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Abstract. Echo Instructions have recently been introduced to allow embedded 
processors to provide runtime decompression of LZ77-compressed programs at 
a minimal hardware cost compared to other recent decompression schemes. As 
embedded architectures begin to adopt echo instructions, new compiler tech-
niques will be required to perform the compression step. This paper describes a 
novel instruction selection algorithm that can be integrated into a retargetable 
compiler that targets such architectures. The algorithm uses pattern matching to 
identify repeated fragments of the compiler’s intermediate representation of a 
program. Identical program fragments are replaced with echo instructions, 
thereby compressing the program. The techniques presented here can easily be 
adapted to perform procedural abstraction, which replaces repeated program 
fragments with procedure calls rather than echo instructions.  

1   Introduction 

For embedded system designers, the mandate to minimize costs such as memory size 
and power consumption trumps any desire to optimize performance. For these rea-
sons, one approach that has prevailed in recent years has been to store the program in 
compressed form on-chip, thereby reducing the size of on-chip memory. Decompres-
sion in this context may be performed either software or hardware. Software decom-
pression severely limits performance, whereas decompression in hardware requires 
custom circuitry. If the goal is to minimize the total transistor count on the chip while 
providing runtime decompression, then the savings in storage cost must dominate the 
cost of the decompression circuitry. Echo Instructions [1] [2], introduced in 2002, 
provide architectural support for the execution of LZ77-compressed programs while 
requiring considerably less physical area than comparable hardware-based decom-
pression schemes. Echo instructions are therefore likely to become standard features 
in embedded architectures within the next few years. To exploit echo instructions for 
the purpose of reducing code size, new compiler techniques will be necessary. 

This paper presents a novel instruction selection algorithm for retargetable com-
pilers that target architectures featuring echo instructions. This algorithm identifies 



recurring patterns in a program’s intermediate representation and replaces them with 
echo instructions, thereby compressing the program. Echo instructions, unlike proce-
dure calls, do not require stack frame manipulation and parameter passing, and thus 
allow a higher rate of compression. At the same time, replacement of identical code 
sequences with echo instructions imposes additional constraints on the register alloca-
tor, which must assign registers, perform coalescing, and insert spill code in such a 
way that the program fragments identified by the instruction selection algorithm are 
mapped to identical code sequences in the final program. Identical code fragments 
may then be replaced with echo instructions during final code emission. 

The paper is organized as follows. Section 2 discusses related work. Section 3 de-
scribes our contribution: an instruction selection algorithm that is tailored to the task 
of code compression using echo instructions. Section 4 describes our experimental 
results and analysis, which we believe justifies our algorithms and approach. Section 
5 concludes the paper. 

2   Related Work 

2.1   Echo Instructions and LZ77 Compression 

Fraser [1] proposed the echo instruction to allow the runtime execution of programs 
compressed using a variant of the LZ77 algorithm [3] that analyzes assembly code as 
opposed to sequential data. The LZ77 algorithm compresses a character string by 
identifying recurring substrings, which are replaced by pointers to the first occurrence 
of the substring. Each pointer contains two fields expressed as a pair (offset, length), 
which is assumed to be equivalent to a single character.  Offset is the distance from 
the pointer to the beginning of the first instance of the substring. Length is the num-
ber of characters in the substring. An example of LZ77 compression is shown in 
Figure 1.  

An echo instruction contains two immediate (constant-valued) fields: offset and 
length, exactly like LZ77 compression.  The basic sequence of control operations for 
a sequential echo instruction is described as follows.  

