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Abstract 
Dictionary compression mechanisms identify redundant 
sequences of instructions that occur in a program. The sequences 
are extracted and copied to a dictionary. Each sequence is then 
replaced with a codeword that acts as an index into the dictionary, 
thereby enabling decompression of the program at runtime. The 
problem of optimally organizing a dictionary consisting solely of 
redundant sequences in order to maximize compression has long 
been known to be NP-Complete [23]. This paper addresses the 
problem of dictionary construction when redundant code 
fragments are represented as Data Flow Graphs (DFGs) rather 
than linear sequences of instructions. Since there are generally 
multiple legal schedules for a given DFG G, a compiler must 
determine a schedule for G so that other DFGs that are subgraphs 
of G can reference some substring of G’s final code sequence. 
This reduces the size of the dictionary, and in turn, the size of the 
compressed program. Our experiments with 10 MediaBench [18] 
applications yielded reductions in dictionary size ranging from 
21.14% to 29.76% compared to a naïve approach. 

Categories and Subject Descriptors    C.3 [Special-Purpose and 
Application-Based Systems]: Real-time and embedded systems; 
D.3.4 [Processors]: Compilers 

General Terms   Algorithms, Performance, Design. 

Keywords (Dictionary) Compression, Scheduling, Echo 
Instructions 

1. Introduction 
Dictionary compression methods [19][21] identify and extract 
repeated sequences of instructions within a program. A single 
instance of each sequence is placed into a dictionary; all instances 
of the sequence in the program are replaced with a codeword that 
points into the dictionary. When a codeword is encountered 
during program execution, control is transferred to the dictionary 
and the sequence is executed; afterward, control is transferred to 
the instruction following the codeword in the original program.  

Compiler support for dictionary compression has mostly focused 
on identifying redundant code sequences in a post-compilation 
pass, often at link time. Little attention has been paid to the 
construction and layout of code within the dictionary, despite the 

fact that it has long been known that the problem is NP-Complete 
[23]. It is well known that two code sequences, one of which is a 
contiguous subsequence of the other, can share the same 
dictionary entry. For example, the sequence ABC, if entered into 
a dictionary, includes the contiguous subsequences AB and BC.  

This paper develops a compiler technique for laying out the code 
within the dictionary. A dynamic programming heuristic is 
presented to perform dictionary construction targeting embedded 
systems with Echo Instructions [10][17][3], an emerging 
dictionary compression technology that provides low-overhead 
decompression at runtime with minimal hardware cost. Echo 
instructions (or some variant thereof) are a likely candidate for 
inclusion in the next generation of embedded architectures due to 
their low cost and wide applicability. 

In our compiler, code sequences are represented as DFGs rather 
than sequences of instructions. This eliminates the initial/default 
schedule of each basic block in the program as a factor that may 
affect the quality of compression. Scheduling constraints for large 
DFGs are established in order to maximize the number of smaller 
DFGs that can reference the dictionary entry for the larger one.  

The paper is organized as follows. Section 2 discusses related 
work. Section 3 summarizes our technique for extracting identical 
code sequences along with extensions for dictionary organization. 
Section 4 details our dictionary construction algorithm. Section 5 
presents experimental results. Section 6 addresses limitations and 
future work. Section 7 concludes the paper.  

2. Related Work 
The benefits associated with executing compressed programs 
have been well-documented over the past fifteen years. 
Compressed programs reduce the silicon requirements for storing 
a program in an on-chip ROM in an embedded system; another 
notable benefit is reduced power consumption [2]; finally, 
performance increases may result from improved I-cache 
utilization [4][16]. Here, we focus on the most influential 
techniques from a historical perspective, and those that are most 
relevant to our work. 

2.1 Pre-Cache Decompression 
Pre-cache decompression places the decompression circuitry on 
the cache refill path. When an I-cache miss occurs, a compressed 
cache block is fetched from main memory, decompressed, and 
then loaded into the cache. The seminal work in this field was the 
Compressed Code RISC Processor (CCRP) [24][20]; IBM 
commercialized this approach with CodePack [14][19], a CCRP-
influenced decompressor for the PowerPC architecture.  
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2.2 Variable Bitwidth Instruction Formats 
By the early 1990s, RISC had emerged as the dominant paradigm 
for general purpose computing. RISC processors typically had a 
fixed 32-bit instruction format. 16-bit instruction formats—which 
sacrificed the number of addressable registers, and the bitwidth of 
immediate operands—were introduced to reduce code size. The 
number of raw instructions typically increased by 15-20%; 
however, overall code size was reduced significantly more. 
Commercial examples include Arm/Thumb [1] and MIPS16 [15].  

2.3 Procedural Abstraction 
Procedural abstraction replaces redundant code sequences with 
procedure calls. This requires no hardware support, but the 
benefits are limited by procedure call overhead—parameter 
passing, saving/restoring registers, allocating and deallocating the 
stack frame, etc. To date, the most widely recognized approaches 
for procedural abstraction are linear substring matching [11] 
coupled with register renaming [6][8][9], and local reordering of 
instructions [8][17], parameterization [7], and predication [17]. 
More recently, this optimization has been performed prior to 
register allocation using isomorphism or some variant thereof 
[22][3].   

De Sutter et al. [8] developed a set of abstraction techniques for 
programs written in C++, where redundancy may arise due to 
class inheritance and template instantiation. Basic blocks having a 
similar fingerprint are identified, and register renaming is applied 
to enhance the quality of procedural abstraction. De Sutter also 
reported an experiment with instruction rescheduling that yielded 
minimal effects on the quality of abstraction.    

