
A Dictionary Construction Technique for Code Compression Systems
with Echo Instructions

Philip Brisk Jamie Macbeth Ani Nahapetian Majid Sarrafzadeh
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095

Abstract
Dictionary compression mechanisms identify redundant
sequences of instructions that occur in a program. The sequences
are extracted and copied to a dictionary. Each sequence is then
replaced with a codeword that acts as an index into the dictionary,
thereby enabling decompression of the program at runtime. The
problem of optimally organizing a dictionary consisting solely of
redundant sequences in order to maximize compression has long
been known to be NP-Complete [23]. This paper addresses the
problem of dictionary construction when redundant code
fragments are represented as Data Flow Graphs (DFGs) rather
than linear sequences of instructions. Since there are generally
multiple legal schedules for a given DFG G, a compiler must
determine a schedule for G so that other DFGs that are subgraphs
of G can reference some substring of G’s final code sequence.
This reduces the size of the dictionary, and in turn, the size of the
compressed program. Our experiments with 10 MediaBench [18]
applications yielded reductions in dictionary size ranging from
21.14% to 29.76% compared to a naïve approach.

Categories and Subject Descriptors C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded systems;
D.3.4 [Processors]: Compilers

General Terms Algorithms, Performance, Design.

Keywords (Dictionary) Compression, Scheduling, Echo
Instructions

1. Introduction
Dictionary compression methods [19][21] identify and extract
repeated sequences of instructions within a program. A single
instance of each sequence is placed into a dictionary; all instances
of the sequence in the program are replaced with a codeword that
points into the dictionary. When a codeword is encountered
during program execution, control is transferred to the dictionary
and the sequence is executed; afterward, control is transferred to
the instruction following the codeword in the original program.

Compiler support for dictionary compression has mostly focused
on identifying redundant code sequences in a post-compilation
pass, often at link time. Little attention has been paid to the
construction and layout of code within the dictionary, despite the

fact that it has long been known that the problem is NP-Complete
[23]. It is well known that two code sequences, one of which is a
contiguous subsequence of the other, can share the same
dictionary entry. For example, the sequence ABC, if entered into
a dictionary, includes the contiguous subsequences AB and BC.

This paper develops a compiler technique for laying out the code
within the dictionary. A dynamic programming heuristic is
presented to perform dictionary construction targeting embedded
systems with Echo Instructions [10][17][3], an emerging
dictionary compression technology that provides low-overhead
decompression at runtime with minimal hardware cost. Echo
instructions (or some variant thereof) are a likely candidate for
inclusion in the next generation of embedded architectures due to
their low cost and wide applicability.

In our compiler, code sequences are represented as DFGs rather
than sequences of instructions. This eliminates the initial/default
schedule of each basic block in the program as a factor that may
affect the quality of compression. Scheduling constraints for large
DFGs are established in order to maximize the number of smaller
DFGs that can reference the dictionary entry for the larger one.

The paper is organized as follows. Section 2 discusses related
work. Section 3 summarizes our technique for extracting identical
code sequences along with extensions for dictionary organization.
Section 4 details our dictionary construction algorithm. Section 5
presents experimental results. Section 6 addresses limitations and
future work. Section 7 concludes the paper.

2. Related Work
The benefits associated with executing compressed programs
have been well-documented over the past fifteen years.
Compressed programs reduce the silicon requirements for storing
a program in an on-chip ROM in an embedded system; another
notable benefit is reduced power consumption [2]; finally,
performance increases may result from improved I-cache
utilization [4][16]. Here, we focus on the most influential
techniques from a historical perspective, and those that are most
relevant to our work.

2.1 Pre-Cache Decompression
Pre-cache decompression places the decompression circuitry on
the cache refill path. When an I-cache miss occurs, a compressed
cache block is fetched from main memory, decompressed, and
then loaded into the cache. The seminal work in this field was the
Compressed Code RISC Processor (CCRP) [24][20]; IBM
commercialized this approach with CodePack [14][19], a CCRP-
influenced decompressor for the PowerPC architecture.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
LCTES’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-018-3/05/0006…$5.00.

105

2.2 Variable Bitwidth Instruction Formats
By the early 1990s, RISC had emerged as the dominant paradigm
for general purpose computing. RISC processors typically had a
fixed 32-bit instruction format. 16-bit instruction formats—which
sacrificed the number of addressable registers, and the bitwidth of
immediate operands—were introduced to reduce code size. The
number of raw instructions typically increased by 15-20%;
however, overall code size was reduced significantly more.
Commercial examples include Arm/Thumb [1] and MIPS16 [15].

2.3 Procedural Abstraction
Procedural abstraction replaces redundant code sequences with
procedure calls. This requires no hardware support, but the
benefits are limited by procedure call overhead—parameter
passing, saving/restoring registers, allocating and deallocating the
stack frame, etc. To date, the most widely recognized approaches
for procedural abstraction are linear substring matching [11]
coupled with register renaming [6][8][9], and local reordering of
instructions [8][17], parameterization [7], and predication [17].
More recently, this optimization has been performed prior to
register allocation using isomorphism or some variant thereof
[22][3].

De Sutter et al. [8] developed a set of abstraction techniques for
programs written in C++, where redundancy may arise due to
class inheritance and template instantiation. Basic blocks having a
similar fingerprint are identified, and register renaming is applied
to enhance the quality of procedural abstraction. De Sutter also
reported an experiment with instruction rescheduling that yielded
minimal effects on the quality of abstraction.

2.4 Dictionary Compression
The Call Dictionary (CALD) instruction [21] was an early
hardware-supported implementation of dictionary compression.
The dictionary is simply a list of instructions. Each sequence of
instructions extracted by the compiler is inserted into the
dictionary and replaced with a CALD instructions, which has the
form CALD(Addr, N), where CALD is an opcode and Addr and
N are fields. Addr is the address of the beginning of the code
sequence as an offset from the beginning of the dictionary. To
execute a CALD instruction, control is transferred to dictionary
address ADDR, the next N instructions are executed, and then
control is returned to the call point.

Assuming a fixed 32-bit ISA, further compression can be
achieved if the size of the CALD instruction is reduced to less
than 32 bits (e.g., 8 or 16). Single instruction sequences can be
compressed using the same basic dictionary mechanism [19].