 
1. Branch to PC – offset 
2. Execute the next length instructions 
3. Return to the original call point 

 
 

Original String: ABCDBCABCDBACABCDBDAABCDBABC 
Compressed String: ABCDBC(6, 5)AC(9, 5)DA(12, 5)(13, 3) 

 
Fig. 1. A string compressed using the LZ77 algorithm. Each pair (offset, length) is 
assumed to comprise one character. In practice, the actual number of bits required to 
encode each pair depends on the number of bits required to express the pointer and 
offset, as well as the number of bits required to encode each specific character 



Echo instructions are quite similar to procedure calls, however there are several 
stark differences. First and foremost, an echo instruction may branch to any arbitrary 
location in instruction memory; procedure calls explicitly branch to the first statement 
of the procedure body. Secondly, an echo instruction explicitly encodes the number 
of instructions that will execute before execution returns to the call point; a procedure 
call, in contrast, will continue to execute instructions until a return instruction that 
terminates the body of the procedure is encountered. Third, the code sequences refer-
enced by two echo instructions may overlap. For example, repeated patterns may 
overlap, as exemplified by patterns ABCDE and ABC in Figure 1. Under procedural 
abstraction, these two patterns, despite their redundancy, require two separate subrou-
tine bodies; it should be noted that ABCDE could call ABC as a subroutine itself. 
Finally, the echo instruction is a single branch, whereas each procedure call will in-
evitably be coupled with instructions that pass parameters, save and restore register 
values, and manipulate the stack frame.  

Lau et. al. [2] described the bitmasked echo instruction, which combined the se-
quential echo instruction with predicated execution. The length field is replaced with 
a bitmask field. If the ith bit of bitmask is set, then the ith instruction from the begin-
ning of the sequence is executed; otherwise, a NOP is executed. The primary advan-
tage of bitmasked echo instructions is that they allow non-identical code fragments to 
reference a common code sequence. Unfortunately, they do not scale well to large 
instruction sequences. If we assume that the length and bitmask fields of the sequen-
tial and bitmasked echo instructions both require n bits, then a sequential echo may 
reference patterns containing as many as 2n instructions; the bitmasked echo, how-
ever, can only reference sequences containing at most n instructions.  

Lau et. al. described an approach for architectural support for echo instructions for 
embedded processors. To do this required two registers—one to hold the address of 
the original call point, and the other to hold the value length. As each of the length 
instructions in step 2 above is executed, length is decremented. When the value of 
length reaches zero, control is transferred back to the call point. In addition to the two 
registers, a reverse counter, a comparator, and a multiplexer are the only datapath 
components required. Of course, hardware corresponding to the appropriate new 
controller states must also be accounted for. The issue of hardware cost will be revis-
ited in Section 2.3, when we compare echo instructions to other hardware-based 
decompression techniques. 

2.2   Procedural Abstraction 

Procedural abstraction is a compile-time code-size optimization that identifies re-
peated sequences of instructions in an assembly-level program and replaces them 
with procedure calls. The body of each procedure is identical to the sequence it re-
places. Procedural abstraction requires no special hardware, but entails significant 
overhead due to parameter passing, saving and restoring registers, and stack frame 
manipulation. A substring matching approach based on suffix trees proposed by Fra-
ser et. al. [4] has been a widely recognized algorithm for procedural abstraction. Two 
instructions are mapped to the same character if and only if all fields in the instruction 



are equal. Fraser’s algorithm performed procedural abstraction at link time, following 
register allocation and instruction scheduling. Consequently, it was unable to identify 
semantically equivalent instruction sequences that were identical to one another 
within a rescheduling of instructions and/or a renaming of registers. The basic algo-
rithm has since been updated with register renaming [5] [6] and instruction reordering 
[2] to match a wider variety of patterns. Runeson [7] recently advocated an approach 
by which procedural abstraction is performed prior to register allocation, which is 
similar to our work in spirit. Register renaming is not applicable here because register 
allocation has not yet been performed, nor is instruction reordering applied. 

Our approach differentiates itself from these previous techniques by using graph 
isomorphism rather than substring matching to identify repeated code fragments. Like 
Runeson, our algorithm is performed prior to both register allocation and instruction 
scheduling. Therefore, our algorithm detects equivalent patterns based on the depend-
ence structure of operations rather than an arbitrary ordering of quadruples. Another 
distinction is that previous approaches operate on the granularity of basic blocks. If 
two basic blocks are semantically equivalent, they are replaced with procedure calls; 
otherwise, they are not. Our approach identifies recurring patterns within blocks that 
may differ only by a few instructions.  