2.4 Dictionary Compression 
The Call Dictionary (CALD) instruction [21] was an early 
hardware-supported implementation of dictionary compression. 
The dictionary is simply a list of instructions. Each sequence of 
instructions extracted by the compiler is inserted into the 
dictionary and replaced with a CALD instructions, which has the 
form CALD(Addr, N), where CALD is an opcode and Addr and 
N are fields. Addr is the address of the beginning of the code 
sequence as an offset from the beginning of the dictionary. To 
execute a CALD instruction, control is transferred to dictionary 
address ADDR, the next N instructions are executed, and then 
control is returned to the call point.   

Assuming a fixed 32-bit ISA, further compression can be 
achieved if the size of the CALD instruction is reduced to less 
than 32 bits (e.g., 8 or 16). Single instruction sequences can be 
compressed using the same basic dictionary mechanism [19]. 

Echo instructions [9][17] are similar to CALD instructions. 
Rather than storing instruction sequences externally, one instance 
of each is left inline in the program; all other instances refer to the 
inlined sequence. Control is transferred to memory location PC – 
Addr rather than treating Addr as an offset from the start of the 
dictionary. Echo instructions allow for dictionary entries to reside 
anywhere in the program. Unlike CALD instructions, dictionary 
entries are not likely to reside next to one another in memory. 

2.5 Parameterized Compression with DISE 
Dynamic Instruction Stream Editing (DISE) is a recent 
architectural innovation that offers a parameterized model for 

compression [7]. Recall that CALD and echo instructions require 
that code sequences have identical register usage; DISE 
eliminates this requirement by providing a local set of registers. 
Each call to a dictionary sequence under DISE must provide an 
explicit mapping from machine registers to local registers; in 
other words, register names are passed as parameters.  

Fig. 1 illustrates parameterized compression. R1...R6 are machine 
registers, and T1…T4 are local DISE registers. Two identical 
code sequences within a partial renaming of registers are shown 
on the left. On the right, an equivalent code sequence using local 
DISE registers is shown along with the mapping of machine 
registers onto DISE registers. The usage of R3 is identical in both 
sequences, so there is no need to replace it with a local DISE 
register. The advantage of parameterization is that the criteria for 
matching code sequences is less than for standard dictionary 
compression—identical register usage is no longer required; the 
disadvantage is that each call (to DISE) requires additional bits to 
specify the register mapping.  

Through DISE, a parameterized implementation of echo 
instructions is possible. The layout optimization described in this 
paper could be used with either parameterized or standard echo 
instructions.   

3. Dictionary Organization 
This section presents an overview of our technique for organizing 
dictionaries for echo instructions. Code sequences are represented 
as DFGs rather than linear lists of operations. Data dependencies 
within each DFG impose a partial ordering on the operations 
within each sequence. The dictionary layout must schedule the 
operations within each DFG in an order that minimizes the size of 
the dictionary. 

Fig. 2 shows two instruction sequences I1 and I2 represented as 
DFGs G1 and G2. G1 has two legal schedules: {ABC, BAC}; 
whereas G2 has only one: {AC}. Two dictionaries are shown: D1 
= BAC and D2 = ACABC. D1 is the preferable dictionary because 
it contains fewer instructions that D2. The reason that D1 is 
smaller is that AC is a substring of BAC. By selecting BAC as the 
schedule for G1, I2 can use the same dictionary entry as I1. 

3.1 Overview 
Here, we place the analysis and optimization techniques described 
in this paper into the context of a larger compiler framework 
which we are developing. This framework will provide compile-
time code compression, with specific optimizations targeting 

R1 ← R2 + R3 

R3 ← R4 – R5 

R4 ← R1 + R3 

R3 ← R2 – R6 

T1 ← T2 + R3 

R3 ← T3 – T4 

[T1:R1   T2:R2   T3:R4   T4:R5] 

[T1:R4   T2:R1   T3:R2   T4:R6] 

R1-R6 – Machine Registers   T1-T4 – DISE Registers 

Figure 1.  
Illustration of parameterized compression 
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architectures with (parameterized) echo instructions. The first step 
in this framework is to identify and extract repeated non-
overlapping computational patterns that occur in the compiler’s 
intermediate representation. To accomplish this, we have adopted 
a technique pioneered by Kastner et al. [13] and Brisk et al. [3] to 
identify isomorphic subgraphs that occur within a set of DFGs 
representing the basic blocks of a program. These identical DFG 
fragments will later be replaced with echo instructions.  
Register allocation tries to ensure that all instances of the same 
pattern occurring throughout the program have identical usage of 
registers. Enforcing this constraint ensures that a semantically 
equivalent program results when the patterns are replaced with 
echo instructions. The register allocation mechanism is beyond 
the scope of this paper. Between pattern identification and register 
allocation lies the topic of this paper – layout of the dictionary.  
As illustrated by Fig. 2, the subgraph relation—which was not 
addressed previously [3]—allows patterns that are subgraphs of 
one another to reference the same code sequence. This 
information will be provided to the register allocator so that it can 
properly enforce code reuse constraints among patterns and sub-
patterns. Henceforth, our compilation framework in the absence 
of dictionary layout optimization will be referred to as naïve.    

3.2  Problem Statement 
Let G = {G1, G2, …, Gn} be a set of uniquely identifiable patterns 
represented as DFGs. Let D be the dictionary that we intend to 
construct. Specifically, D = {D1, D2, …, Dm}, where Di, 1 < i < m, 
is called a dictionary entry. Specifically, Di = (Gi, Gi

*), where Gi 
= (Vi, Ei)∈G and Gi

*⊆G , such that every DFG Gj∈Gi
* can be 

scheduled to use the same code sequence as Gi. In other words, Di 
contains all of the DFGs whose code sequences will reference the 
same supersequence; for this to be legal, each DFG Gj must be 
isomorphic to some convex subgraph of Gi. In the final program 
layout, Di will be represented by a linear sequence Si of 
instructions that is a legal schedule for a pattern Gi.  
An ideal dictionary will satisfy the following two criteria: 

U
m

i
i GG

1

*

=

= , and     (1) 

∑
=

m

i
iV

1

||  is minimized    (2) 

Constraint (1) ensures that all DFGs are included in at least one 
dictionary entry. Constraint (2) attempts to minimize the size of 
the dictionary. In practice, (2) is treated as an objective function 
describing the quality of the solution rather than a constraint that 
must be met in order to guarantee the legality of a solution.  