Echo instructions [9][17] are similar to CALD instructions.
Rather than storing instruction sequences externally, one instance
of each is left inline in the program; all other instances refer to the
inlined sequence. Control is transferred to memory location PC –
Addr rather than treating Addr as an offset from the start of the
dictionary. Echo instructions allow for dictionary entries to reside
anywhere in the program. Unlike CALD instructions, dictionary
entries are not likely to reside next to one another in memory.

2.5 Parameterized Compression with DISE
Dynamic Instruction Stream Editing (DISE) is a recent
architectural innovation that offers a parameterized model for

compression [7]. Recall that CALD and echo instructions require
that code sequences have identical register usage; DISE
eliminates this requirement by providing a local set of registers.
Each call to a dictionary sequence under DISE must provide an
explicit mapping from machine registers to local registers; in
other words, register names are passed as parameters.

Fig. 1 illustrates parameterized compression. R1...R6 are machine
registers, and T1…T4 are local DISE registers. Two identical
code sequences within a partial renaming of registers are shown
on the left. On the right, an equivalent code sequence using local
DISE registers is shown along with the mapping of machine
registers onto DISE registers. The usage of R3 is identical in both
sequences, so there is no need to replace it with a local DISE
register. The advantage of parameterization is that the criteria for
matching code sequences is less than for standard dictionary
compression—identical register usage is no longer required; the
disadvantage is that each call (to DISE) requires additional bits to
specify the register mapping.

Through DISE, a parameterized implementation of echo
instructions is possible. The layout optimization described in this
paper could be used with either parameterized or standard echo
instructions.

3. Dictionary Organization
This section presents an overview of our technique for organizing
dictionaries for echo instructions. Code sequences are represented
as DFGs rather than linear lists of operations. Data dependencies
within each DFG impose a partial ordering on the operations
within each sequence. The dictionary layout must schedule the
operations within each DFG in an order that minimizes the size of
the dictionary.

Fig. 2 shows two instruction sequences I1 and I2 represented as
DFGs G1 and G2. G1 has two legal schedules: {ABC, BAC};
whereas G2 has only one: {AC}. Two dictionaries are shown: D1
= BAC and D2 = ACABC. D1 is the preferable dictionary because
it contains fewer instructions that D2. The reason that D1 is
smaller is that AC is a substring of BAC. By selecting BAC as the
schedule for G1, I2 can use the same dictionary entry as I1.

3.1 Overview
Here, we place the analysis and optimization techniques described
in this paper into the context of a larger compiler framework
which we are developing. This framework will provide compile-
time code compression, with specific optimizations targeting

R1 ← R2 + R3

R3 ← R4 – R5

R4 ← R1 + R3

R3 ← R2 – R6

T1 ← T2 + R3

R3 ← T3 – T4

[T1:R1 T2:R2 T3:R4 T4:R5]

[T1:R4 T2:R1 T3:R2 T4:R6]

R1-R6 – Machine Registers T1-T4 – DISE Registers

Figure 1.
Illustration of parameterized compression

106

architectures with (parameterized) echo instructions. The first step
in this framework is to identify and extract repeated non-
overlapping computational patterns that occur in the compiler’s
intermediate representation. To accomplish this, we have adopted
a technique pioneered by Kastner et al. [13] and Brisk et al. [3] to
identify isomorphic subgraphs that occur within a set of DFGs
representing the basic blocks of a program. These identical DFG
fragments will later be replaced with echo instructions.
Register allocation tries to ensure that all instances of the same
pattern occurring throughout the program have identical usage of
registers. Enforcing this constraint ensures that a semantically
equivalent program results when the patterns are replaced with
echo instructions. The register allocation mechanism is beyond
the scope of this paper. Between pattern identification and register
allocation lies the topic of this paper – layout of the dictionary.
As illustrated by Fig. 2, the subgraph relation—which was not
addressed previously [3]—allows patterns that are subgraphs of
one another to reference the same code sequence. This
information will be provided to the register allocator so that it can
properly enforce code reuse constraints among patterns and sub-
patterns. Henceforth, our compilation framework in the absence
of dictionary layout optimization will be referred to as naïve.

3.2 Problem Statement
Let G = {G1, G2, …, Gn} be a set of uniquely identifiable patterns
represented as DFGs. Let D be the dictionary that we intend to
construct. Specifically, D = {D1, D2, …, Dm}, where Di, 1 < i < m,
is called a dictionary entry. Specifically, Di = (Gi, Gi

*), where Gi
= (Vi, Ei)∈G and Gi

*⊆G , such that every DFG Gj∈Gi
* can be

scheduled to use the same code sequence as Gi. In other words, Di
contains all of the DFGs whose code sequences will reference the
same supersequence; for this to be legal, each DFG Gj must be
isomorphic to some convex subgraph of Gi. In the final program
layout, Di will be represented by a linear sequence Si of
instructions that is a legal schedule for a pattern Gi.
An ideal dictionary will satisfy the following two criteria:

U
m

i
i GG

1

*

=

= , and (1)

∑
=

m

i
iV

1

|| is minimized (2)

Constraint (1) ensures that all DFGs are included in at least one
dictionary entry. Constraint (2) attempts to minimize the size of
the dictionary. In practice, (2) is treated as an objective function
describing the quality of the solution rather than a constraint that
must be met in order to guarantee the legality of a solution.

3.3 Constructing the Subgraph Hierarchy
Referring back to Fig. 2, dictionary D2 is chosen because G2 is a
subgraph of G1 (denoted G2⊂G1). Unfortunately, the general
problem of determining whether one graph is a subgraph of
another (the well-known Subgraph Isomorphism Problem) is NP-
Complete [11]. Rather than solve this problem directly, we
describe how to compute the relation in conjunction with pattern
identification as described by Brisk [3].

Brisk’s algorithm uses a technique called edge contraction to
generate a set of DFGs that occur repeatedly throughout a
program. Consider a DFG G = (V, E) and an edge (u, v)∈E. u
and v are both assigned integer labels which represent their
opcodes (e.g. ADD, MUL, etc.). A label can be computed for
each edge as well. If many independent edges exist with the same
labels as u and v, then all induced subgraphs ({u, v}, {(u, v)}) are
isomorphic to one another, i.e. they could all be replaced with
echo instructions. To model this action, the two vertices and edge
are removed and replaced with a supernode (also called a
template) that maintains the same connectivity to the rest of the
graph as u and v. As the algorithm iterates, larger patterns are
formed by combining adjacent nodes into templates in this
fashion; additionally, two templates can be merged into a larger
template. The interested reader is encouraged to consult papers by
Kastner et al. [13] and Brisk et al. [3] for details.