2.2 Code Compression in Hardware 

Lefurgy et. al. [8] proposed a form of dictionary compression which assigns variable-
length codewords to sequences based on the frequency with which each sequence 
occurs. Each codeword is translated into an index value, which is used to access a 
dictionary that holds a decompressed instruction sequence corresponding to each 
codeword. The dictionary access is incorporated into the processor’s instruction fetch 
mechanism. The Call Dictionary (CALD) instruction, introduced by Liao et. al. [9], 
exploits repeated code fragments in a similar manner to echo instructions. The in-
struction sequences are placed into an external cache, which is referenced by CALD 
instructions. Echo instructions, alternatively, always refer to the main instruction 
stream, thereby eliminating the need for the external cache.  

The Compressed Code RISC Processor (CCRP) [10] [11] allows a compiler to di-
vide a program into blocks, which are then compressed using Huffman encoding. 
Blocks are decompressed when they are brought into the instruction cache, requiring 
a Huffman decoder circuit to be placed between memory and cache. The CPU re-
mains oblivious to the runtime decompression mechanism; only the cache is redes-
igned. A similar approach was taken by IBM’s CodePack [12] [13] [14], which di-
vided 32-bit instructions into 16-bit halves that are compressed independently. A 
decompression circuit is similarly placed between memory and cache. 

In the above examples, the cost of the hardware that performs the decompression 
is a potential limiting factor. Echo instructions require considerably less hardware that 
dictionaries—which are essentially memory elements—and Huffman decoders. We 
do not argue that echo instructions provide the highest quality compression compared 
to these schemes. The key to the future success of echo instructions is their low 
physical cost, which translates to a lower price paid by the consumer. 



3   Instruction Selection for Echo Instructions 

The traditional problem of instruction selection in compiler theory involves trans-
forming a program represented in the intermediate representation (IR) to a linear list 
of machine instructions. An echo instruction, in contrast, is a placeholder that repre-
sents a finite-length linear sequence of instructions. The technique presented here 
decouples the traditional instruction selection and the detection of code sequences to 
be replaced with echo instructions. We present an algorithm that identifies repeating 
patterns within the IR. Each instance of each pattern is replaced by an echo instruc-
tion. The algorithm is placed between the traditional instruction selection and register 
allocation phases of a compiler. This work, it should be noted, does not consider 
bitmasked echo instructions [2]. 

A basic block is a maximal-length instruction sequence that begins with the target 
of a branch and contains no interleaving branch or branch target instructions. We 
represent each basic block with a Dataflow Graph (DFG). Vertices represent machine 
instructions, and edges represent dependencies between instructions. The advantage 
of the DFG representation is no explicit ordering is imposed on the set of the instruc-
tions. The only scheduling constraints are imposed by dependencies in the DFG. 
DFGs are directed acyclic graphs, where vertices represent operations and edges 
represent direct data dependencies between operations. Two graphs G1 =(V1, E1) and 
G2 = (V2, E2) are isomorphic if there exists a function f: V1  V2 satisfying 
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The graph isomorphism problem has not been proven NP-Hard; however, no 

polynomial-time solution has been found either [15].  To perform isomorphism test-
ing, we used the publicly available VF2 algorithm [16], which has a worst-case time 
complexity of O(nn!), but runs efficiently for the majority of DFGs we tested. 

A pattern is defined to be a subgraph of any DFG. Patterns are assigned integer 
labels such that two patterns have equal labels if and only if they are isomorphic. To 
reduce the number of isomorphism tests required to label a pattern, we store the set of 
patterns in a hash table. For pattern p, a hash function h(p) is computed over some 
combination of invariant properties of p. Invariant properties are numeric properties 
of the graph that must be equal if the two graphs are isomorphic. For example, we 
consider the number of vertices and edges in p, the critical path length of p, and the 
frequency distribution of vertex and/or edge labels in p. Using this approach, we must 
only test p for isomorphism against patterns p’ satisfying h(p’) = h(p). 

