunately, this comparison is inappropriate at the present time. Our analysis has
been integrated into a compiler, whereas Lau’s is built into Squeeze [5], a binary
optimization tool. Squeeze performs many program transformations on its own in
order to compress the resulting program. Lau’s baseline results used Squeeze to com-
press the program in absence of echo instructions. Because the back end of our com-
piler has not been completed, we cannot yet interface with a link-time optimizer such
as Squeeze. Therefore, the transformations that yielded Lau’s baseline results are
unavailable to us at the present time.

4.2 Framework and Experimental Methodology

We implemented our instruction selection algorithm into the Machine SUIF compiler
framework [19]. Machine SUIF includes passes that target the Alpha and x86 archi-
tectures. We selected the Alpha as a target, primarily because Lau et. al. [2] did the
same, and this will enable future comparisons between the two techniques. The Ma-
chine SUIF IR is a CFG, with basic blocks represented as lists of quadruples—similar
to the IR used by Runeson [7]. We performed a dependence analysis on the instruc-
tion lists, and generated a DFG for each basic block. Instruction selection was per-
formed for the alpha target using the do_gen pass, provided with Machine SUIF.
Following this pass, we applied our instruction selection algorithm.

The Machine SUIF compiler considers only one source code file at a time. We ap-
ply the instruction selection algorithm to all DFGs in each input file, but we do not
attempt to detect patterns across multiple files. Considering every DFG in an entire
program at once would yield superior compression results; however, we believe that
the results presented here are sufficient to justify our algorithmic contributions.

Finally, we do not attempt to measure the performance overhead that arises due to
echo instructions. Although we could have generated some preliminary estimates by
using profiling to determine the execution frequency for each basic block, we believe
that these numbers would be inaccurate. One side effect of compressing a program is
that a greater portion of it can fit into cache at any given time, thereby reducing the
miss rate [20]. This can often mitigate the performance penalty due to additional
branching that arises due to compression. Profiling alone cannot experimentally cap-
ture these nuances; cycle-accurate simulation would be more appropriate. We cannot
perform this type of simulation until the register allocator is complete.

4.3 Approximating the Effects on Register Allocation

Machine SUIF liberally sprinkles move instructions throughout its IR as it is con-
structed. An effective register allocator must aggressively coalesce these moves in
order to compress the program. We performed experiments under two sets of assump-
tions: optimistic, and pessimistic. The optimistic model assumes that all move instruc-
tions will be coalesced by the allocator; the pessimistic model, in contrast, assumes
that none are coalesced. In practice, most register allocators will coalesce the majority
of move instructions, but certainly not all of them.

The majority of graph coloring register allocators (e.g. Briggs [21] and George-
Appel [22]) coalesce as many move instructions as possible. We call these allocators
Pessimistic Allocators, because they do not coalesce move instructions until it is
provably safe to do so—in other words, no spill code will be inserted as a result. A
recent Optimistic Allocator, developed by Park and Moon [23], reverses this para-
digm. Their allocator initially coalesces all move instructions. Following this, the
optimistic allocator only inserts moves as an alternative to spill code.

The pessimistic assumption approximates a lower bound on the size number of
moves coalesced by the allocator; the optimistic assumption provides an upper bound.
These bounds, however, do not include estimates of code size increases due to spill
code insertion. If a live range existing in on pattern instance is spilled, we can safely
spill the corresponding live range in all other instances of the same pattern, although
this will likely hurt performance. More significantly, we cannot estimate whether
move instructions will be inserted at pattern boundaries. Despite these inaccuracies,
we believe that the experiments detailed in section 4.5 validate the effectiveness of
our instruction selection technique.

4.4 Benchmark Applications

We selected a set of eight applications from the MediaBench [24] and MiBench [25]
benchmark suites. These benchmarks are summarized in Table 1.

