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ABSTRACT
Fall-induced injury has become a leading cause of death for
the elderly. Many elderly people rely on canes as an assis-
tive device to overcome problems such as balance disorder
and leg weakness, which are believed to have led to many
incidents of falling. In this paper, we present the design
and the implementation of SmartFall, an automatic fall de-
tection system for the SmartCane system we have developed
previously. SmartFall employs subsequence matching, which
differs fundamentally from most existing fall detection sys-
tems based on multi-stage thresholding. The SmartFall sys-
tem achieves a near perfect fall detection rate for the four
types of fall conducted in the experiments. After augment-
ing the algorithm with an assessment on the peak impact
force, we have successfully reduced the false-positive rate of
the system to close to zero for all six non-falling activities
performed in the experiment.

Keywords
Wireless health, fall detection, subsequence matching, geri-
atrics

1. INTRODUCTION
In recent years, fall-induced injury has become one of the

leading causes of death among elderly people [18]. About
one third of people aged over 65 in America fall every year
[38], and the statistics is almost three times higher for those
living in nursing homes [34]. Common injuries sustained
from falls include soft and connective tissue damages, bone
fractures, and head injuries [25, 36, 39]. Not only does fall
pose a serious threat to the health and well-being of the
elderly population, fall-induced injuries can also incur an
average annual health care cost of nearly $20,000 for a per-
son’s first fall [32], which amounts to an estimated lifetime
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cost of $12.6b for persons aged 65 and over [31, 35].
Researchers have indicated that gait or balance disorder

and leg weakness being the major causes of falling [33]. As a
result, a walking stick or a cane is often prescribed as an as-
sistive device to help elderly people overcome these problems
[8]. In fact, there are more than 4 million cane users in the
United States alone [6]. The evident popularity and relative
low cost of the cane make it an ideal candidate for perva-
sive healthcare. To this end, we have previously developed
the SmartCane platform [41], which comprises a traditional-
looking cane embedded with numerous sensors and a wireless
interface to relay sensor data to a personal device for fur-
ther processing. The platform has been extended to provide
active guidance for self-training of proper cane use [4]. In
this paper, we present the design and the implementation
of SmartFall—an automatic fall detection system built on
top of the SmartCane platform. The goal of this system is
to automatically alert the care givers or emergency service
when the cane user falls and is unable to reach for help, for
example, in the case when the user becomes unconscious.

To our best knowledge, SmartFall is the first fall detection
system in its class that employs subsequence matching al-
gorithm, instead of the commonly used thresholding-based
method. Thus, the main contribution of this paper is the
introduction and evaluation of such a fall detection system.
Furthermore, because SmartFall does not require the user
to wear or strap sensors to the body directly, it epitomizes
a wireless health system that is Pervasive yet Non-Invasive
(PNI). At the same time, SmartFall has a significantly higher
detection rate and lower cost compared to other forms of
PNI fall detection systems, such as infra-red inactivity sen-
sor array [37], vibration-sensing floor [3], and video/audio
capture analysis [40]. More importantly, SmartFall does not
require specially setup monitoring areas and thus places lit-
tle restriction on the user’s mobility.

The remainder of this paper is organized as follows. Sec-
tion 2 summaries related work in fall detection algorithms
and subsequence matching. Section 3 gives an overview of
the SmartCane system, including its hardware and software
architectures. In Section 4, we present the design and the
implementation details of the SmartFall detection algorithm,
which is then evaluated experimentally in terms of fall de-
tection rate and false-positive rate in Section 5. Finally, in
Section 6 we conclude the paper and outline possible im-
provements and future extensions for the SmartFall system.