Any non-overlapping set of patterns that are isomorphic may be replaced by echo 
instructions. Our intuition is that patterns that occur with great frequency throughout 
the IR are the best candidates to be replaced by echo instructions. The most fre-
quently occurring patterns will most likely be small—containing just one or two op-
erations, but may be embedded within larger patterns that occur less frequently. A 
competent scheduling algorithm could account for this fact when scheduling the in-
struction sequences referenced by echo instructions to maximize pattern overlap. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Generating, Labeling, and Clustering a Pattern Between Two Supernodes 
 
The algorithm described in the next section generates patterns in terms of smaller 

sub-patterns. The process of labeling, and clustering a pattern composed of subpat-
terns is shown in Figure 2. The bold edge shows that there are data dependencies 
between the sub-patterns, and the dashed edges represent the actual dependencies. 
The resulting pattern is assigned a uniquely identifying integer label, which is com-
puted using the isomorphism testing technique described above. 

3.1  Algorithm Description 

The instruction selection algorithm presented here is based on a framework for regu-
larity extraction described in [17]. The algorithm, shown in Figure 3, is applied be-
tween an instruction selection pass that is unaware of echo instructions and a register 
allocation pass that ensures reusability among pattern instances. To avoid complica-
tions due to control flow, the pattern detection algorithm ignores branches. The input 
to the algorithm is a set of DFGs G*. A local variable, M, is a function that maps 
vertices, edges, and patterns to a set of integer labels. These labels are used to identify 
semantically equivalent operations. Since register allocation has not been performed, 
it is unnecessary to consider register usage in our definition of operation equivalence. 

The algorithm begins by calling Label_Vertices_and_Edges(…). This function 
assigns integer labels to vertices such that two vertices are assigned equal labels if 
and only if their opcodes match, and all immediate operands—if any—have the same 
value. Edges are assigned labels to distinguish whether or not they are the left or right 
inputs to a commutative operator. These edge labels allow us distinguish the seem-
ingly dissimilar instructions c = a – b and c = b – a. Note that for a commutative op-
eration o , a o  b and b o  a are semantically equivalent. 
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Algorithm:  Echo_Instr_Select(G*, Threshold, Limit) 
 
Parameters:  G* := {Gi = (Vi, Ei)} : set of n DFGs 

   Threshold, Limit : integer 
 

Variables: M : mapping from vertices, edges, and   pat-
terns to labels. 

   Pi : set of patterns 
   Conflict(Gi, p) : conflict graph 
   MIS(Gi, p) : independent set 
   gain(p), best_gain : integer 
   best_ptrn : pattern (DFG)  
 

1.  For i = 1 to n 
2. Label_Vertices_and_Edges(M, Gi) 
3. Generate_Edge_Patterns(M, Gi) 
4.  EndFor 
5.  For each pattern p in M 
6. gain(p) := 0 
7. For i := 1 to n 
8. Pi := Generate_Overlapping_Patterns(Gi, p) 
9. If Pi is not empty 
10. Conflict(Gi, p) :=  
  Compute_Conflict_Graph(Pi) 
11. MIS(Gi, p) := Compute_MIS(G, Limit) 
12. gain(p) := gain(p) + |MIS(Gi, p)| 
13. EndIf 
14. EndFor 
15.  EndFor 
16.  best_gain := max{gain(p)} 
17.  best_ptrn := p s.t. gain(p) = best_gain 
18.  While best_gain > Threshold 
19. For i := 1 to n 
20. Cluster_Indep_Patterns(M, Gi, MIS(Gi, best_ptrn)) 
21. Update_Patterns(M, Gi, MIS(Gi, best_ptrn)) 
22. EndFor 
23. best_gain := max{gain(p)} 
24. best_ptrn := p s.t. gain(p) = best_gain 
25.  EndWhile 

 
 Fig. 3. Echo Instruction Selection Algorithm 

 
Next, the algorithm enumerates a set of patterns using the function Gener-

ate_Edge_Patterns(…).  For each edge e = (u, v), the subgraph Ge = ({u, v}, {e}) is 
generated as a candidate pattern. Each candidate pattern is assigned a label as de-
scribed in the previous section. 