3.3 Constructing the Subgraph Hierarchy 
Referring back to Fig. 2, dictionary D2 is chosen because G2 is a 
subgraph of G1 (denoted G2⊂G1). Unfortunately, the general 
problem of determining whether one graph is a subgraph of 
another (the well-known Subgraph Isomorphism Problem) is NP-
Complete [11]. Rather than solve this problem directly, we 
describe how to compute the relation in conjunction with pattern 
identification as described by Brisk [3].    

Brisk’s algorithm uses a technique called edge contraction to 
generate a set of DFGs that occur repeatedly throughout a 
program. Consider a DFG G = (V, E) and an edge (u, v)∈E. u 
and v are both assigned integer labels which represent their 
opcodes (e.g. ADD, MUL, etc.). A label can be computed for 
each edge as well. If many independent edges exist with the same 
labels as u and v, then all induced subgraphs ({u, v}, {(u, v)}) are 
isomorphic to one another, i.e. they could all be replaced with 
echo instructions. To model this action, the two vertices and edge 
are removed and replaced with a supernode (also called a 
template) that maintains the same connectivity to the rest of the 
graph as u and v. As the algorithm iterates, larger patterns are 
formed by combining adjacent nodes into templates in this 
fashion; additionally, two templates can be merged into a larger 
template. The interested reader is encouraged to consult papers by 
Kastner et al. [13] and Brisk et al. [3] for details.  

The sequence of operations that leads to the terminating set of 
templates can be tracked as the algorithm progresses. The two 
basic operations involved are adding a vertex to a template and 
merging two templates into one. We encapsulate this information 
into a data structure called the Subgraph Hierarchy (SH).  

Fig. 3 illustrates the information maintained in the SH. In (a), a 
MUL node is merged with template T1, which contains two ADD 
nodes; the resulting template is labeled T2. Assume that we have 
not yet encountered a template isomorphic to T2. Initially, the SH 
contains a vertex representing T1, and the mapping from the 
instance of T1 in the original DFG to the DAG in T1’s vertex in 
the SH. A new SH node must be added for T2. The mapping from 
the template in the DFG to the SH vertex is established via an 
isomorphism test performed during Brisk’s algorithm.  

The mapping from the instance of T1 in the original DFG is no 
longer needed, since T2 has replaced T1; however, if another 
instance of pattern T1 exists elsewhere in the program, then T1 and 
T2 may share the same code sequence in the dictionary. Therefore, 
it is useful to compute and maintain a mapping from the vertices 
of T1, the sub-pattern, onto the vertices of T2. 

Let f1 be the mapping from the instance of T1 in the DFG to the 
node representing T1 in the SH; define f2 similarly for T2. Let g12 : 
T1 → T2 be the mapping from vertices in the DFG representation 

A:    R1 ← R2 + R3 
C:    R7 ← R1 + R4 

I1 

I2 

Figure 2.  
The relationship between DFG scheduling 

and dictionary size 

A:    R1 ← R2 + R3 
B:    R4 ← R5 + R6 
C:    R7 ← R1 + R4 

R1 ← R2 + R3 

R4 ← R5 + R6 

R7 ← R1 + R4 

A

B

C

R1 ← R2 + R3 

R7 ← R1 + R4 

A

C

R4 ← R5 + R6 B 

R1 ← R2 + R3 

R7 ← R1 + R4 

A 

C 

D1 D2 

A 

C 
G2 

A B 

C 
G1 
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of T1 to a subset of those in T2. We can establish h12 : T1 → T2, the 
mapping between T1 → T2 in the SH, as follows: 

( )( )( )tfgfth 1
112212 )( −= , 1Tt∈    (3) 

In Fig. 3 (a), f1 and f2 are represented by dashed arrows from 
templates in the DFG to the SH; h12 is represented by the dotted 
arrows from T1 to T2 in the SH. The mapping g12 represents the 
implicit temporal relationship between the vertices of T1 and T2 in 
the DFG; it is not explicitly drawn. 

Fig. 3 (b) shows another example, where two templates are 
combined into a larger one. The fundamental principles are 
essentially the same as those underlying Fig. 3 (a).  

In conclusion, the purpose of the SH is twofold:  

(1) To maintain a single DFG to represent all instances of the 
same pattern that occur in the program (specifically, the mapping 
between each instance and the representative in the SH). 

(2) To maintain the subgraph relation between patterns in the SH. 

3.4 Scheduling Constraints and the Subgraph Relation 
Let Gi = (Vi, Ei) be a DFG. A cut Ci→j,k = (Vj, Vk), Vk = Vi-Vj, is a 
partition of the vertices of Vi into two cut sets, Vj and Vk. A cut 
edge e crosses Ci→j,k if one of its endpoints is in Vj and the other is 
in Vk. For a directed graph, a set of cut edges is defined as: 

( ) ( ){ }kkjjkjVV VvVvvvE
kj

∈∈= ,,,   (4) 

Ci→j,k is defined to be a convex cut if   

( ) φ=
jk VVE ,      (5) 

Next, suppose that we contract edge ei = (vj, vk), and let Gi be the 
resulting pattern. W.L.O.G assume that both vj, vk are templates 
represented by DFGs Gj and Gk. Then, Gi = (Vi, Ei), where 

kji VVV ∪= , and    (6) 

( )kj VVkji EEEE ,∪∪=    (7) 

The set of cut edges is maintained externally by the templates vj 
and vk; in our representation, the set of cut edges is a dynamic 
data structure accessible via either vj or vk. Let Ci→j,k = (Vj, Vk) be 
a convex cut of Gi. Let Sj and Sk be any legal topological 
orderings (schedules) of Gj and Gk respectively. Then a schedule 
Si→j,k can be constructed for Gi by concatenating Sj and Sk, 
denoted Si→j,k → SjSk. This reduces the size of the dictionary for 
these three patterns from 2|Vi| to |Vi|.  