2. RELATED WORK

2.1 Thresholding-Based Fall Detection
Many existing fall detection systems are based on thresh-

olding, which involves a continuous comparison of raw or
transformed sensor data against pre-defined thresholds [15,
14, 16, 9, 10, 24, 26, 12]. A multi-stage thresholding sys-
tem uses more than one threshold, and all thresholds must
be exceeded in a particular sequence over a certain time
period to trigger the final alarm. This kind of system is
well understood to outperform its single-stage counterpart
by producing lower false-positive rate [15]. For example, in
[14] the authors embed a tri-axial accelerometer into a wrist
watch and use a three-stage acceleration-impact-inactivity
algorithm to detect the falling of the watch-bearer. The
norm of the accelerations in all three directions is computed
and compared against the threshold defined for each stage.
Although the system has an extremely low false-positive, it
is found that the detection rate degrades when the falling
direction changes, or when rotation is introduced during the
fall. A similar system is presented by Hwang and colleagues
in [16], where a sensor box is attached to the chest of the
testing subject. Apart from the accelerometer, they also
use tilt sensor and gyroscope to improve accuracy. It has
also been demonstrated in [9, 10] that falls can be distin-
guished from Activities of Daily Living (ADL) by setting an
upper and lower thresholds on either the angular velocity
or peak acceleration gathered from sensors attached to the
body. Other examples of multi-stage simple threshold-based
fall detection algorithm can be found in [24, 26, 12].

One of the major problems of thresholding-based algo-
rithms is illustrated in Figure 1. The two solid lines, Fall
and Swing, in the graph are X-axis accelerometer signal ac-
quired using the SmartCane system during a forward fall and
a back-and-forth swinging motion respectively. The two dot-
ted lines, TH1 and TH2, denote the two thresholds for stage
1 and 2 respectively. A typical fall signal consists of a sud-
den acceleration during the free fall period, which triggers
TH1, followed shortly by a sudden deceleration during the
impact stage, which is detected by TH2. As can be seen in
the graph, despite a visually perceivable difference in shape,
both signals would be regarded as a valid fall signal using
multi-stage thresholding. In this paper, we propose an al-
gorithm based on subsequence matching that focuses on the
overall shape of the signal instead of the instantaneous val-
ues in the hope to reduce false alarms similar to the case
shown here.

2.2 Subsequence Matching
Subsequence matching is a technique commonly employed

in data mining and discrete time series analysis to find ex-
act or closely matched segments of a given subsequence (a
query) in a much longer sequence (a candidate) [2]. A query
of length k is defined as

Q = Q1, Q2, . . . , Qk

whereas a candidate of length n is defined as

C = C1, C2, . . . , Cn

The matching process involves sliding Q along C in the
time axis direction and computing a distance metric that is
proportional to the dissimilarity between Q and the corre-
sponding segment of C at time t. A commonly used distance

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

Fall

Swing

TH1

TH2

Figure 1: X-axis accelerometer signals for fall &
swing acquired on SmartCane

metric is Euclidean Distance [19], which is defined as the
square of the difference square-rooted,

D(Q, C)t =

√√√√
k∑

i=1

(Qi − Ct+i)2

Note that both the query and the corresponding candidate
segment must be normalized to have a mean of zero and a
standard deviation of one before computing Euclidean Dis-
tance to produce meaningful results [21].

Euclidean Distance is really a special case of another pop-
ular metric known as Dynamic Time Warping (DTW) [7].
DTW maps a point in the query to its closest neighbor in the
candidate segment to minimize the effect of phase shifting,
data misalignment, and speed difference. While DTW has
been successfully applied to speech recognition [17], bioin-
formatics [1], and fingerprint verification [22], it is not suit-
able for our application due to the high O(n3) overall time
complexity and the relatively poor performance in discrim-
inating signals that are subtly different.

In the field of data mining and time series analysis, there
are often many query and candidate sequences of extremely
long length to match, which can easily cause an explosion
in computation time. Techniques such as Discrete Fourier
Transform (DFT) [13], Discrete Wavelet Transform (DWT)
[11], Piecewise Aggregated Approximation (PAA) [42], Sin-
gular Value Decomposition [20], and Symbolic Aggregated
Approximation (SAX) [23] have been proposed to reduce
the data dimensionality. However, in the SmartFall system
we have only a limited number of candidate sensor signals.
Furthermore, the query sequence of interest, i.e. the actual
falling motion, is relatively short in duration. Consequently,
we decided to keep the full data precision without applying
any dimensionality reduction.