The next step is to identify the pattern that offers the greatest gain in terms of 
compression. Lines 5-17 of the algorithm accomplish this task. Given a pattern p and 
a DFG G, the gain associated with p, denoted gain(p) is the number of subgraphs of 
G that can be covered by instances of pattern p, under the assumption that overlap-
ping patterns are not allowed.  

 
 



 
 
 
 
 
 

 
 

 

Fig. 4. Overlapping patterns (a), a Conflict Graph (b), and Independent Set (c) 
 
An example of a DFG with a set of overlapping patterns is shown in Figure 4 (a). 

Given a set of overlapping patterns, determining the largest set of non-overlapping 
patterns is akin to finding a maximum independent set (MIS), a well-known NP-
Complete Problem [15]. An overlap graph for the example in Figure 4 (a) is shown in 
Figure 4 (b). The shaded vertices in Figure 4 (b) represent one of several MISs. The 
resulting set of non-overlapping patterns is shown in Figure 4 (c). 

The function Compute_Conflict_Graph(…) creates the conflict graph, and the 
function Compute_MIS(…) computes its MIS. To compute the MIS, we use a ran-
domized iterative improvement algorithm described in [18]. The algorithm begins 
with a randomly generated independent set (IS). During each iteration, the algorithm 
randomly adds and removes vertices to and from the independent set. The algorithm 
terminates after it undergoes a fixed number (Limit) of iterations without improving 
the size of the largest MIS. Limit is set to 500 for our experiments. 

The cardinality of the MIS is the gain associated with pattern p for DFG G. This is 
because each pattern instance combines two nodes and/or patterns into a single pat-
tern, for a net reduction in code size of one. The best gain is computed by summing 
the gain of each pattern over all DFGs. The pattern with the largest net gain is the 
best pattern, pbest. Each pattern instance is replaced with a supernode that maintains 
the internal input-output connectivity of the original pattern. Furthermore, all of the 
original data dependencies must be maintained. We refer to the process of replacing a 
pattern instance with a supernode as clustering. Once all instances of a given pattern 
are clustered, we update the set of patterns and adjust their respective gains. Then, we 
can once again identify the best pattern, and decide whether or not to continue.  

Clustering is performed by the function Cluster_Independent_Patterns(…) and 
is illustrated in Figure 5 (a) and (b). The dashed edges in Figure 5 (b) indicate data 
dependencies that must be maintained across pattern boundaries; these edges are 
technically removed from the graph and replaced with bold edges that represent de-
pendencies between patterns. Figure 5 (b) illustrates this process. Each addition op-
eration has been subsumed into a supernode. Technically, each dashed edge is re-
moved from the graph, and replaced with a bold edge between supernodes. Bold 
edges are characterized by the fact that at least one of their incident vertices is a su-
pernode; they are also used to generate larger patterns from smaller ones in future 
iterations of the algorithm, as illustrated in Figure 2. 
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Fig. 5. A DFG (a) with a set of patterns replaced by supernodes (b), after a second 
iteration (c), and with one of the supernodes replaced with an echo instruction (d). If the 
pattern existed elsewhere in the program, both could be replaced with echo instructions (e) 

 
Now that an initial set of patterns has been generated, we must update the fre-

quency count for all remaining patterns in G. The function Update_Patterns(…) 
performs this task. In particular, the bold edges enable several different 3 and 4-node 
patterns to be generated. The most favorable pattern is then selected for clustering, 
and the algorithm repeats again. The algorithm terminates when the best gain is less-
than-or-equal-to a user-specific parameter, Threshold; we set threshold to 1.  

