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ABSTRACT 

In this paper, an image-based non-obtrusive indoor navigation 
system for the visually impaired is presented. The system makes 
use of image processing algorithms to extract floor regions from 
images captured from a wearable eye-mounted heads-up display 
device. A prototype system called VirtualEyes is presented, where 
floor regions are analyzed to provide the user with voiced 
guidance for navigation. The floor detection algorithm was tested 
against over 200 images captured from indoor corridors of various 
lighting conditions and achieved up to 81.8% accuracy.  

Categories and Subject Descriptors 

C.3.3 [Special-Purpose and Application-Based Systems]: Signal 
Processing Systems. 

General Terms 

Algorithms, Design, Experimentation. 

Keywords 

Mobile computing, wearable computing, assistive technology, 
image processing, floor detection, computer vision, Google Glass. 

1. INTRODUCTION 
There are an estimated 285 million people in the world that are 
visually impaired [1], including 39 million who are blind and 246 
million with low vision, i.e. with moderate to severe visual 
impairment. The visually impaired often require help to navigate 
unfamiliar environments, including relying on a walking stick or a 
guide dog, to navigate spaces and avoid obstructions. Researchers 
have focused on alternatives, with mobile and wearable 
technology holding the potential to advance research in this area.  

In the robotics field, image-based approaches are commonly used 
for navigational guidance or obstacle detection. Information is 
extracted from the captured images of the environment with the 
use of image processing algorithms.  

In this work, a floor detection algorithm that was used for the 
automatic navigation of a mobile robot was adapted to create a 

mobile indoor navigation system for the visually impaired. A 
prototype system called VirtualEyes was developed using Google 
Glass. Google Glass is a wearable device that is capable of 
running Android applications. It has a camera feature that was 
utilized to capture images from the surroundings. It is non-
obtrusive and is worn in a way that allows the camera to capture 
an unobstructed view of the user’s environment. 

The remainder of the paper presents the hardware and software 
components of the system, along with the technical approach used 
for navigational guidance using image processing. The algorithms 
developed for the VirtualEyes system were tested on over 200 
different images with the results provided and discussed. 

2. RELATED WORK 
Wearable devices have been widely used for different 
applications. For example, Najeeb et al. present a wearable system 
that uses an off-the-shelf EEG device that reads brain signals to 
select letters, compile words, and create sentences meant for 
people with paralysis [19]. A wearable system for determining 
body and arm positioning using ambient light sensors is presented 
in [22]. A smart watch is used in [20] to recognize arm gestures 
for hands-free interaction. Altwaijry et al. present a system that 
uses Google Glass in [21] that can recognize landmarks by 
capturing an image of the scene and the GPS information if 
available. 

There has also been research in wearable devices for guiding the 
visually impaired in unfamiliar environments. The underlying 
technology varies from a modernized version of the walking stick 
(a.k.a. white cane) to image-based approaches.  

Fernandes et al. describe a system that uses RFID tags attached at 
the end of the white cane [2]. A virtual white cane is presented in 
[3] by using a laser pointer attached to a smartphone. Both 
approaches require the use of specialized hardware. 

In terms of the image-based approach, different systems made use 
of a smartphone [4], Microsoft Kinect [5], and custom hardware 
using two cameras mounted on the user’s shoulders [6] as 
interfaces to gather images of the environment. The use of pre-
installed special markers in the environment to identify a safe 
walking path for the user is also presented in [7]. 

Such image-based systems commonly adapt the floor detection or 
obstacle detection implementation in the robotics field. The use of 
stereo vision is common in this approach as discussed in [6][8]. 
These systems are able to detect floor regions and obstacles in the 
environment and calculate the distance of such objects from the 
user.  

The work of Tapu et al. [4] uses monocular vision by utilizing the 
camera in a smartphone which is a less obtrusive design. Obstacle 
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detection is performed to guide the user when walking in the 
outdoor environment. 

Another common approach in the robotics field is to use image 
sequences from the video feed as described in [9][10] to track the 
movement in the scene.  

In terms of floor detection, other approaches make use of a single 
indoor image of the environment to classify floor regions. The 
implementation presented in [11] makes use of image 
segmentation to identify floor regions in the image. Authors of 
[12][13] use horizontal and vertical lines found in the image to 
detect floor regions. 

3. SYSTEM OVERVIEW 
In this section, the architectural overview with the hardware and 
software components of VirtualEyes, a system for the visually 
impaired navigation guidance, is presented. The system is 
composed of a paired Google Glass and Android smartphone. 
These two devices, connected via Bluetooth, work together in 
gathering image data from the indoor environment using the 
Google Glass camera, process the data on the smartphone, and 
provide valuable feedback to the user through the use of the built-
in speaker on the Glass. 

3.1 Google Glass 
The Google Glass, as shown in Figure 1, is a head-mounted, 

rechargeable battery-operated wearable device, which is capable 
of running Android applications. This device has features similar 
to a smartphone ranging from high resolution display, camera, 
Bluetooth, Wi-Fi, etc. [14]. The camera in the Glass is capable of 
taking 5 megapixel images. Since the device is worn over the eyes 
of the user, similar to prescription glasses, the images taken from 
the camera captures the surroundings in the perspective of the 
user. 