3. THE SMARTCANE SYSTEM
Figure 2 illustrates the system architecture of the Smart-

Cane system. The system consists of 1) a set of low-cost
sensors that output signals related to motion, force, and
pressure, 2) an acquisition unit that samples the sensor sig-
nal and communicates to external devices via a wireless link,
and 3) a personal device that collects and processes the data
sent from the acquisition unit.



Figure 2: The SmartCane System

3.1 Sensors
The sensors onboard the SmartCane system includes a tri-

axial accelerometer [27], three signal-axis gyroscopes [28],
and two pressure sensors [30]. The gyroscopes, which are
placed perpendicular to each other to measure angular rate
in 3D, and the accelerometer are mounted near the handle
of the cane with a 30◦-slant from the direction of the gravity.
The two pressure sensors are fixed at the handle and the tip
of the cane, measuring the grip and the downward-pushing
force respectively.

3.2 Acquisition Unit
The acquisition unit comprises a MicroLEAP [5] proces-

sor and a Bluetooth [29] interface board. Each sensor input
channel can be sampled at a rate of up to 300Hz. For our
application, a sampling rate of 26Hz is chosen. The unit
is very power-efficient and supports over 20 hours of con-
tinuous sampling and Bluetooth data streaming using six
2200mAh AA-size batteries.

3.3 Personal Device
The personal device can be any mobile device that sup-

port Bluetooth. Although we choose a tablet PC for ease
of programming and data visualization, the algorithm can
be easily ported to cellphone or PDA. The incoming data
is received and logged to a file by a data logging daemon.
The SmartFall software then reads directly from the file and
performs the detection algorithm in a near real-time fashion.

4. DETECTION ALGORITHM

4.1 A Model for Fall
The mechanism of a fall needs to be first understood in

order to develop an effective fall detection algorithm. A
typical fall for a cane user consists of a three stages process:
1) collapse, 2) impact, and 3) inactivity. During the collapse
stage, the user loses balance and falls towards the ground in
an accelerated motion. It is assumed that the cane should
experience a similar free-fall process even if the user loses
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Figure 3: The (a) side view and (b) top view of the
typical falling motion of a cane

control over the cane. We model this free-fall motion as
depicted in Figure 3(a). In this side view, the cane starts
from a near upright orientation, topples under the force of
gravity, and, just before hitting the ground, changes to a
horizontal orientation. The acceleration perpendicular to
the cane, denoted by the vector n in the figure, is the norm
of the X- and Y-acceleration of the cane (see the top view
in Figure 3(b)). Thus, n can be calculated as

n = g · cos(θ) (1)

where g is the gravitational acceleration, and θ is the angle
between the cane and the ground (0◦ ≤ θ ≤ 90◦). Given the
initial height of the accelerometers h, θ can be expressed as
a function of time t

θ = arcsin(1− g

2h
t2) (2)

Since the accelerometers onboard the SmartCane is tilted by
30◦, the actual norm, n′ observed is therefore

n′ = g · cos(arcsin(1− g

2h
t2)) · cos(30◦) (3)

which can be simplified to

n′ = g · cos(30◦) ·
√

1− (1− g

2h
t2)2 (4)

The impact stage begins when the cane first makes con-
tact with the ground and finishes when the cane becomes
motionless. The impact exerts a counter force on the cane
that results in a quick deceleration in the opposite direc-
tion of the gravity. Depending on the reaction force, the
cane may bounce a few times until the energy is completed
dissipated. An exact mathematical model for this stage is
extremely difficult to derive as the motion depends on many
factors, such as the stiffness of the ground, material of the
cane, shape of the impacting surface, just to name a few.
Consequently, we model the impact stage in an empirical
way by collecting and averaging several experiment data.