In a DAG, sources and sinks are vertices of in- and out-degree 0 
respectively. To enforce Si→j,k as a partial ordering constraint on  
Gi, we introduce a set of separating edges, Ei→j,k = {(tj, sk) | 
tj∈sinks(Gj,) sk∈sources(Gk)}. Let Gi→j,k = (Vi, Ei∪ Ei→j,k) be 
called a separated DFG. Any topological sort of Gi→j,k ensures 
that all operations in Vj are scheduled before those in Vk.  

Theorem 1. Any schedule Si→j,k of Gi→j,k corresponds to a 
schedule Si → SjSk of Gi. 

Proof. Let Si→j,k be a legal schedule of Gi→j,k, and assume to the 
contrary that Si→j,k does not correspond to a schedule Si → SjSk of 
Gi. Then there exist two vertices, vj∈Vj, vk∈Vk, such that vk is 
scheduled before vj in Si→j,k. Let t∈Vj be a sink in Gj such that 
there is a path from vj to t, and let s∈Vk be a source in Gk such 
that there is a path from s to vk. Ei→j,k must therefore contain edge 
(t, s). Hence, there exists a path from vj to vk in Gi→j,k. Therefore vj 
must be scheduled prior to vk, a contradiction.          ⁪ 

3.5 A Grammar for Subgraph Hierarchies 
In the preceding section, we adopted the nomenclature of 
grammars, Si→j,k → SjSk, to represent  scheduling constraints that 
arise in our application domain. Here, we adopt the notation to 
represent the subgraph relation. A production Gi → GjGk indicates 
that Gj and Gk are subgraphs of Gi and that Ci→j,k is a convex cut 
of Gi. A set of productions P is called a Subgraph Hierarchy 
Grammar (SHG). Pi is defined to be the subset of P, where all 
grammars have Gi as the left-hand-side. Pi effectively represents 
all of the pairs of subgraphs that have been combined to form Gi 
during the execution of Brisk’s algorithm [3]. 

To construct the SHG, we apply one of four possible rules each 
time a new template is generated. Let vj and vk be vertices, and Tj 
and Tk be templates. Let ei be an edge that is contracted. Then 
productions are added to Pi based on the following set of rules: 

ei = (vj, vk)  ⇒   Pi ← Pi∪ {Gi → vjvk}  (8) 

ei = (vj, Tk)  ⇒   Pi ← Pi∪ {Gi → vjGk}  (9) 

ei = (Tj, vk)  ⇒   Pi ← Pi∪ {Gi → Gjvk}  (10) 

ei = (Tj, Tk)  ⇒   Pi ← Pi∪ {Gi → GjGk}  (11) 

In the context of the SHG, vj and vk are terminals (the opcodes of 
assembly instructions) and Gi, Gj, and Gk are non-terminals. There 
cannot be “recursive” productions of the form Suv→αSuvβ in P,s 
where α and β represent any (possible empty) string of terminals 
and/or non-terminals. Given a production Gi→GjGk, a legal 
schedule Si can be constructed by repeatedly substituting 

Figure 3.  
Illustration of subgraph hierarchy (SH) 

Construction via adding a node to a template 
(a) and merging two templates (b) 
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productions of the form Gj→… and Gk→… for Gj and Gk; this is 
repeated until all nonterminals are replaced with terminals. This is 
called a derivation. One derivation Si for Gi will eventually be 
selected as Gi’s dictionary entry. Determining an optimal 
schedule for every DFG in order to maximize pattern overlap is a 
complicated optimization problem, which is addressed in the 
sections that follow. 

3.6 Scheduling Constraints and Compatibility 
Any subset of productions Pi’⊆  Pi is defined to be compatible if 
a schedule Si’ exists, such that for each production Gi → 
Gj’Gk’∈Pi’, there exist schedules Sj’ and Sk’ of Gj’ and Gk’ 
respectively such that Si’ → Sj’Sk’; otherwise, Pi’ is incompatible. 

As an example, consider Fig. 4. A DFG G1 is shown in the upper 
left, along with four subgraphs G2, G3, G4, and G5. G1 can be 
formed by combining either G2 and G3 or G4 and G5. If G2 and G3 
are combined, the resulting schedule is S1→S2S3; likewise, 
combining G4 and G5 yields schedule S1→S4S5. Ideally, we would 
like to construct schedule S1 having S2, S3, S4, and S5 as 
substrings; however, this is impossible in this example. 

The sets of separating edges are E1→2,3 = {(B, D), (C, D)} and 
E1→4,5 = {(F, C)} for cuts (V2, V3) and (V4, V5) respectively. The 
separated DFGs, G1→2,3 and G1→4,5 formed by adding E1→2,3 and 
E1→4,5 respectively to G1 are shown on the bottom of Fig. 4, with 
non-redundant cut edges shown in bold. These graphs are both 
DAGs, so Theorem 1 ensures that any legal schedule of either 
satisfies the respective pattern overlap constraints.  

The graph G1→(2,3),(4,5) formed by adding both E1→2,3 and E1→4,5 to 
G1 is also shown in Fig. 4. G1→(2,3),(4,5) contains a cycle; therefore, 
no legal schedule S1→(2,3), (4,5) can be constructed for G1→(2,3),(4,5). 
Therefore, we provably cannot construct S1 having S2, S3, S4, and 
S5 as substrings. 