Figure 5 (c) shows a second iteration of the algorithm. The resulting patterns 
subsume the patterns generated previously during the algorithm, yielding larger pat-
tern instances. At this point, no further patterns can be generated that occur more than 
once in the DFG, so the algorithm terminates. One of the two resulting pattern in-
stances is replaced with an echo instruction, which references the other instance as 
shown in Figure 5 (d). At least one instance of each uniquely identifiable pattern must 
be left in the program; otherwise, it simply couldn’t execute. For example, if an in-
stance existed elsewhere in the program, both instances could be replaced with echo 
instructions, as illustrated in Figure 5 (e). Ideally, the pattern that is left intact should 
reside in a portion of the program that executes frequently—namely a loop body. 
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3.2 Implications for Register Allocation 

The algorithm presented in the previous section identifies patters that occur 
throughout the compiler’s intermediate representation of the program; it does not, 
however, ensure that these patterns will be mapped to identical code sequences in the 
final program. In particular, the compiler must enforcing identical register usage 
among instances of identical patterns.  

A register allocator performs three primary functions: mapping live ranges to 
physical registers, inserting spill code, and coalescing redundant move instructions, 
effectively eliminating them. To the best of our knowledge, no existing register allo-
cation techniques maximize reuse of previously identified code fragments.   

To ensure pattern reuse, corresponding live ranges in instances of identical patterns 
must be mapped to the same physical register. Inserting spill code into a fragment 
eliminates all possibilities for its re-use, unless identical spill code is inserted into 
other instances of the same pattern. The same goes for coalescing: if a move instruc-
tion contained in one pattern instance is coalesced, then that pattern instance will no 
longer have the same topology as previously identical pattern instances—unless cor-
responding move instructions are coalesced in those pattern instances as well. Of 
course, inserting spill code and coalescing move instructions outside of reusable pro-
gram fragments is not problematic.  

At this point, it is not immediately clear how to best optimize a register allocator 
for code reuse. We suspect, for example, that strictly enforcing register assignment 
constraints for all identical pattern instances may lead to an inordinate amount of spill 
code inserted around pattern boundaries, which may lead to sub-optimal results in 
terms of code size. Similarly, enforcing all-or-none constraints for spill code insertion 
and coalescing within patterns may be problematic as well.  

Because of these problems, it may be necessary to instantiate several non-identical 
code sequences for each unique pattern; each instance must therefore be made identi-
cal to exactly one of these sequences. Alternatively, the best option may be to simply 
discard certain pattern instance, choosing not to replace them with echo instructions. 
This approach could alleviate the amount of spill code that is inserted if pattern re-use 
leads to inordinate register pressure in certain program locations.  

At this point, we have not implemented a register allocation scheme; this issue is 
sufficiently complicated to warrant a separate investigation, and is left as future work. 

3.3 Application to Procedural Abstraction 

It should be obvious to the reader that the algorithm described in Section 3.1 could 
easily be adapted to perform procedural abstraction. Pattern instances are replaced by 
procedure calls rather than echo instructions. Procedure calls, however, have addi-
tional overhead associated with them: parameter passing, stack frame allocation and 
deallocation, and saving and restoring register values to memory. This will entail a 
different approach to estimating the potential gain of each pattern, which must incor-
porate the number of inputs and outputs to each pattern as well as the number of 
nodes in the pattern. Since this work focuses on architectures supporting echo instruc-
tions, we leave this investigation as an open avenue for future work. 



4 Experimental Methodology and Results 

4.1 Motivation and Goals 

In this section, we evaluate the effectiveness of the instruction selection algorithm 
described in Section 3. Since we have not yet implemented a register allocation 
scheme, a complete evaluation of our compression technique is impossible. The re-
sults presented in this section therefore count the number of IR operations that have 
been subsumed by patterns; they do not reflect actual final code sizes. In particular, 
we cannot know, a priori, exactly how many move instructions will be coalesced by 
the register allocator; moreover, we cannot immediately determine how much spill 
code the allocator will introduce, or where it will be introduced. Finally, we cannot 
determine whether or not our pattern re-use will lead to the introduction of additional 
move instructions (or spill code) that the allocator would otherwise not have inserted.  