Since this device is still in its early stages, there are a few 
limitations to its performance. The battery in the device typically 
lasts one hour of usage, especially with the use of Bluetooth and 
the camera. Heating of the device could also cause discomfort to 
the user while the Glass is in operation. Furthermore, there is 
limited processing power available in the Glass to perform the 
image processing required in this system. To overcome these 
limitations, the Bluetooth capability of the Glass was utilized to 
pair it with an Android smartphone and offload processing that 
would require substantial power. 

3.2 Android Smartphone 
Mobile smartphones have been a ubiquitous device that is 

accessible for most people. The higher processing power and 
better battery life in these smartphones as compared to Google 
Glass allows for an ideal mobile and lightweight device for 
performing powerful operations that might prove difficult to run 
on the Glass. 

The use of Android operating system allows the integration of 
many open source third party libraries that provides an easy to use 
framework in performing tasks required by the system such as 
OpenCV. 

3.3 OpenCV 
Open Source Computer Vision (OpenCV) is a widely used library 
of image processing algorithms. The library supports different 
operating systems including Android and has interfaces for a 
variety of programming languages such as C, C++, and Java [15]. 
The built-in functions in the OpenCV library were used in this 
system for most of the image processing tasks.  

3.4 Mobile Applications 
There are two different applications developed for the system 
which are installed in the respective devices. Figure 2 shows an 
overview of the functionalities and communication between the 
applications. 

An android application (client app) is installed on the Google 
Glass that will start up the Glass camera and send captured image 
frames to the paired Android smartphone. This application also 
receives text information coming from the Android smartphone 
and converts this into voice guidance using the Text-To-Speech 
framework of the Android operating system. 

Another android application (server app) is installed on the 
Android smartphone that is paired with the Google Glass. This 
application performs various image processing algorithms using 
OpenCV in order to extract information from the received images. 
The features from the image are extracted which are then 
evaluated to analyze the floor region. Once the image analysis has 
been completed, a feedback is sent to the Google Glass through 
the Bluetooth connection that has been established. 

Figure 1. Google Glass is a rechargeable battery-

operated wearable device with built-in features such as 

camera, speakers, Bluetooth, Wi-Fi, etc. 

Figure 2. Images captured by the Google Glass are sent over 

to the Android smartphone via Bluetooth for Image 

Processing and Floor Detection and Analysis. The results of 

the analysis are sent back to the Google Glass for voiced 

guidance. 



4. APPROACH 
In this section, the implementation of VirtualEyes is discussed 
which includes the communication between the paired devices, 
floor extraction and analysis, and user feedback as seen in Figure 
3. 

4.1 Device Communication 
The paired devices transmit data to each other over a Bluetooth 
connection. The Glass application continuously sends image 
frames to the Android smartphone for processing.  

A 320x240 RGBA image frame captured by the Glass is about 
300 kilobytes. To increase the frame rate of the application, this is 
compressed to a jpeg format using the built-in compression 
function in the OpenCV library. This reduces the size of the 
image to less than 100 kilobytes. 

4.2 Floor Detection 
The images captured by the Glass typically contain the walls, 
floor, ceiling, and other objects within the frame. The floor region 
is surrounded by walls in all sides. By detecting the wall-floor 
boundaries from the image, the floor region can be detected 

within the image as shown in Figure 4 and later analyzed to 
provide feedback to the user. 

The floor detection approach discussed in [12] was adapted in the 
implementation of this system. This approach is capable of 
detecting floor regions from a single indoor corridor image. 

The first step is to apply the Canny Edge detection [16] algorithm 
in the image to identify the edges in the image. An edge is a 
region in the image where there is a sudden change in the pixel 
intensity. This outputs a black and white image where the white 
pixels are the identified edges in the image. 

From the black and white edge image, we try to find vertical and 
horizontal lines in the image using Hough Line Transform [17]. 
Vertical lines are defined as lines that are within 10 degrees from 
the vertical direction. Horizontal lines, on the other hand, can go 
from 40-70 degrees from the horizontal direction. Due to the 
noisy conditions in the scene (i.e. posters on the walls, shadows 
from lighting, etc.), there could be vertical and horizontal lines 
that are detected which are not part of the wall-floor boundary. In 
order to minimize the incorrect line extraction, lines that match 
any of the below conditions are removed: 

• Lines that are shorter than 30 pixels 

• Vertical lines that exist entirely on the upper half of the 
image 

• Horizontal lines that appear above the vanishing point 

All the remaining vertical and horizontal lines are assumed to be 
part of the wall-floor boundaries. The convex hull for all the 
endpoints of the lines is computed which gives the rough estimate 
shape of the floor region in the image. The convex hull 
implementation in OpenCV [18] was used for the prototype. 

4.3 Walk Path Analysis 
The output from the previous floor detection step is a polygon 
indicating the detected floor. In the walk path analysis step, the 
outline of the floor is used to determine how much floor space is 
ahead of the user. 