For the general case, let Gi be a DFG whose subgraphs are under 
consideration, and Let Pi be defined as above. Specifically, 

{ }nmpP
mii ≤≤= 1 , where    (12) 

mmm kjii GGGp →=     (13) 

Associated with each production 
mi

p is a cut
mm kjiC ,→  , where: 

( )
mmmm kjkji VVC ,, =→     (14) 

Let Ei→* be the Aggregate Set of Separating Edges for Gi, defined 
as follows: 

U
n

m
kjii mmm

EE
1

,
*

=
→=      (15) 

Define an Aggregate Separating Graph (ASG), *
iG , as follows: 

( )** , iiii EEVG ∪=     (16) 

The ASG simultaneously represents the scheduling constraints 
required to satisfy each production in Pi.  Theorem 2 establishes 
the relationship between the ASG and the compatibility of Pi. 

 
Theorem 2. The following four statements are equivalent. 

1. Pi is a compatible set of non-redundant productions.  

2. *
iG  is acyclic. 

3. The cuts 
mm kjiC ,→ of Pi can be ordered such that: 

niii VVV ⊂⊂⊂ ...
21

   (17)  

4. The cuts 
mm kjiC ,→ of Pi can be ordered such that  

njjj VVV ⊃⊃⊃ ...
21

   (18) 

Proof. 1→2. Let Pi be a compatible set of productions. Assume 
to the contrary that *

iG  contains a cycle C = <v1, v2, …, vx, v1>. 

Consider production 
mi

p corresponding to 
mm kjiC ,→ , a convex 

cut, as defined in Eqs. (13) and (14).  To satisfy this cut, there 
must exist two vertices 

mjj Vv ∈ and 
mkk Vv ∈ such that edge 

ei = (vj, vk) is included in C. To satisfy cycle C, there must exist 

vertices 
mjj Vv ∈' and 

mkk Vv ∈' such that ei’ = (vk’, vj’) is an 

edge in C. Observe that ( )mkmj VVi Ee ,∈ , and ( )mjmk VVi Ee ,
' ∈ . 

( ) 0, >
mjmk VVE  implies that 

mm kjiC ,→ is not a convex cut, 

contradicting the assumption that Pi is compatible. This is 
illustrated in Fig. 5 (a). 

2→3. Assume that *
iG  is acyclic. Assume to the contrary that 

productions 
xi

p  and 
yip  correspond to two cuts 

xx kjiC ,→ and 

yy kjiC ,→  such that 
yx jj VV ⊄ , 

xy jj VV ⊄ , and 
yx jj VV ≠ .  

Let u and v be vertices defined such that 
yx kj VVu ∩∈  and 

xy kj VVv ∩∈ . To satisfy 
xx kjiC ,→ , there must exist a sink 
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Illustrating the concept of incompatibility 
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xj
Vt∈ such that there is a path from u to t. Similarly, there must 

be a source 
xkVs∈ such that there is a path from s to v. Finally, 

observe that edge ( )
xxkjiEst →∈, . Therefore there is a path 

from u to v in *
iG . By an analogous argument for cut 

yy kjiC ,→ , 

a path from v to u can also be established, which contradicts the 
assumption that *

iG is acyclic. This is illustrated in Fig. 5 (b). 

 3→1. Define an order on the cuts of G such that (17) is satisfied. 
We prove this statement using induction on n = |Pi|. For the basis, 
suppose n = 1. Then Pi contains a single production, pi = 
Gi→GjGk, which corresponds to a convex cut (Vj, Vk). 
Consequently, Si→j,k → SjSk   is a legal schedule of Gi by Theorem 
1. Without loss of generality, assume that there exist a set of cuts, 
ordered such that 

njjj VVV ⊂⊂⊂ ...
21

 for n < |Pi|. For the 

induction step, let n = |Pi|. By the induction hypothesis, Eq. (17) 
and (18) are satisfied for { }

nii pP − , which is compatible. 

Now, consider cutsets, 
nn jj VV ⊂

−1
, and 

1

'
−

−=
nnn jjj VVV . 

Let '
nj

S be a schedule for the subgraph of Gi induced by '
nj

V . 

Therefore, we can construct a schedule '
1 nnn jjj SSS
−

→ , such 

that 
nnnn kjkji SSS →→ is a legal schedule for Gi.  

By the induction hypothesis, 
1−nj

S is a legal schedule that 

includes 
11

,...,
−njj SS as sub-schedules. This is illustrated in Fig. 

5 (c).   

3↔4. Assume that (17) holds but (18) does not. Then there must 
exist productions corresponding to cuts ),(

xx kj VV  and 

),(
yy kj VV  such that 

yx jj VV ⊂ and 
yx kk VV ⊂ . This leads to 

the contradiction (19); the converse yields contradiction (20): 

ikjkji VVVVVV
yyxx
=+<+=    (19) 

ikjkji VVVVVV
yyxx
=+>+=   (20) 

The case where 
yx jj VV = and 

yx kk VV =  is redundant.        ⁪ 

Theorem 2 establishes two criteria which we may use to 
determine whether a set of productions is compatible. In practice, 
we can not assume that an entire set of productions P1 will be 
compatible; instead, we focus on the problem of finding an 
optimal compatible subset of P1. 

3.7 A Production Compatibility Graph 
In this section, we introduce a data structure called a Production 
Compatibility Graph (PCG), a DAG that represents compatibility 
among the productions in P1. Our construction of the PCG is 
based on Criterion 3 from Theorem 2.  

Let Pi be defined as in Eqs. (12) and (13). Each 
production ii Pp

m
∈  describes the scheduling constraints 

including the subgraph relation between iG , 
mj

G , and 
mkG . A 

PCG for iG  is denoted ),( PCG
i

PCG
i

PCG
i EVG = , where each 

vertex PCG
ij Vv

m
∈  corresponds to 

schedule
mmmm kjkji SSS →→ ,  for iG . An edge 

PCG
ijj Evve

yx
∈= ),( if and only if the following criteria are 

satisfied: 

yx jj VV ⊂      (21) 

yzxz jjjj VVVV ⊂⊂∋¬∃    (22) 

Criterion (22) establishes that the subset relation is not trasitive—
that there is no other subset of  

yjV that is also a superset of 
xj

V . 