Instead, we decouple our evaluation of the instruction selection technique from the 
register allocator.  The purpose of the experiments presented here are twofold. First, 
we wish to show that the instruction selection algorithm is capable of achieving fa-
vorable compression under an ideal register allocator. This is necessary to justify a 
future foray into register allocation. Secondly, we recognize that our demands for 
pattern reuse may impede the register allocator’s ability to reduce code size by coa-
lescing move instructions. Admittedly, we cannot explore this tradeoff without a 
register allocator in place. To compensate, we measure the effectiveness of our in-
struction selection technique under both ideal and less-than-ideal assumptions regard-
ing the allocator.  

Ideally, we would like to compare the results of our technique with Lau et. al. [2]; 
unfortunately, this comparison is inappropriate at the present time. Our analysis has 
been integrated into a compiler, whereas Lau’s is built into Squeeze [5], a binary 
optimization tool. Squeeze performs many program transformations on its own in 
order to compress the resulting program. Lau’s baseline results used Squeeze to com-
press the program in absence of echo instructions. Because the back end of our com-
piler has not been completed, we cannot yet interface with a link-time optimizer such 
as Squeeze. Therefore, the transformations that yielded Lau’s baseline results are 
unavailable to us at the present time.  

4.2 Framework and Experimental Methodology 

We implemented our instruction selection algorithm into the Machine SUIF compiler 
framework [19]. Machine SUIF includes passes that target the Alpha and x86 archi-
tectures. We selected the Alpha as a target, primarily because Lau et. al. [2] did the 
same, and this will enable future comparisons between the two techniques. The Ma-
chine SUIF IR is a CFG, with basic blocks represented as lists of quadruples—similar 
to the IR used by Runeson [7].  We performed a dependence analysis on the instruc-
tion lists, and generated a DFG for each basic block. Instruction selection was per-
formed for the alpha target using the do_gen pass, provided with Machine SUIF. 
Following this pass, we applied our instruction selection algorithm.  



The Machine SUIF compiler considers only one source code file at a time. We ap-
ply the instruction selection algorithm to all DFGs in each input file, but we do not 
attempt to detect patterns across multiple files. Considering every DFG in an entire 
program at once would yield superior compression results; however, we believe that 
the results presented here are sufficient to justify our algorithmic contributions. 

Finally, we do not attempt to measure the performance overhead that arises due to 
echo instructions. Although we could have generated some preliminary estimates by 
using profiling to determine the execution frequency for each basic block, we believe 
that these numbers would be inaccurate. One side effect of compressing a program is 
that a greater portion of it can fit into cache at any given time, thereby reducing the 
miss rate [20]. This can often mitigate the performance penalty due to additional 
branching that arises due to compression. Profiling alone cannot experimentally cap-
ture these nuances; cycle-accurate simulation would be more appropriate. We cannot 
perform this type of simulation until the register allocator is complete.   

4.3 Approximating the Effects on Register Allocation 

Machine SUIF liberally sprinkles move instructions throughout its IR as it is con-
structed. An effective register allocator must aggressively coalesce these moves in 
order to compress the program. We performed experiments under two sets of assump-
tions: optimistic, and pessimistic. The optimistic model assumes that all move instruc-
tions will be coalesced by the allocator; the pessimistic model, in contrast, assumes 
that none are coalesced. In practice, most register allocators will coalesce the majority 
of move instructions, but certainly not all of them.  

The majority of graph coloring register allocators (e.g. Briggs [21] and George-
Appel [22]) coalesce as many move instructions as possible. We call these allocators 
Pessimistic Allocators, because they do not coalesce move instructions until it is 
provably safe to do so—in other words, no spill code will be inserted as a result. A 
recent Optimistic Allocator, developed by Park and Moon [23], reverses this para-
digm. Their allocator initially coalesces all move instructions. Following this, the 
optimistic allocator only inserts moves as an alternative to spill code.  

The pessimistic assumption approximates a lower bound on the size number of 
moves coalesced by the allocator; the optimistic assumption provides an upper bound. 
These bounds, however, do not include estimates of code size increases due to spill 
code insertion. If a live range existing in on pattern instance is spilled, we can safely 
spill the corresponding live range in all other instances of the same pattern, although 
this will likely hurt performance. More significantly, we cannot estimate whether 
move instructions will be inserted at pattern boundaries. Despite these inaccuracies, 
we believe that the experiments detailed in section 4.5 validate the effectiveness of 
our instruction selection technique.  