The sequence of operations that leads to the terminating set of
templates can be tracked as the algorithm progresses. The two
basic operations involved are adding a vertex to a template and
merging two templates into one. We encapsulate this information
into a data structure called the Subgraph Hierarchy (SH).

Fig. 3 illustrates the information maintained in the SH. In (a), a
MUL node is merged with template T1, which contains two ADD
nodes; the resulting template is labeled T2. Assume that we have
not yet encountered a template isomorphic to T2. Initially, the SH
contains a vertex representing T1, and the mapping from the
instance of T1 in the original DFG to the DAG in T1’s vertex in
the SH. A new SH node must be added for T2. The mapping from
the template in the DFG to the SH vertex is established via an
isomorphism test performed during Brisk’s algorithm.

The mapping from the instance of T1 in the original DFG is no
longer needed, since T2 has replaced T1; however, if another
instance of pattern T1 exists elsewhere in the program, then T1 and
T2 may share the same code sequence in the dictionary. Therefore,
it is useful to compute and maintain a mapping from the vertices
of T1, the sub-pattern, onto the vertices of T2.

Let f1 be the mapping from the instance of T1 in the DFG to the
node representing T1 in the SH; define f2 similarly for T2. Let g12 :
T1 → T2 be the mapping from vertices in the DFG representation

A: R1 ← R2 + R3
C: R7 ← R1 + R4

I1

I2

Figure 2.
The relationship between DFG scheduling

and dictionary size

A: R1 ← R2 + R3
B: R4 ← R5 + R6
C: R7 ← R1 + R4

R1 ← R2 + R3

R4 ← R5 + R6

R7 ← R1 + R4

A

B

C

R1 ← R2 + R3

R7 ← R1 + R4

A

C

R4 ← R5 + R6 B

R1 ← R2 + R3

R7 ← R1 + R4

A

C

D1 D2

A

C
G2

A B

C
G1

107

of T1 to a subset of those in T2. We can establish h12 : T1 → T2, the
mapping between T1 → T2 in the SH, as follows:

()()()tfgfth 1
112212)(−= , 1Tt∈ (3)

In Fig. 3 (a), f1 and f2 are represented by dashed arrows from
templates in the DFG to the SH; h12 is represented by the dotted
arrows from T1 to T2 in the SH. The mapping g12 represents the
implicit temporal relationship between the vertices of T1 and T2 in
the DFG; it is not explicitly drawn.

Fig. 3 (b) shows another example, where two templates are
combined into a larger one. The fundamental principles are
essentially the same as those underlying Fig. 3 (a).

In conclusion, the purpose of the SH is twofold:

(1) To maintain a single DFG to represent all instances of the
same pattern that occur in the program (specifically, the mapping
between each instance and the representative in the SH).

(2) To maintain the subgraph relation between patterns in the SH.

3.4 Scheduling Constraints and the Subgraph Relation
Let Gi = (Vi, Ei) be a DFG. A cut Ci→j,k = (Vj, Vk), Vk = Vi-Vj, is a
partition of the vertices of Vi into two cut sets, Vj and Vk. A cut
edge e crosses Ci→j,k if one of its endpoints is in Vj and the other is
in Vk. For a directed graph, a set of cut edges is defined as:

() (){ }kkjjkjVV VvVvvvE
kj

∈∈= ,,, (4)

Ci→j,k is defined to be a convex cut if

() φ=
jk VVE , (5)

Next, suppose that we contract edge ei = (vj, vk), and let Gi be the
resulting pattern. W.L.O.G assume that both vj, vk are templates
represented by DFGs Gj and Gk. Then, Gi = (Vi, Ei), where

kji VVV ∪= , and (6)

()kj VVkji EEEE ,∪∪= (7)

The set of cut edges is maintained externally by the templates vj
and vk; in our representation, the set of cut edges is a dynamic
data structure accessible via either vj or vk. Let Ci→j,k = (Vj, Vk) be
a convex cut of Gi. Let Sj and Sk be any legal topological
orderings (schedules) of Gj and Gk respectively. Then a schedule
Si→j,k can be constructed for Gi by concatenating Sj and Sk,
denoted Si→j,k → SjSk. This reduces the size of the dictionary for
these three patterns from 2|Vi| to |Vi|.

In a DAG, sources and sinks are vertices of in- and out-degree 0
respectively. To enforce Si→j,k as a partial ordering constraint on
Gi, we introduce a set of separating edges, Ei→j,k = {(tj, sk) |
tj∈sinks(Gj,) sk∈sources(Gk)}. Let Gi→j,k = (Vi, Ei∪ Ei→j,k) be
called a separated DFG. Any topological sort of Gi→j,k ensures
that all operations in Vj are scheduled before those in Vk.

Theorem 1. Any schedule Si→j,k of Gi→j,k corresponds to a
schedule Si → SjSk of Gi.

Proof. Let Si→j,k be a legal schedule of Gi→j,k, and assume to the
contrary that Si→j,k does not correspond to a schedule Si → SjSk of
Gi. Then there exist two vertices, vj∈Vj, vk∈Vk, such that vk is
scheduled before vj in Si→j,k. Let t∈Vj be a sink in Gj such that
there is a path from vj to t, and let s∈Vk be a source in Gk such
that there is a path from s to vk. Ei→j,k must therefore contain edge
(t, s). Hence, there exists a path from vj to vk in Gi→j,k. Therefore vj
must be scheduled prior to vk, a contradiction. ⁪

3.5 A Grammar for Subgraph Hierarchies
In the preceding section, we adopted the nomenclature of
grammars, Si→j,k → SjSk, to represent scheduling constraints that
arise in our application domain. Here, we adopt the notation to
represent the subgraph relation. A production Gi → GjGk indicates
that Gj and Gk are subgraphs of Gi and that Ci→j,k is a convex cut
of Gi. A set of productions P is called a Subgraph Hierarchy
Grammar (SHG). Pi is defined to be the subset of P, where all
grammars have Gi as the left-hand-side. Pi effectively represents
all of the pairs of subgraphs that have been combined to form Gi
during the execution of Brisk’s algorithm [3].