Lemma 1. PCG
iG is acyclic.  

Proof. Let ),,...,(
xyx jjj vvvc =  be a cycle in PCG

iG . If |c| 

= 2, then there is an edge ),(
xx jj vv  which is trivially redundant 

and unnecessary. If |c| > 2, then there exists 
xy jj vv ≠ such that: 

xyx jjj VVV ⊂⊂⊂⊂ ...... ,   (23)     

which is a contradiction.           ⁪ 

Figure 5.  
Illustrating the main concepts of the first 3 

steps in the proof of Theorem 2 

v1 
 

v2 

vj 

vk 

vx 

vk’ 

ei
 ei’ 

1−nj
V

nj
V  '

nj
V  

 

nj
S

'
1 nnn jjj SSS
−

→

(t, s) 

u 

v 

xj
V  

t 

s 

v 

u 
ykV  

yjV
t’ 

s’ 

(t’, s’)

(a) (b) 

(c) 

vj’ 

mj
V  

mkV  xkV  

1−nj
S

'
nj

S

110



Lemma 2. ),...,,(
1 yxx jjj vvvp
+

=  is a path in PCG
iG  if and 

only if 
yxx jjj VVV ,...,,

1+
are compatible. 

Proof. Follows immediately from (21) and (22) taken in 
conjunction with Criterion 3 in Theorem 2.          ⁪ 

Recall that a compatible subset of productions in P corresponds to 
a set of code sequences that can be embedded within schedule Si 
of Gi. By Lemma 2, any path in Gi

PCG is a compatible subset. 
Lemma 3 and Theorem 3 help us establish which compatible 
subset of P should be selected to optimize code size reduction. 

Lemma 3. The code size reduction attributable to every vertex 
PCG

ij Vv
m
∈  is iV . 

Proof. 
mj

v corresponds to cutset ),(, mmmm kjkji VVC =→ . 

mj
S and

mkS are schedules of
mj

G  and 
mkG  respectively.  By 

selecting schedule
mmmm kjkji SSS =→ , we eliminate the need to 

store dictionary entries for 
mj

G  and 
mkG . The corresponding 

reduction in dictionary size is given by 
mm kji VVV += .    ⁪ 

Theorem 3 summarizes this result.   

Theorem 3. The compatible subset Pmax of P1 that maximizes 
code size reduction corresponds to the path pmax of maximum 
length in Gi

PCG. 

Proof. Follows immediately from Lemmas 1, 2, and 3.         ⁪ 

Fig. 6 illustrates the construction of the PCG, for a DFG G1. Five 
pairs of convex cuts, (Vi, Vi+1) are shown for i = 2, 4, 6, 8, 10. A 
PCG, G1

PCG, is shown. Each vertex vi
PCG in G1

PCG corresponds to 
cut (Vi, Vi+1). G1

PCG contains no transitive edges as a consequence 
of criteria (21) and (22). 

4. Dictionary Construction via Dynamic 
Programming 
In this section, we present a dynamic programming algorithm that 
constructs a dictionary from a set of DFGs representing patterns 
generated by applying Brisk’s algorithm to the CDFG 
representation of a program. Pseudocode is shown in Fig. 7.  
The input to the algorithm is a set of DFGs G = {G1, G2, …, Gn} 
and an SH, represented as a DAG GSH = (VSH, ESH), where VSH = 
G and edge e = (Gi, Gj)∈ESH indicates that Gj is an immediate 
subgraph of Gi. This is a slightly different representation of the 
SH than was described in Section 3.2. The primary difference is 
that here, we are interested in only the immediate subgraph 
relation. The simplest way to view this construction of GSH is to 
add an edge (Gi, Gj) for each production Si→…Sj… in the SHG.   
Line 1 in Fig. 7 initializes an empty dictionary; the rest of the 
algorithm constructs the dictionary, which is returned in Line 14. 
The loop spanning Lines 2-13 performs the actual dictionary 
construction. Line 3 removes all sources and sinks in the SH that 
correspond to patterns that do not exist in the SH. All such sinks 
were consumed by larger templates during Brisk’s algorithm [3]. 

All such sources were considered, but not actually introduced. 
None of these patterns should be represented in the dictionary.  
The second step within the outer loop is to topologically sort GSH 
in Line 4. The inner loop spanning Lines 5-9 traverses GSH in 
reverse topological order—from sinks to sources. The outer loop 
terminates when all vertices have been removed from GSH. 
Let gain(Gi) represent the benefit associated with creating a 
dictionary entry for Gi. This gain must account for all of the 

Construct_Echo_Dictionary(  
 G = {G1, G2, …, Gn} : set of DFGs, 
 GSH = (VSH, ESH) : subgraph hierarchy 
) : Dictionary 
1. Dictionary : D ← initialize empty 