Assuming the impact has caused a serious injury, both
the user and the cane should lie still on the ground for a
prolonged period. If the ground surface is flat,

n′ = g · cos(30◦) (5)

for the inactivity stage. This is obviously the easiest stage to
model, and the duration of the stage is the only concern. We
choose a period of 1 second, which is comparable to that of
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the impact stage. This is to ensure that the inactivity stage
does not become the dominating factor in the subsequence
matching process.

Figure 4 shows the resulting signal for n′ based on the
model presented here, with the aforementioned three stages
highlighted in the figure. The signal is sampled at 26Hz to
match the real sensor signal.

4.2 Algorithm Flow
The actual flow of the SmartFall algorithm is depicted

in Figure 5. The raw input signals, namely the X- and Y-
acceleration from the sensor are first calibrated before the
norm is computed. This is then fed through by a signal
conditioning module, followed by normalization. The nor-
malized signal is continuously matched against a generated
query signal. Based on the calculated distance, the decision
module raises the fall alarm if the distance is sufficiently
small.

4.2.1 Calibration & Norm Computation
The X- and Y-accelerometer data, shown in Figure 7(a)

and 7(b) respectively, have a constant offset that needs to
be calibrated in this module. The offset values are obtained
from the accelerometers reading when the SmartCane is in
a steady up-right orientation.

After the offsets are factored in, the normal acceleration,
n′ (Figure 7(c)), is calculated using the calibrated X- and
Y-accelerations, ax and ay as

n′ =
√

(ax)2 + (ay)2

4.2.2 Signal Conditioning
The calibrated normal acceleration is then passed through

a 6th order biquad IIR low-pass filter with 5Hz cut-off to
remove noise and high frequency components. From the fil-
tered signal in Figure 7(d), it is clear that the impacting
stage, being highly unpredictable and difficult to model as
described earlier, has been effectively smoothen into a single
peak. The peak follows closely to the envelope of the original
transient signal. The filtering process has been shown exper-
imentally to have slightly decreased the distance of genuine
matches and greatly increased the distance of non-matches,
which essentially improves the overall signal-to-noise ratio.
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Figure 5: The flow of the SmartFall detection algo-
rithm

4.2.3 Normalization
To facilitate the subsequence matching process, the nor-

malization module buffers the filtered signals and computes
a normalized segment of the same length as the query pat-
tern. This basically performs the sliding action described in
Section 2.2.

The standard normalization process involves mean shift-
ing, i.e. subtracting the mean from all values, and autoscal-
ing, i.e. diving all values by the standard deviation. How-
ever, mean shifting is not necessary in this case because the
input signal has already been calibrated for the particular
SmartCane in the first module. In fact, mean shifting may
even have an adverse effect on the end result, since the mean
of the short segment buffered by the normalization module
is not a true representative of the mean for the overall input
signal. Consequently, we decide to only perform autoscaling
with a mean value of zero for the normalization process.

4.2.4 Query Generation
The query is generated statically based on the model pre-

sented in 4.1. To facilitate a meaningful comparison with the
candidate, the query needs to go through the same filtering
and normalization process. Figure 6 shows the filtered and
normalized query signal.

4.2.5 Subsequence Matching
The subsequence matching module continuously outputs

the Euclidean Distance between the incoming signal and the
matching query. An example of the distance computed from
this module is plotted as a solid line in Figure 7(e). Typically
the distance dips quickly towards zero when a matching in-
coming signal and the query start to overlap, reaches a local
minimum when the two perfectly lined up, and climbs up
again as the two signals slide pass each other. The resulting
trough is often fairly consistent and salient as can be seen
from Figure 7(e).
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Table 1: Profile of the testing subjects
Subject 1 2 3
Age 35 28 25
Gender Male Male Female
Height 1.86 m 1.60 m 1.65 m
Weight 109.3 kg 63.5 kg 50.8 kg

4.2.6 Decision
The decision module is in charge of raising the fall alarm

based on the distance value computed from the subsequence
matching module. While it is possible to employ sophis-
ticated classification methods such as Artificial Neural Net-
work (ANN) and Supporting Vector Machine (SVM), we are
interested if a simple decision tree with one decision node
can be as effective. Figure 8 shows the simple decision tree
used in this module. The cut-off level is represented by the
dashed line in Figure 7(e).