To construct the SHG, we apply one of four possible rules each
time a new template is generated. Let vj and vk be vertices, and Tj
and Tk be templates. Let ei be an edge that is contracted. Then
productions are added to Pi based on the following set of rules:

ei = (vj, vk) ⇒ Pi ← Pi∪ {Gi → vjvk} (8)

ei = (vj, Tk) ⇒ Pi ← Pi∪ {Gi → vjGk} (9)

ei = (Tj, vk) ⇒ Pi ← Pi∪ {Gi → Gjvk} (10)

ei = (Tj, Tk) ⇒ Pi ← Pi∪ {Gi → GjGk} (11)

In the context of the SHG, vj and vk are terminals (the opcodes of
assembly instructions) and Gi, Gj, and Gk are non-terminals. There
cannot be “recursive” productions of the form Suv→αSuvβ in P,s
where α and β represent any (possible empty) string of terminals
and/or non-terminals. Given a production Gi→GjGk, a legal
schedule Si can be constructed by repeatedly substituting

Figure 3.
Illustration of subgraph hierarchy (SH)

Construction via adding a node to a template
(a) and merging two templates (b)

+

+

*

T1
+

+

*

T2

+

+ T1

+

+

*

T2

+

+

*

T2
*

+
T3

+

+

*T4

*

+

+

+

*

T4

*

+

+

+

*

T2
*

+ T3

(a) (b)

SH

SH

DFG

DFG

Before After Before After

108

productions of the form Gj→… and Gk→… for Gj and Gk; this is
repeated until all nonterminals are replaced with terminals. This is
called a derivation. One derivation Si for Gi will eventually be
selected as Gi’s dictionary entry. Determining an optimal
schedule for every DFG in order to maximize pattern overlap is a
complicated optimization problem, which is addressed in the
sections that follow.

3.6 Scheduling Constraints and Compatibility
Any subset of productions Pi’⊆ Pi is defined to be compatible if
a schedule Si’ exists, such that for each production Gi →
Gj’Gk’∈Pi’, there exist schedules Sj’ and Sk’ of Gj’ and Gk’
respectively such that Si’ → Sj’Sk’; otherwise, Pi’ is incompatible.

As an example, consider Fig. 4. A DFG G1 is shown in the upper
left, along with four subgraphs G2, G3, G4, and G5. G1 can be
formed by combining either G2 and G3 or G4 and G5. If G2 and G3
are combined, the resulting schedule is S1→S2S3; likewise,
combining G4 and G5 yields schedule S1→S4S5. Ideally, we would
like to construct schedule S1 having S2, S3, S4, and S5 as
substrings; however, this is impossible in this example.

The sets of separating edges are E1→2,3 = {(B, D), (C, D)} and
E1→4,5 = {(F, C)} for cuts (V2, V3) and (V4, V5) respectively. The
separated DFGs, G1→2,3 and G1→4,5 formed by adding E1→2,3 and
E1→4,5 respectively to G1 are shown on the bottom of Fig. 4, with
non-redundant cut edges shown in bold. These graphs are both
DAGs, so Theorem 1 ensures that any legal schedule of either
satisfies the respective pattern overlap constraints.

The graph G1→(2,3),(4,5) formed by adding both E1→2,3 and E1→4,5 to
G1 is also shown in Fig. 4. G1→(2,3),(4,5) contains a cycle; therefore,
no legal schedule S1→(2,3), (4,5) can be constructed for G1→(2,3),(4,5).
Therefore, we provably cannot construct S1 having S2, S3, S4, and
S5 as substrings.

For the general case, let Gi be a DFG whose subgraphs are under
consideration, and Let Pi be defined as above. Specifically,

{ }nmpP
mii ≤≤= 1 , where (12)

mmm kjii GGGp →= (13)

Associated with each production
mi

p is a cut
mm kjiC ,→ , where:

()
mmmm kjkji VVC ,, =→ (14)

Let Ei→* be the Aggregate Set of Separating Edges for Gi, defined
as follows:

U
n

m
kjii mmm

EE
1

,
*

=
→= (15)

Define an Aggregate Separating Graph (ASG), *
iG , as follows:

()** , iiii EEVG ∪= (16)

The ASG simultaneously represents the scheduling constraints
required to satisfy each production in Pi. Theorem 2 establishes
the relationship between the ASG and the compatibility of Pi.

Theorem 2. The following four statements are equivalent.

1. Pi is a compatible set of non-redundant productions.

2. *
iG is acyclic.

3. The cuts
mm kjiC ,→ of Pi can be ordered such that:

niii VVV ⊂⊂⊂ ...
21

 (17)

4. The cuts
mm kjiC ,→ of Pi can be ordered such that

njjj VVV ⊃⊃⊃ ...
21

 (18)

Proof. 1→2. Let Pi be a compatible set of productions. Assume
to the contrary that *

iG contains a cycle C = <v1, v2, …, vx, v1>.

Consider production
mi

p corresponding to
mm kjiC ,→ , a convex

cut, as defined in Eqs. (13) and (14). To satisfy this cut, there
must exist two vertices

mjj Vv ∈ and
mkk Vv ∈ such that edge

ei = (vj, vk) is included in C. To satisfy cycle C, there must exist

vertices
mjj Vv ∈' and

mkk Vv ∈' such that ei’ = (vk’, vj’) is an

edge in C. Observe that ()mkmj VVi Ee ,∈ , and ()mjmk VVi Ee ,
' ∈ .

() 0, >
mjmk VVE implies that

mm kjiC ,→ is not a convex cut,

contradicting the assumption that Pi is compatible. This is
illustrated in Fig. 5 (a).

2→3. Assume that *
iG is acyclic. Assume to the contrary that

productions
xi

p and
yip correspond to two cuts

xx kjiC ,→ and

yy kjiC ,→ such that
yx jj VV ⊄ ,

xy jj VV ⊄ , and
yx jj VV ≠ .

Let u and v be vertices defined such that
yx kj VVu ∩∈ and

xy kj VVv ∩∈ . To satisfy
xx kjiC ,→ , there must exist a sink

B C

A

E F

G

D

B C

E F

G

D

B

F

D

A

C

G

E

A
B
C
D
E
F
G

A
B
D
F
C
E
G

G1 G2 G4

B

F

D

A

C

G

E

B C

A

E F

G

D

G5

A

G3

G1→4,5

S2

S3

S4

S5

S23 S45

Figure 4.
Illustrating the concept of incompatibility

G1→(2,3),(4,5)

G1→2,3

B C

A

E F

G

D

109

xj
Vt∈ such that there is a path from u to t. Similarly, there must

be a source
xkVs∈ such that there is a path from s to v. Finally,

observe that edge ()
xxkjiEst →∈, . Therefore there is a path

from u to v in *
iG . By an analogous argument for cut

yy kjiC ,→ ,

a path from v to u can also be established, which contradicts the
assumption that *

iG is acyclic. This is illustrated in Fig. 5 (b).