Table 1. Summary of Benchmark Applications
Benchmark Description
ADPCM Adaptive Differential Pulse Code Modulation
Blowfish Symmetric Block Cipher with Variable Key Length
Epic Experimental Image Data Compression Utility
G721 Voice Compression
JPEG Image Compression and Decompression
MPEG2 Dec MPEG2 Decoder
MPEG2 Enc MPEG2 Encoder
Pegwit Public Key Encryption and Authentication

Upon inspecting the source code for several of these benchmarks, we observed that
many were written in a coding style with loops manually unrolled. Loop unrolling
exposes instruction-level parallelism to a processor, but at the expense of code size.
An embedded system designer who wished to minimize code size would not unroll
loops. To mimic this coding style, we rewrote the programs ourselves, which reduced
both the size of the program and the size of certain basic blocks within the program.
The latter, in turn, reduced the overall runtime of our compiler as well.

4.4 Results and Elaboration

The experimental results for our set of benchmarks under both pessimistic and opti-
mistic assumptions are shown in Table 2. The pessimistic results assume that the
register allocator is unable to coalesce any move instructions. The optimistic results
assume that all move instructions are coalesced, except for those used for parameter
passing during procedure calls. The columns entitled Uncompressed and Compressed
show the number of DFG operations in each benchmark before and after our instruc-
tion selection algorithm, which effectively compresses the program. Each move in-
struction that is coalesced reduces program size as well.
Under pessimistic assumptions, our instruction selection technique the net code size
reduction across all benchmarks was 36.25%; under optimistic assumptions, the net
code size reduction was 25.00%. Taking pessimistic uncompressed code size as a
baseline, compression under optimistic assumptions reduced net code size by 45.29%.
Although the optimistic results yield a greater net reduction in code size than the
pessimistic results, the fraction of the code size reduction attributable to instruction
selection is considerably less for the optimistic results than the pessimistic results.

For all applications other than APDCM—which is considerably smaller than
every other benchmark—the compressed pessimistic results yield a smaller code size
than the uncompressed optimistic results. If the opposite were true, then echo instruc-
tions might not be an appropriate form of compression; instead, focusing on coalesc-
ing as a code size reduction technique might have been a better strategy. Altogether,
our results empirically verify the effectiveness of our instruction selection strategy.

Table 2. Experimental Results showing the code size of each program before and
after compression. The Pessimistic Results assume that the register allocator is unable
to coalesce any move instructions; the Optimistic Results assume that all move in-
structions are coalesced

Pessimistic Optimistic
Benchmark Uncompressed Compressed Uncompressed Compressed

ADPCM
Blowfish
Epic
G721
JPEG
MPEG2 Dec.
MPEG2 Enc.
Pegwit

1273
5822

11320
4445

83036
18248
24710
17718

954
3137
7459
3067

52992
11939
15925
10720

839
3909
7646
3122

61484
13487
18494
12531

764
2515
6070
2527

46342
10328
13510
9082

5. Conclusion

This paper describes an instruction selection algorithm for compilers that target archi-
tectures featuring echo instructions. The instruction selection algorithm identifies
replaces repeated patterns in the compiler’s IR with echo instructions, thereby com-
pressing the program. The instruction selection algorithm must be coupled with a
register allocator to ensure identical register usage among isomorphic patterns. Under
a set of pessimistic assumptions, our instruction selection algorithm reduced code size
by 36.25% on average. A more realistic study, under more optimistic assumptions
showed an average reduction in code size of 25.00%.

References

1. Fraser, C. W.: An Instruction for Direct Interpretation of LZ77-compressed Programs. In:
Microsoft Technical Report TR-2002-90 (2002)

2. Lau, J., Schoemackers, S., Sherwood, T., and Calder, B.: Reducing Code Size With Echo
Instructions. In: CASES. (2003)

3. Ziv, J., and Lempel, A.: A Universal Algorithm for Sequential Data Compression. In:
IEEE Trans. on Information Theory, 23(3) (1977) 337-343

4. Fraser, C. W., Myers, E. W., and Wendt, A.: Analyzing and Compressing Assembly
Code. In ACM Symposium on Compiler Construction. (1984)

5. Debray, S., Evans, W., Muth, R., and De Sutter, B.: Compiler Techniques for Code Com-
paction. In: ACM Trans. Programming Languages and Systems, 22(2) (2000) 378-415

6. Cooper, K. D., and McIntosh, N. Enhanced Code Compression for Embedded RISC Proc-
essors. In: International Conference on Programming Language Design and Implementa-
tion (1999).