4.4 Benchmark Applications 

We selected a set of eight applications from the MediaBench [24] and MiBench [25] 
benchmark suites. These benchmarks are summarized in Table 1. 



 
 

Table 1. Summary of Benchmark Applications 
Benchmark Description 
ADPCM Adaptive Differential Pulse Code Modulation 
Blowfish Symmetric Block Cipher with Variable Key Length 
Epic Experimental Image Data Compression Utility 
G721 Voice Compression 
JPEG Image Compression and Decompression 
MPEG2 Dec MPEG2 Decoder 
MPEG2 Enc MPEG2 Encoder 
Pegwit Public Key Encryption and Authentication 

 
Upon inspecting the source code for several of these benchmarks, we observed that 
many were written in a coding style with loops manually unrolled. Loop unrolling 
exposes instruction-level parallelism to a processor, but at the expense of code size.  
An embedded system designer who wished to minimize code size would not unroll 
loops. To mimic this coding style, we rewrote the programs ourselves, which reduced 
both the size of the program and the size of certain basic blocks within the program. 
The latter, in turn, reduced the overall runtime of our compiler as well. 

4.4 Results and Elaboration 

The experimental results for our set of benchmarks under both pessimistic and opti-
mistic assumptions are shown in Table 2. The pessimistic results assume that the 
register allocator is unable to coalesce any move instructions. The optimistic results 
assume that all move instructions are coalesced, except for those used for parameter 
passing during procedure calls. The columns entitled Uncompressed and Compressed 
show the number of DFG operations in each benchmark before and after our instruc-
tion selection algorithm, which effectively compresses the program. Each move in-
struction that is coalesced reduces program size as well.  
Under pessimistic assumptions, our instruction selection technique the net code size 
reduction across all benchmarks was 36.25%; under optimistic assumptions, the net 
code size reduction was 25.00%. Taking pessimistic uncompressed code size as a 
baseline, compression under optimistic assumptions reduced net code size by 45.29%. 
Although the optimistic results yield a greater net reduction in code size than the 
pessimistic results, the fraction of the code size reduction attributable to instruction 
selection is considerably less for the optimistic results than the pessimistic results.  

For all applications other than APDCM—which is considerably smaller than 
every other benchmark—the compressed pessimistic results yield a smaller code size 
than the uncompressed optimistic results. If the opposite were true, then echo instruc-
tions might not be an appropriate form of compression; instead, focusing on coalesc-
ing as a code size reduction technique might have been a better strategy. Altogether, 
our results empirically verify the effectiveness of our instruction selection strategy.  



Table 2. Experimental Results showing the code size of each program before and 
after compression. The Pessimistic Results assume that the register allocator is unable 
to coalesce any move instructions; the Optimistic Results assume that all move in-
structions are coalesced 

Pessimistic Optimistic  
Benchmark Uncompressed Compressed Uncompressed Compressed 

ADPCM 
Blowfish 
Epic 
G721 
JPEG 
MPEG2 Dec. 
MPEG2 Enc. 
Pegwit 

1273 
5822 

11320 
4445 

83036 
18248 
24710 
17718 

954 
3137 
7459 
3067 

52992 
11939 
15925 
10720 

839 
3909 
7646 
3122 

61484 
13487 
18494 
12531 

764 
2515 
6070 
2527 

46342 
10328 
13510 
9082 

5. Conclusion 

This paper describes an instruction selection algorithm for compilers that target archi-
tectures featuring echo instructions. The instruction selection algorithm identifies 
replaces repeated patterns in the compiler’s IR with echo instructions, thereby com-
pressing the program. The instruction selection algorithm must be coupled with a 
register allocator to ensure identical register usage among isomorphic patterns. Under 
a set of pessimistic assumptions, our instruction selection algorithm reduced code size 
by 36.25% on average. A more realistic study, under more optimistic assumptions 
showed an average reduction in code size of 25.00%.  
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