 3→1. Define an order on the cuts of G such that (17) is satisfied.
We prove this statement using induction on n = |Pi|. For the basis,
suppose n = 1. Then Pi contains a single production, pi =
Gi→GjGk, which corresponds to a convex cut (Vj, Vk).
Consequently, Si→j,k → SjSk is a legal schedule of Gi by Theorem
1. Without loss of generality, assume that there exist a set of cuts,
ordered such that

njjj VVV ⊂⊂⊂ ...
21

 for n < |Pi|. For the

induction step, let n = |Pi|. By the induction hypothesis, Eq. (17)
and (18) are satisfied for { }

nii pP − , which is compatible.

Now, consider cutsets,
nn jj VV ⊂

−1
, and

1

'
−

−=
nnn jjj VVV .

Let '
nj

S be a schedule for the subgraph of Gi induced by '
nj

V .

Therefore, we can construct a schedule '
1 nnn jjj SSS
−

→ , such

that
nnnn kjkji SSS →→ is a legal schedule for Gi.

By the induction hypothesis,
1−nj

S is a legal schedule that

includes
11

,...,
−njj SS as sub-schedules. This is illustrated in Fig.

5 (c).

3↔4. Assume that (17) holds but (18) does not. Then there must
exist productions corresponding to cuts),(

xx kj VV and

),(
yy kj VV such that

yx jj VV ⊂ and
yx kk VV ⊂ . This leads to

the contradiction (19); the converse yields contradiction (20):

ikjkji VVVVVV
yyxx
=+<+= (19)

ikjkji VVVVVV
yyxx
=+>+= (20)

The case where
yx jj VV = and

yx kk VV = is redundant. ⁪

Theorem 2 establishes two criteria which we may use to
determine whether a set of productions is compatible. In practice,
we can not assume that an entire set of productions P1 will be
compatible; instead, we focus on the problem of finding an
optimal compatible subset of P1.

3.7 A Production Compatibility Graph
In this section, we introduce a data structure called a Production
Compatibility Graph (PCG), a DAG that represents compatibility
among the productions in P1. Our construction of the PCG is
based on Criterion 3 from Theorem 2.

Let Pi be defined as in Eqs. (12) and (13). Each
production ii Pp

m
∈ describes the scheduling constraints

including the subgraph relation between iG ,
mj

G , and
mkG . A

PCG for iG is denoted),(PCG
i

PCG
i

PCG
i EVG = , where each

vertex PCG
ij Vv

m
∈ corresponds to

schedule
mmmm kjkji SSS →→ , for iG . An edge

PCG
ijj Evve

yx
∈=),(if and only if the following criteria are

satisfied:

yx jj VV ⊂ (21)

yzxz jjjj VVVV ⊂⊂∋¬∃ (22)

Criterion (22) establishes that the subset relation is not trasitive—
that there is no other subset of

yjV that is also a superset of
xj

V .

Lemma 1. PCG
iG is acyclic.

Proof. Let),,...,(
xyx jjj vvvc = be a cycle in PCG

iG . If |c|

= 2, then there is an edge),(
xx jj vv which is trivially redundant

and unnecessary. If |c| > 2, then there exists
xy jj vv ≠ such that:

xyx jjj VVV ⊂⊂⊂⊂ , (23)

which is a contradiction. ⁪

Figure 5.
Illustrating the main concepts of the first 3

steps in the proof of Theorem 2

v1

v2

vj

vk

vx

vk’

ei
 ei’

1−nj
V

nj
V '

nj
V

nj
S

'
1 nnn jjj SSS
−

→

(t, s)

u

v

xj
V

t

s

v

u
ykV

yjV
t’

s’

(t’, s’)

(a) (b)

(c)

vj’

mj
V

mkV xkV

1−nj
S

'
nj

S

110

Lemma 2.),...,,(
1 yxx jjj vvvp
+

= is a path in PCG
iG if and

only if
yxx jjj VVV ,...,,

1+
are compatible.

Proof. Follows immediately from (21) and (22) taken in
conjunction with Criterion 3 in Theorem 2. ⁪

Recall that a compatible subset of productions in P corresponds to
a set of code sequences that can be embedded within schedule Si
of Gi. By Lemma 2, any path in Gi

PCG is a compatible subset.
Lemma 3 and Theorem 3 help us establish which compatible
subset of P should be selected to optimize code size reduction.

Lemma 3. The code size reduction attributable to every vertex
PCG

ij Vv
m
∈ is iV .

Proof.
mj

v corresponds to cutset),(, mmmm kjkji VVC =→ .

mj
S and

mkS are schedules of
mj

G and
mkG respectively. By

selecting schedule
mmmm kjkji SSS =→ , we eliminate the need to

store dictionary entries for
mj

G and
mkG . The corresponding

reduction in dictionary size is given by
mm kji VVV += . ⁪

Theorem 3 summarizes this result.

Theorem 3. The compatible subset Pmax of P1 that maximizes
code size reduction corresponds to the path pmax of maximum
length in Gi

PCG.

Proof. Follows immediately from Lemmas 1, 2, and 3. ⁪

Fig. 6 illustrates the construction of the PCG, for a DFG G1. Five
pairs of convex cuts, (Vi, Vi+1) are shown for i = 2, 4, 6, 8, 10. A
PCG, G1

PCG, is shown. Each vertex vi
PCG in G1

PCG corresponds to
cut (Vi, Vi+1). G1

PCG contains no transitive edges as a consequence
of criteria (21) and (22).

4. Dictionary Construction via Dynamic
Programming
In this section, we present a dynamic programming algorithm that
constructs a dictionary from a set of DFGs representing patterns
generated by applying Brisk’s algorithm to the CDFG
representation of a program. Pseudocode is shown in Fig. 7.
The input to the algorithm is a set of DFGs G = {G1, G2, …, Gn}
and an SH, represented as a DAG GSH = (VSH, ESH), where VSH =
G and edge e = (Gi, Gj)∈ESH indicates that Gj is an immediate
subgraph of Gi. This is a slightly different representation of the
SH than was described in Section 3.2. The primary difference is
that here, we are interested in only the immediate subgraph
relation. The simplest way to view this construction of GSH is to
add an edge (Gi, Gj) for each production Si→…Sj… in the SHG.
Line 1 in Fig. 7 initializes an empty dictionary; the rest of the
algorithm constructs the dictionary, which is returned in Line 14.
The loop spanning Lines 2-13 performs the actual dictionary
construction. Line 3 removes all sources and sinks in the SH that
correspond to patterns that do not exist in the SH. All such sinks
were consumed by larger templates during Brisk’s algorithm [3].