dictionary. 
2. While( |VSH| > 0 ) 
3.  Remove all unnecessary sources and 

sinks. 
4.  Topologically sort GSH 

5.  For each vertex vi∈VSH, taken  in 
reverse topological order 

6.   Let Gi be the DFG corresponding  
 to vi.  

7.   Propagate scheduling constraints 
 from each compatible sub-pattern 
 of Gi to Gi  

8.   Compute gain(Gi) 
9.  EndFor 

10.  Let Gmax be the source in GSH such that 
gain(Gmax) is maximum. 

11.  Recursively extract the compatible 
subgraph of GSH rooted at Gmax. 

12.  Add the extracted subgraph to D 
13. EndWhile 
14. Return D 

Figure 7.  
Dictionary construction heuristic 
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subgraphs Gj, Gk of Gi that will reference the eventual code 
sequence Si. gain(Gi) is computed in Line 8 of Fig. 7. A table of 
size O(n) stores gain(Gi) for every DFG in G. By traversing GSH 
in reverse topological order, gain(Gj) has already been computed 
for each successor (subgraph) Gj of Gi. The table therefore uses 
dynamic programming to recursively compute gain(Gi). The 
details of this computation are described in Section 4.1. The 
previous step in Line 7 is described in Section 4.2.  
The computation of gain(Gi) uses Theorem 3 to compute a 
compatible set of sub-patterns of Gi. Once this value is known for 
every pattern in GSH, a source Gmax that maximizes gain(Gi) is 
identified in Line 10. Line 11 removes all vertices from the PHG 
corresponding to patterns that will reference Gmax’s dictionary 
entry. Line 12 creates the actual dictionary entry. 
First, Gmax is removed from GSH. Next, each compatible sub-
pattern of Gmax, Gj, is also removed from GSH. Recursively, all 
compatible sub-patterns of Gj are removed too, etc. Let VSH

max be 
the set of patterns in GSH that will reference Gmax’s dictionary 
entry. The subgraph of GSH induced by VSH

max is removed from 
GSH and placed into the dictionary. Since all edges in the induced 
subgraph are compatible, a schedule for Gmax can be constructed 
that is compatible with all patterns in the induced subgraph, as 
discussed in Sections 3.6 and 3.7. The induced subgraph suffices 
as a dictionary entry for Gmax as well as all subsumed patterns.  

4.1 Computing gain(Gi) 
For pattern Gi, let bi = 1 if Gi is one of the patterns occurring in 
the final program; otherwise, bi = 0. Sources and sinks with bi = 0 
were removed in Line 3 of Fig. 7. Internal patterns are maintained 
to preserve the subgraph relation, which is transitive. 
To compute gain(Gi), we associate a gain with each production 
Gi→…, denoted gain(Gi→….). There are 4 cases to consider: 

ikji bvvGgain ⋅=→ 2)(    (24) 

)(||)( kiikji GgainVbGvGgain +⋅=→  (25) 

)(||)( jiikji GgainVbvGGgain +⋅=→  (26) 

||)( iikji VbGGGgain ⋅=→    (27) 

 )()( kj GgainGgain ++    

For each production, 
mmmm kjkji GGG →→ , , the quantity 

)( , mmmm kjkji GGGgain →→ is assigned as a weight of the 

corresponding vertex PCG
ij Vv

m
∈ . A locally optimal subset of 

productions for pattern Gi can be constructed by finding the path 

of maximal weight in PCG
iG . Let Pi,max be the set of vertices in 

PCG
iG contained on the maximum weight path. Let gain(Pi,max)  

be the sum of the gains of the productions associated with each 
vertex contained in Pi,max. Finally, let gain(Gi) be the total gain 
associated with pattern Gi and all of its sub-patterns. Then: 

||)()( max, iiii VbPgainGgain ⋅+=   (28) 

 

4.2  Propagating Scheduling Constraints 
Consider DFGs G1, G2, G3, and G4 shown in Fig. 8 (a). GSH is 
shown in Fig. 8 (b). Observe that G3⊂  G2 despite the fact that 
there is no edge (G2, G3) in GSH. This simply indicates that no 
instance of G2 in the program was formed by combining an 
instance of G3 with a vertex labeled B. Assume bi = 1, 1 < i < 4. 
Now, let us compute gain(Gi), for 1 < i < 4.  Trivially, gain(G3) = 
gain(G4) = 2. G4 is the only compatible sub-pattern of G2, as 
illustrated in Fig. 8 (c). Consequently, gain(G2) = 5.  
Now, let us process G1, ignoring, for the moment, the fact that G4 
has been selected as a compatible sub-pattern of G2. As illustrated 
by Fig. 8 (d), G2 and G3 are both compatible sub-patterns of G1. 
Now, recall that G4 is a sub-pattern of G2; by transitivity, G4 is 
also a sub-pattern of G1. G4, however, is not compatible with G3, 
as illustrated by Fig. 8 (e). The dynamic programming algorithm 
has already selected G4, as a compatible sub-pattern of G2. 
Therefore, G2 and G3 are not compatible sub-patterns of G1. 
Selecting G4 as a compatible sub-pattern of G2 creates a 
scheduling constraint—the schedule of G2 must place vertex A 
prior to the vertices in G4. To represent this constraint, the 
separating edge (A, B) must be added to G2. The resulting DFG, 
G2’, is shown in Fig. 8 (f). G2’ and G3 are trivially incompatible 
with G1. Since gain(G2) > gain(G3), G2 is selected as the only 
compatible sub-pattern of G1; consequently, gain(G1) = 9.  
The separating edges corresponding to each compatible set of 
sub-patterns must be added to each DFG in the hierarchy as it is 
processed. Otherwise, scheduling decisions made during the early 
stages of dynamic programming will not percolate to the top of 
GSH. 
The dictionary entry for G1 will cover 9 operations—4 from G1, 3 
from G2, and 2 from G4. A separate dictionary entry will be 
constructed for G3. The final dictionary will contain 6 operations. 

5. Experimental Results 
We have integrated our dictionary construction algorithm into a 
compression framework [3] within the Machine SUIF compiler 
[25]. The first step of the back of the compiler is to instruction 
selection. Machine SUIF is a retargetable compiler that provides 
back end support for the Alpha, x86, and Itanium architectures. 

Figure 8  
Illustrating the propagation of scheduling 

constraints while traversing GSH 
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Following the lead of Lau et al. [17] and Brisk et al. [3], we 
targeted a version of the Alpha architecture that has been 
modified to support echo instructions. 
We used an isomorphic pattern generation algorithm described by 
Brisk [3] to identified recurring patterns within the compiler’s 
intermediate representation. We modified the algorithm so that it 
built the PHG and performs the dictionary construction algorithm 
described in Sections 3 and 4 of this paper.  