7. Runeson, J.: Code Compression Through Procedural Abstraction before Register Alloca-
tion. Masters Thesis, University of Uppsala (1992)

8. Lefurgy, C. Bird, P., Chen, I., and Mudge, T.: Improving Code Density Using Compres-
sion Techniques. In: 30th International Symposium on Microarchitecture (1997)

9. Liao, S., Devadas, S., and Keutzer, K.: A Text-compression-based Method for Code Size
Minimization in Embedded Systems. In: ACM Trans. Design Automation of Embedded
Systems, 4(1) (1999) 12-38

10. Wolfe, A., and Chanin, A.: Executing Compressed Programs on an Embedded RISC
Architecture. In 25th International Symposium on Microarchitecture (1992)

11. Kozuch, M., and Wolfe, A.: Compression of Embedded System Programs. In: IEEE Int.
Conf. Computer Design (1994)

12. Kemp, T. M., Montoye, R. K., Harper, J. D., Palmer, J. D., and Auerbach, D. J.: A De-
compression Core for PowerPC. In: IBM Journal of Research and Development, 42(6)
(1998) 807-812

13. Game, M, and Booker, A.: CodePack: Code Compression for PowerPC Processors, Ver-
sion 1.0. In: Technical Report, IBM Microelectronics Division.

14. Lefurgy, C., Piccininni, E., and Mudge, T.: Evaluation of a High Performance Data Com-
pression Method. In: 32nd International Symposium on Microarchitecture (1999).

15. Garey, M. R., and Johnson, D. S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co. (1979)

16. Cordella, L. P., Foggia, P., Sansone, C., and Vento, M.: An Improved Algorithm for
Matching Large Graphs. In: The 3rd IAPR-TC15 Workshop on Graph-based Representa-
tions (2001)

17. Kastner, R., Kaplan, A., Memik, S. O., and Bozorgzadeh, E.: Instruction Generation for
Hybrid Reconfigurable Systems. In: ACM Trans. Design Automation of Embedded Sys-
tems, 7(4) (2002) 605-627.

18. Kirovski, D., and Potkonjak, M.: Efficient Coloring of a Large Spectrum of Graphs. In:
Design Automation Conference (1997).

19. http://www.eecs.harvard.edu/hube/research/machsuif.html
20. Kunchithapadam, K., and Larus, J. R.: Using Lightweight Procedures to Improve Instruc-

tion Cache Performance. In: University of Wisconsin-Madison Technical Report CS-TR-
99-1390 (1999)

21. Briggs, P., Cooper, K. D., and Torczon, L.: Improvements to Graph Coloring Register
Allocation. In: ACM Trans. Programming Languages and Systems, 16(3) (1994) 428-455

22. George, L., and Appel, A. W.: Iterated Register Coalescing. In: ACM Trans. Program-
ming Languages and Systems, 18(3) (1996) 300-324

23. Park, J., and Moon, S. M.: Optimistic Register Coalescing. In: International Conference
on Parallel Architectures and Compilation Techniques (1998)

24. Lee, C., Potkonjak, M., and Mangione-Smith, W.: MediaBench: A Tool for Evaluating
and Synthesizing Multimedia and Communications Applications. In: 30th International
Symposium on Microarchitecture (1997)

25. Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., and Brown, R. B.:
MiBench: A free, commercially representative embedded benchmark suite. In: IEEE 4th
Annual Workshop on Workload Characterization (2001)