All such sources were considered, but not actually introduced.
None of these patterns should be represented in the dictionary.
The second step within the outer loop is to topologically sort GSH
in Line 4. The inner loop spanning Lines 5-9 traverses GSH in
reverse topological order—from sinks to sources. The outer loop
terminates when all vertices have been removed from GSH.
Let gain(Gi) represent the benefit associated with creating a
dictionary entry for Gi. This gain must account for all of the

Construct_Echo_Dictionary(
 G = {G1, G2, …, Gn} : set of DFGs,
 GSH = (VSH, ESH) : subgraph hierarchy
) : Dictionary
1. Dictionary : D ← initialize empty

dictionary.
2. While(|VSH| > 0)
3. Remove all unnecessary sources and

sinks.
4. Topologically sort GSH

5. For each vertex vi∈VSH, taken in
reverse topological order

6. Let Gi be the DFG corresponding
 to vi.

7. Propagate scheduling constraints
 from each compatible sub-pattern
 of Gi to Gi

8. Compute gain(Gi)
9. EndFor

10. Let Gmax be the source in GSH such that
gain(Gmax) is maximum.

11. Recursively extract the compatible
subgraph of GSH rooted at Gmax.

12. Add the extracted subgraph to D
13. EndWhile
14. Return D

Figure 7.
Dictionary construction heuristic

G2 G4

C

A

E F

G

D

B C

E F

G

D

B

F

D

A

C

G

E

G1

G5

A

G3

B C

A

E F

G

D

G6

G7

B

F

D

A

C

G

E

G10

B

C

A

E F

G

D

G9

G11

v2
PCG

v8
PCG

v4
PCG

v6
PCG v10

PCG

G1
PCG

B

G8

Figure 6.
Illustrating construction of the PCG

111

subgraphs Gj, Gk of Gi that will reference the eventual code
sequence Si. gain(Gi) is computed in Line 8 of Fig. 7. A table of
size O(n) stores gain(Gi) for every DFG in G. By traversing GSH
in reverse topological order, gain(Gj) has already been computed
for each successor (subgraph) Gj of Gi. The table therefore uses
dynamic programming to recursively compute gain(Gi). The
details of this computation are described in Section 4.1. The
previous step in Line 7 is described in Section 4.2.
The computation of gain(Gi) uses Theorem 3 to compute a
compatible set of sub-patterns of Gi. Once this value is known for
every pattern in GSH, a source Gmax that maximizes gain(Gi) is
identified in Line 10. Line 11 removes all vertices from the PHG
corresponding to patterns that will reference Gmax’s dictionary
entry. Line 12 creates the actual dictionary entry.
First, Gmax is removed from GSH. Next, each compatible sub-
pattern of Gmax, Gj, is also removed from GSH. Recursively, all
compatible sub-patterns of Gj are removed too, etc. Let VSH

max be
the set of patterns in GSH that will reference Gmax’s dictionary
entry. The subgraph of GSH induced by VSH

max is removed from
GSH and placed into the dictionary. Since all edges in the induced
subgraph are compatible, a schedule for Gmax can be constructed
that is compatible with all patterns in the induced subgraph, as
discussed in Sections 3.6 and 3.7. The induced subgraph suffices
as a dictionary entry for Gmax as well as all subsumed patterns.

4.1 Computing gain(Gi)
For pattern Gi, let bi = 1 if Gi is one of the patterns occurring in
the final program; otherwise, bi = 0. Sources and sinks with bi = 0
were removed in Line 3 of Fig. 7. Internal patterns are maintained
to preserve the subgraph relation, which is transitive.
To compute gain(Gi), we associate a gain with each production
Gi→…, denoted gain(Gi→….). There are 4 cases to consider:

ikji bvvGgain ⋅=→ 2)((24)

)(||)(kiikji GgainVbGvGgain +⋅=→ (25)

)(||)(jiikji GgainVbvGGgain +⋅=→ (26)

||)(iikji VbGGGgain ⋅=→ (27)

)()(kj GgainGgain ++

For each production,
mmmm kjkji GGG →→ , , the quantity

)(, mmmm kjkji GGGgain →→ is assigned as a weight of the

corresponding vertex PCG
ij Vv

m
∈ . A locally optimal subset of

productions for pattern Gi can be constructed by finding the path

of maximal weight in PCG
iG . Let Pi,max be the set of vertices in

PCG
iG contained on the maximum weight path. Let gain(Pi,max)

be the sum of the gains of the productions associated with each
vertex contained in Pi,max. Finally, let gain(Gi) be the total gain
associated with pattern Gi and all of its sub-patterns. Then:

||)()(max, iiii VbPgainGgain ⋅+= (28)

4.2 Propagating Scheduling Constraints
Consider DFGs G1, G2, G3, and G4 shown in Fig. 8 (a). GSH is
shown in Fig. 8 (b). Observe that G3⊂ G2 despite the fact that
there is no edge (G2, G3) in GSH. This simply indicates that no
instance of G2 in the program was formed by combining an
instance of G3 with a vertex labeled B. Assume bi = 1, 1 < i < 4.
Now, let us compute gain(Gi), for 1 < i < 4. Trivially, gain(G3) =
gain(G4) = 2. G4 is the only compatible sub-pattern of G2, as
illustrated in Fig. 8 (c). Consequently, gain(G2) = 5.
Now, let us process G1, ignoring, for the moment, the fact that G4
has been selected as a compatible sub-pattern of G2. As illustrated
by Fig. 8 (d), G2 and G3 are both compatible sub-patterns of G1.
Now, recall that G4 is a sub-pattern of G2; by transitivity, G4 is
also a sub-pattern of G1. G4, however, is not compatible with G3,
as illustrated by Fig. 8 (e). The dynamic programming algorithm
has already selected G4, as a compatible sub-pattern of G2.
Therefore, G2 and G3 are not compatible sub-patterns of G1.
Selecting G4 as a compatible sub-pattern of G2 creates a
scheduling constraint—the schedule of G2 must place vertex A
prior to the vertices in G4. To represent this constraint, the
separating edge (A, B) must be added to G2. The resulting DFG,
G2’, is shown in Fig. 8 (f). G2’ and G3 are trivially incompatible
with G1. Since gain(G2) > gain(G3), G2 is selected as the only
compatible sub-pattern of G1; consequently, gain(G1) = 9.
The separating edges corresponding to each compatible set of
sub-patterns must be added to each DFG in the hierarchy as it is
processed. Otherwise, scheduling decisions made during the early
stages of dynamic programming will not percolate to the top of
GSH.
The dictionary entry for G1 will cover 9 operations—4 from G1, 3
from G2, and 2 from G4. A separate dictionary entry will be
constructed for G3. The final dictionary will contain 6 operations.