5. RESULTS AND EVALUATION
The performance of SmartFall is measured through a se-

ries of experiments. These experiments are designed to eval-
uate the fall detection rate (true-positive) as well as the
ability of the algorithm to discriminate fall from other daily
activities (false-positive).

5.1 Experiment Setup
We have selected three healthy test subjects to perform

the experiments. Their profiles, including age, gender, height,
and weight, are listed in Table 1. Subjects with dissimilar
body builds are deliberately chosen to study the potential
effect of weight and height on the end results.

A falling platform has been set up for the experiment. The
platform is made up of a soft cushion for the subject to fall
on, and a hard surface for the cane to hit, simulating what
often happens in real life. The position and orientation of
the cushion are adjusted to accommodate different types of
falls. The sensor data are transmitted via Bluetooth and
recorded on a tablet PC. The recoding is not interrupted
throughout the process even when the subject completes the
instructed action and returns to the starting position.

5.2 Fall Detection Results
Four types of falls, which have been experimented to gauge

the fall detection rate of SmartFall, are listed below,
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Table 2: Fall detection rate for different type of
falls. Figure pairs in the bracket correspond to suc-
cess/failure counts.
Subject 1 2 3
Forward 100% (30/0) 100% (30/0) 100% (30/0)
Backward 100% (30/0) 100% (30/0) 93.3% (28/2)
Side 100% (30/0) 96.7% (29/1) 100% (30/0)
Free-fall 100% (30/0) 100% (30/0) 100% (30/0)

• Forward: simulates a faced down fall due to trip over

• Backward: simulates fall on the back or bottom due
to a slip

• Side: simulates a sideward fall due to loss of balance

• Free fall: simulates an unobstructed topple of the cane
due to loss of control. The subject does not fall with
the cane in this case.

Each type of fall is performed 30 times, and the subjects
are allowed to use their hands to brace against the ground
when falling. The subjects can also choose to have a firm
grip of the cane throughout the falling process or let go the
cane at any time. The results include a fair mix of both
situations.

The results listed in Table 2 shows a near 100% detec-
tion rate for all four types of fall performed by the three
subjects. The difference in weight and height between sub-
jects appears to have little effect on the end results. In the
non-detecting case of sideward fall for subject 2, the cane ac-
tually hits an obstacle midway through the falling, and the
impact is large enough to alter the shape of the signal be-
yond recognition. As for the two instances when SmartFall
fails to pick up subject 3’s backward falling, the distance
is only about 8% higher than the cut-off level, which can
be easily accommodated by tuning decision module slightly
without hurting the overall performance. Nonetheless, this
suggests a more sophisticated decision may be warranted. In
addition, the Free fall experiment shows a limitation of the
SmartFall algorithm where it is not possible to determine if
the cane user has actually fallen along with the cane. Such
shortcoming can be addressed by enforcing a sufficiently long
period of inactivity before alarm raised or by allowing the
user to cancel the alarm manually.

5.3 Initial Discrimination Results
Discrimination of fall from ordinary daily activities is criti-

cal. Frequent false alarms can seriously undermine the user’s
willingness to adopt a system. The discrimination power of
SmartFall is evaluated by using six different experiments
made up of commonly performed actions with a cane:

• Slow walk: walking with the cane at a pace less than
one step per second

• Fast walk: walking with the cane at a pace around two
steps per second

• Sit & stand: standing up with the help of the cane
from a sitting position

• Stand still: standing still with a small portion of weight
offloaded to the cane

Table 3: False-positive rate for various activities.
Figures in the bracket correspond to false-positive
counts.