5.1 Benchmarks 
Code compression is a topic that is primarily of interest to 
embedded system designers. With that in mind, we selected a set 
of 10 benchmarks from the MediaBench application suite [18]: 
Epic, G.721, GSM, JPEG, MPEG2 Decoder and Encoder, Pegwit, 
PGP, RSA (within PGP), and Rasta. Adpcm was not compiled 
because it is notably smaller than the others and exhibits 
considerable redundancy. Ghostscript and Mesa are larger than 
the others, and are thus less representative of embedded 
applications. 
The source code files for each benchmark were linked using the 
link_suif pass. This required manual intervention to prevent 
namespace collisions. To reduce overall code size, we rolled the 
unrolled loops that occurred in several of the benchmarks. 

5.2 Dictionary Construction Results 
The majority of dictionary compression techniques (e.g., Lefurgy 
[19]) do not reduce the dictionary size using substring matching. 
They simply place one instance of each pattern in the 
dictionary—the naïve approach. Fig. 9 compares the sizes (in 
terms of operations) of the dictionaries constructed by the naïve 
and heuristic methods. The reductions in dictionary sizes ranged 
from 21.14% (JPEG) to 29.76% (Epic). Across all benchmarks, 
the number of operations in all dictionaries was reduced from 
26629 to 20174, a reduction of 24.24%.  
Table I lists three quantities for each benchmark: total 
compilation time, time spent during dictionary construction, and 
the percentage of time spent during dictionary construction; the 
third quantity can easily be derived from the first two. Because 
Brisk’s algorithm [3] relies on repeated calls to an exact 
isomorphism algorithm, the time spent constructing the dictionary 
is small relative to the entire compilation process. 
Compilation times ranged from 2.78 seconds (G.721) to 363 
seconds (JPEG). The amount of time spent on dictionary 
construction ranged from 0.194 seconds (G.721) to 15.7 seconds 
(JPEG). As a percentage of compilation time, dictionary 
construction ranged from 2.38% (GSM) to 6.98% (G.721).  

5.3 Discussion 
Our intention was to compare the heuristic technique to a similar 
algorithm based on substring matching; however, to use substring 
matching, we must first schedule each DFG before constructing 
the dictionary. There may be many different schedules for each 
DFG—an exponential number per DFG in the worst case.  
Suppose that we have n DFGs, and there are k possible schedules 
for each. Then the total number of possible schedules for all 
DFGs is nk.  As illustrated by Fig. 2, the quality of the results of 
substring matching depends on how the DFGs are scheduled 
relative to one another.  
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The problem of determining the best schedule for each DFG for 
dictionary compression must be solved prior to substring 
matching. The heuristic presented here solves this scheduling 
problem sub-optimally. The use of graph isomorphism during 
PHG construction eliminates the need for substring matching. 
Consequently, the two problems are identical.  
De Sutter et al. [8] reported marginal results of an optimization 
strategy that attempted to minimize differences in instruction 
schedules in order to maximize the code size reductions obtained 
by a substring matching/register renaming technique. We 
observed that up to 40% of the patterns found by Brisk’s 
algorithm across all benchmarks did not occur contiguously in the 
Machine SUIF CFG, where basic blocks are lists of instructions. 
We attribute this discrepancy to two factors. First, De Sutter’s 
optimization was performed at link-time, after a compiler 
scheduled the code using a deterministic heuristic. Secondly, De 

Benchmark Total (sec) Dictionary (sec) (%) 
Epic 
G.721 
GSM 
JPEG 
MPEG2 Dec 
MPEG2 Enc 
Pegwit 
PGP 
PGP (RSA) 
Rasta 

10.3 
2.78 
34.3 
363 
33.1 
66.9 
33.8 
201 
9.36 
18.4 

0.528 
0.194 
0.816 
15.7 
1.31 
1.98 
1.10 
5.62 

0.516 
0.866 

5.13 
6.98 
2.38 
4.33 
3.96 
2.96 
3.25 
2.80 
5.51 
4.70 

Table I.  
Compilation and dictionary construction time 

(seconds, %) for the 10 benchmarks 

Figure 9.  
Dictionary construction results 

113



Sutter’s benchmarks were written in C++, where considerable 
redundancy occurred due to template instantiation and 
inheritance. The repeated code fragments, once again, are likely 
to be initialized to identical default schedules when the 
intermediate representation is first constructed. All Mediabench 
applications, in contrast, are written in C.    
Finally, De Sutter replaced redundant code with procedure calls, 
whereas we are targeting a system with echo instructions. An 
echo instruction encodes the number of dictionary instructions to 
execute in one of its fields; a procedure terminates upon executing 
a return instruction. Under this model, a return instruction must 
terminate the substring. This return instruction would then 
preempt the superstring—incorrectly, unless the substring 
matches the terminating characters of the superstring.  

6. Future Work 
The dictionary construction method presented here is specific to 
echo instructions [9][17][3]. The technique could also be used for 
CALD instructions [21] and DISE decompression [7]. These  two 
technologies offer opportunities for dictionary compression in 
excess of echo instructions. As an example, consider three code 
sequences AB, BC, and CD. A dictionary entry ABCD could be 
constructed that allows BC to span two the respective entries for 
AB and CD. Observe that BCis not a substring (or a subgraph in a 
DFG representation) of AB or BC. Since patterns AB and CD 
arunlikely to occur contiguously in the program, three separate 
entries would be needed for a dictionary using echo instructions.  

7. Conclusion 
We have developed a theoretical model for the problem of 
constructing a dictionary for a set of redundant code sequences 
represented as DFGs. This approach differs from post-compilation 
analyses that use linear substring matching to construct a 
dictionary. To solve this problem, we introduce an efficient 
dynamic programming heuristic that performed dictionary 
construction. Our experiments with 10 MediaBench applications 
yielded reductions in dictionary size ranging from 21.14% to 
29.76% relative to naïve methods.  
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