5. Experimental Results
We have integrated our dictionary construction algorithm into a
compression framework [3] within the Machine SUIF compiler
[25]. The first step of the back of the compiler is to instruction
selection. Machine SUIF is a retargetable compiler that provides
back end support for the Alpha, x86, and Itanium architectures.

Figure 8
Illustrating the propagation of scheduling

constraints while traversing GSH

G1
A B

C

D

A B

C

G1 A

C

B

C

G2 G3 G4 G3

G2 G4

GSH

A B

C

A B

C

D

A B

C

D

A

B

C

G2’

(a) (b)

(c) (d) (e) (f)

112

Following the lead of Lau et al. [17] and Brisk et al. [3], we
targeted a version of the Alpha architecture that has been
modified to support echo instructions.
We used an isomorphic pattern generation algorithm described by
Brisk [3] to identified recurring patterns within the compiler’s
intermediate representation. We modified the algorithm so that it
built the PHG and performs the dictionary construction algorithm
described in Sections 3 and 4 of this paper.

5.1 Benchmarks
Code compression is a topic that is primarily of interest to
embedded system designers. With that in mind, we selected a set
of 10 benchmarks from the MediaBench application suite [18]:
Epic, G.721, GSM, JPEG, MPEG2 Decoder and Encoder, Pegwit,
PGP, RSA (within PGP), and Rasta. Adpcm was not compiled
because it is notably smaller than the others and exhibits
considerable redundancy. Ghostscript and Mesa are larger than
the others, and are thus less representative of embedded
applications.
The source code files for each benchmark were linked using the
link_suif pass. This required manual intervention to prevent
namespace collisions. To reduce overall code size, we rolled the
unrolled loops that occurred in several of the benchmarks.

5.2 Dictionary Construction Results
The majority of dictionary compression techniques (e.g., Lefurgy
[19]) do not reduce the dictionary size using substring matching.
They simply place one instance of each pattern in the
dictionary—the naïve approach. Fig. 9 compares the sizes (in
terms of operations) of the dictionaries constructed by the naïve
and heuristic methods. The reductions in dictionary sizes ranged
from 21.14% (JPEG) to 29.76% (Epic). Across all benchmarks,
the number of operations in all dictionaries was reduced from
26629 to 20174, a reduction of 24.24%.
Table I lists three quantities for each benchmark: total
compilation time, time spent during dictionary construction, and
the percentage of time spent during dictionary construction; the
third quantity can easily be derived from the first two. Because
Brisk’s algorithm [3] relies on repeated calls to an exact
isomorphism algorithm, the time spent constructing the dictionary
is small relative to the entire compilation process.
Compilation times ranged from 2.78 seconds (G.721) to 363
seconds (JPEG). The amount of time spent on dictionary
construction ranged from 0.194 seconds (G.721) to 15.7 seconds
(JPEG). As a percentage of compilation time, dictionary
construction ranged from 2.38% (GSM) to 6.98% (G.721).

5.3 Discussion
Our intention was to compare the heuristic technique to a similar
algorithm based on substring matching; however, to use substring
matching, we must first schedule each DFG before constructing
the dictionary. There may be many different schedules for each
DFG—an exponential number per DFG in the worst case.
Suppose that we have n DFGs, and there are k possible schedules
for each. Then the total number of possible schedules for all
DFGs is nk. As illustrated by Fig. 2, the quality of the results of
substring matching depends on how the DFGs are scheduled
relative to one another.

Dictionary Size

0

200

400

600

800

1000

1200

1400

1600

1800

Epic G.721 GSM PGP (RSA) Rasta

N
um

be
r

of
 O

pe
ra

tio
ns

Naive
Heuristic

Dictionary Size

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

JPEG MPEG2 Dec MPEG2 Enc Pegwit PGP

N
um

be
r

of
 O

pe
ra

tio
ns

Naive
Heuristic

The problem of determining the best schedule for each DFG for
dictionary compression must be solved prior to substring
matching. The heuristic presented here solves this scheduling
problem sub-optimally. The use of graph isomorphism during
PHG construction eliminates the need for substring matching.
Consequently, the two problems are identical.
De Sutter et al. [8] reported marginal results of an optimization
strategy that attempted to minimize differences in instruction
schedules in order to maximize the code size reductions obtained
by a substring matching/register renaming technique. We
observed that up to 40% of the patterns found by Brisk’s
algorithm across all benchmarks did not occur contiguously in the
Machine SUIF CFG, where basic blocks are lists of instructions.
We attribute this discrepancy to two factors. First, De Sutter’s
optimization was performed at link-time, after a compiler
scheduled the code using a deterministic heuristic. Secondly, De

Benchmark Total (sec) Dictionary (sec) (%)
Epic
G.721
GSM
JPEG
MPEG2 Dec
MPEG2 Enc
Pegwit
PGP
PGP (RSA)
Rasta

10.3
2.78
34.3
363
33.1
66.9
33.8
201
9.36
18.4

0.528
0.194
0.816
15.7
1.31
1.98
1.10
5.62

0.516
0.866

5.13
6.98
2.38
4.33
3.96
2.96
3.25
2.80
5.51
4.70

Table I.
Compilation and dictionary construction time

(seconds, %) for the 10 benchmarks

Figure 9.
Dictionary construction results

113

Sutter’s benchmarks were written in C++, where considerable
redundancy occurred due to template instantiation and
inheritance. The repeated code fragments, once again, are likely
to be initialized to identical default schedules when the
intermediate representation is first constructed. All Mediabench
applications, in contrast, are written in C.
Finally, De Sutter replaced redundant code with procedure calls,
whereas we are targeting a system with echo instructions. An
echo instruction encodes the number of dictionary instructions to
execute in one of its fields; a procedure terminates upon executing
a return instruction. Under this model, a return instruction must
terminate the substring. This return instruction would then
preempt the superstring—incorrectly, unless the substring
matches the terminating characters of the superstring.