Subject 1 2 3
Slow walk 0% (0) 0% (0) 3.3% (1)
Fast walk 0% (0) 0% (0) 0% (0)
Sit & stand 16.7% (5) 3.3% (1) 16.7% (5)
Stand still 0 in 30s 0 in 30s 1 in 30s
Swing 0% (0) 0% (0) 0% (0)
Lay on lap 96.7% (29) 100% (30) 90% (3)

Table 4: False-positive rate for various activities af-
ter applying peak impact assessment

Subject 1 2 3
Slow walk 0% (0) 0% (0) 3.3% (1)
Fast walk 0% (0) 0% (0) 0% (0)
Sit & stand 0% (5) 0% (1) 0% (0)
Stand still 0 in 30s 0 in 30s 0 in 30s
Swing 0% (0) 0% (0) 0% (0)
Lay on lap 10% (3) 3.3% (1) 3.3% (1)

• Swing: swinging the cane back-and-forth at around
1Hz with an angle less than 30◦ from the vertical axis

• Lay flat: picking up the vertically oriented cane and
laying it flat on the lap while seated

All experiments, with the exception of Stand still, are per-
formed for 30 complete cycles by the test subjects. The
Stand still experiment consists of a 30-second period of static
standing. The resulting false-positive rates are listed in Ta-
ble 3.

In general the SmartFall algorithm can discriminate most
non-falling actions from fall. For Fast walk and Swing, the
fall alarm has not been triggered at all for all three sub-
jects. However, SmartFall really struggles to tell the differ-
ence between laying the cane on lap and a fall, both involved
changing the orientation of the cane from vertical to hori-
zontal quickly.

5.4 Improved Discrimination Results
The inability of SmartFall to distinguish laying the cane

flat from a genuine fall prompts us to further investigate the
problem. As we have found the two actions do produce a
very similar profile for the normal acceleration. However,
the only difference between the two is the large impact de-
celeration that exists solely in the case of falling. Unfor-
tunately, this short-living peak deceleration is filtered out
by the signal conditioning module. After bringing the un-
filtered signal directly to the decision module, the decision
tree is modified with an additional condition that a peak
normal acceleration in excess of 21 m/s2 must be also de-
tected within the matching window.

While the detection rate of the system remains unchanged,
the false-positive rate, as listed in Table 4, has been dramat-
ically reduced after the addition of peak impact assessment.
The SmartFall system is able to achieve zero false-positive
for the first five activities. Although false alarms for Lay on
lap cannot be completely eradicated, they are kept a mini-
mal level in general.



6. CONCLUSIONS AND FUTURE WORK
In this paper, we present SmartFall, an automatic fall

detection system based on subsequence matching, for the
SmartCane system. SmartFall uses data from the accelerom-
eters embedded closely to the handle of the SmartCane to
make inferences of current status. The detection algorithm
differs fundamentally from most existing thresholding-based
fall detection solutions in that the overall shape of the sen-
sor signal is considered. Several experiments, which simulate
various types of fall as well as other commonly performed
activities, have been conducted to evaluate the performance
of SmartFall. The results have indicated that the algorithm
is able to detect almost all cases of falling in the experiment
while achieving extremely low false-positive rates for most
non-falling activities. However, the subsequence matching
algorithm has real difficulty distinguishing an activity that
produces a fall-like pattern, such as in the case of rotating
the cane from a vertical to a horizontal orientation. To over-
come the limitation, we have augmented the algorithm with
peak impact assessment. This results in a dramatic decrease
in false-positive rates to a near zero level for all non-falling
activities while exerting no negative effect on the fall detec-
tion rate.

Since the SmartCane has other types of sensors, such as
pressure and gyroscope, one of the immediate future re-
search directions is to study the possibility of more accurate
inference based on these sensors. We also plan to carry out
full scale clinical trial to further validate the effectiveness of
SmartFall. Ultimately, we would like to extend SmartFall
not only to detect falling, but also to identify patterns and
causes that may lead to an imminent fall.
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