6. Future Work
The dictionary construction method presented here is specific to
echo instructions [9][17][3]. The technique could also be used for
CALD instructions [21] and DISE decompression [7]. These two
technologies offer opportunities for dictionary compression in
excess of echo instructions. As an example, consider three code
sequences AB, BC, and CD. A dictionary entry ABCD could be
constructed that allows BC to span two the respective entries for
AB and CD. Observe that BCis not a substring (or a subgraph in a
DFG representation) of AB or BC. Since patterns AB and CD
arunlikely to occur contiguously in the program, three separate
entries would be needed for a dictionary using echo instructions.

7. Conclusion
We have developed a theoretical model for the problem of
constructing a dictionary for a set of redundant code sequences
represented as DFGs. This approach differs from post-compilation
analyses that use linear substring matching to construct a
dictionary. To solve this problem, we introduce an efficient
dynamic programming heuristic that performed dictionary
construction. Our experiments with 10 MediaBench applications
yielded reductions in dictionary size ranging from 21.14% to
29.76% relative to naïve methods.

Acknowledgements
The feedback provided by the anonymous reviewers enabled us to
make significant improvements to the paper. Their time and effort
are greatly appreciated.

References
[1] Advanced RISC Machines Ltd. An Introduction to Thumb, Ver. 2.0.

White Paper, March 1995.
[2] Benini, L., Macii, A., and Nannarelli, A. Cache-Code Compression

for Energy Minimization in Embedded Processors. Int. Symp. Low
Power Electronics and Design (ISLPED), 2001, 322-327.

[3] Brisk, P., Nahapetian, A., and Sarrafzadeh, M. Instruction Selection
for Compilers that Target Architectures with Echo Instructions. Int.
Workshop on Software and Compilers for Embedded Systems
(SCOPES), 2004, 229-243.

[4] Chen, I., Bird, P., and Mudge, T. The Impact of Instruction
Compression on I-cache Performance. Tech. Rpt. CSE-TR-330-97,
EECS Dept., University of Michigan, 1997.

[5] Chen, W-K., Li, B., and Gupta, R. Code Compaction of Matching
Single-Entry Multiple-Exit Regions. Static Analysis Symp., 2003,
401-417.

[6] Cooper, K. D., and McIntosh, N. Enhanced Code Compression for
Embedded RISC Processors, Int. Conf. Programming Language
Design and Implementation (PLDI), 1999, 139-149.

[7] Corliss, M. L., Lewis, E. C., and Roth, A. A DISE Implementation of
Dynamic Code Decompression. Conf. Languages, Compilers, and
Tools for Embedded Systems (LCTES), 2003, 232-243.

[8] De Sutter, B., De Bus, B., and De Bosschere, K. Sifting out the
Mud:Low Level C++ Code Reuse. ACM SIGPLAN Conf. on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2002, 275-291.

[9] Debray, S., Evans, W., Muth, R., and de Sutter, B. Compiler
Techniques for Code Compaction. ACM Trans. Programming
Languages and Systems (TOPLAS), 22(2):347-415, 2000.

[10] Fraser, C.W. An Instruction for Direct Interpretation of LZ77-
compressed Programs. MSR-TR-2002-90, Microsoft Research,
September, 2002.

[11] Fraser, C. W., Myers, E., and Wendt, A. Analyzing and Compressing
Assembly Code. Int. Symp. Compiler Construction, 1984, 117-121.

[12] Garey, M. R., and Johnson, D. S. Computers and Intractability: A
guide to the Theory of NP-Completeness, New York, W. H. Freeman
and Co., 1979.

[13] Kastner R., Memik, S. O., Bozorgzadeh, E., and Sarrafzadeh, M.
Instruction Generation for Hybrid-Reconfigurable Systems. ACM
Trans. Design Automation of Embedded Systems (TODAES),
7(4):605-627, October, 2002.

[14] Kemp, T. M., Montoye, R. K., Harper, J. D., Palmer, J. D., and
Auerbach, D. J. A decompression core for PowerPC. IBM Journ.
Research and Development, 42(6):807-812, November, 1998.

[15] Kissel, K. D. MIPS16: High-density MIPS for the Embedded
Market. White Paper. Silicon Graphics MIPS Group, 1997.

[16] Kunchithapadam, K., and Larus, J. R. Using Lightweight Procedures
to Improve Instruction Cache Performance. Tech. Rept. 1390, CS
Dept., University of Wisconsin-Madison, 1999.

[17] Lau, J., Schoenmakers, S., Sherwood, T., and Calder, B. Reducing
Code Size with Echo Instructions. Int. Conf. Compilers,
Architectures, and Synthesis for Embedded Systems (CASES), 2003,
84-94.

[18] Lee, C., Potkonjak, M., Mangione-Smith, W. H. MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and
Communications Systems. Int. Symp. Microarchitecture (MICRO-
30), 1997, 330-335.

[19] Lefurgy, C. R. Efficient Execution of Compressed Programs. Ph.D.
Thesis, EECS Dept., University of Michigan, 2000.

[20] Lekatsas, H., and Wolf, W. Code Compression for Embedded
Systems. Design Automation Conf. (DAC), 1998, p. 516-521.

[21] Liao, S., Devadas, S., and Keutzer, K. A Text-Compression-Based
Method for Code Size Minimization in Embedded Systesms. ACM
Trans. Design Automation of Electronic Systems (TODAES),
4(1):12-38, January, 1999.

[22] Runeson, J. Code Compression through Procedural Abstraction
before Register Allocation. Master’s Thesis. Computing Science
Department, Uppsalla University, Sweden, March, 2000.

[23] Storer, J. NP-Completeness Results Concerning Data Compression.
Tech. Rpt. 234, Dept. Electrical Engineering and Computer Science,
Princeton University, 1977.

[24] Wolfe, A., and Chanin, A. Executing Compressed Programs on an
Embedded RISC Architecture. Int. Symp. Microarchitecture
(MICRO-25), 1992, 81-91.

[25] http://www.eecs.harvard.edu/hube/research/machsuif.html

114