When walking along a corridor, the perspective of the user shows 
the walls on each side of the corridor, floor, and ceiling as seen in 
Figure 4 (a). The vanishing point of the perspective line in the 
image is roughly located at the center of the image depending on 
the height and viewing angle of the user. The floor region in such 
viewing angle is roughly shaped like a trapezoid where the base is 
wider than the top. The height of the floor region would indicate 
the proximity of the user to the end of the corridor. The height 
decreases as the user approaches the end of the corridor as seen in 
Figure 5. By using the height of the estimated floor outline, the 
system can make an analysis on whether the user is safe to 
proceed walking or should stop to avoid hitting a wall. 

Figure 4. Results of each image processing step. From top-

bottom, left-right: (a) input image, (b) vertical lines in red, (c) 

horizontal lines in green, (d) cyan dots as the intersections of 

every pair of horizontal lines (vanishing point), (e) yellow line 

as the average y-axis value of all vanishing points, (f) convex 

hull of detected horizontal lines. 

Figure 5. Consecutive image frames showing the decreasing 

height of the detected floor region as the user approaches the 

end of the corridor. 

Figure 3. The Google Glass app provides the input and 

output information from and to the user. The 

Smartphone app performs Floor Extraction and 

Analysis by performing a series of image processing 

algorithms. 



The floor detection phase returns a list of points that forms the 
outline of the detected floor region. The height of this floor region 
is computed by taking the difference between the lowest and 
highest point in the outline. By testing the system using 320x240 
pixel images from multiple environments, it was found that a good 
threshold for the floor outline height is 30 pixels. An image where 
the height of the floor region is less than the threshold value 
indicates that the user is standing close to a wall. On the other 
hand, a floor region height that is greater than the threshold 
indicates that the user has enough walking space from the wall.  

4.4 User Feedback 
The Google Glass has a built-in speaker that uses bone conduction 
technology. The speaker is utilized to give guidance to the user 
while navigating in an indoor environment. 

The walk path analysis phase determines whether it is safe for the 
user to continue walking forward or should the user stop. This 
information is delivered to the user using the built-in speaker. By 
the using the Text-To-Speech library in Android, the user can hear 
alerts from the system. VirtualEyes will tell the user to “Stop” or 
“Walk” every few seconds. 

5. RESULTS 
The floor detection and walk path analysis algorithms presented in 
the previous section are tested using test images taken from 
various locations in California State University, Northridge 
(CSUN) campus. The client application was installed in a Google 
Glass Explorer Edition version 2 with firmware version XE22. 
This device runs on a Texas Instruments OMAP 4430 SoC 
1.2GHz Dual (ARMv7) processor with 2GB of RAM. The server 
application is installed in a Samsung Galaxy S4 running Android 
version 4.4. This smartphone has a Qualcomm MDM9215 + 
APQ8064T 1.9GHz Quad-core with 2GB of RAM. 

Different datasets were collected from various corridors in the 
CSUN campus specifically in Jacaranda Building, Bayramian 
Hall, and Sierra Hall. The images were captured while walking in 
a constant pace along the corridor towards a wall. For each of the 
7 datasets, the first image was taken with a distance from the user 
to the wall that ranges from 30 to 60 feet. As the user approaches 
the wall in a constant pace, this distance becomes smaller as seen 
in Figure 6. The last few images in the dataset were about 2 to 5 
feet from the wall where the floor is no longer visible which is 
shown in Figure 7. 

5.1 Floor Detection Results 
The test data were taken from different locations with a variety of 
color and texture of the floor and walls. Dataset 1 contains images 

of corridors with good floor and wall color contrast. The images 
have varying lighting conditions due to the windows that are 
present on the right side of the corridor. Dataset 4 contains images 
where the floor and walls have different colors. These images 
contain reflective floor surfaces as opposed to dataset 1 and have 
bulletin boards on the wall. The rest of the datasets are composed 
of images where the floor and walls have a poor contrast. 
However, there is a darker colored baseboard that separates the 
wall and floor in images in dataset 3, 5, 6, and 7. Sample results 
from different datasets are shown in Figure 8. 

The floor detection algorithm relies heavily on edges found in the 
images. If there is a good contrast between the floor and the wall 
pixels in the image, the system will more accurately detect the 
floor region in the image. Datasets 3 and 7 have the highest 
accuracy out of all the datasets that were tested with about 81.8% 
and 77.1% respectively. Although the floor and walls have a 
similar color, there is a darker colored baseboard on the wall that 
clearly separates floor pixels from the wall pixels. The algorithm, 
however, failed in situations where the user is turning into another 
corridor. 

Images from datasets 1 and 4 have very distinct floor and wall 
boundaries but some images were affected by other conditions, 
shown in Figure 11. Images from dataset 1 contain a window on 
the right side of the image. Objects outside the window contain 
edges that were also detected by the edge detection algorithm 
which negatively affected the floor detection. For dataset 4, 
bulletin boards that are attached on the wall caused stray edges to 
be detected which cause the floor detection to incorrectly identify 
the floor region.  

Figure 6. Sample images with enough distance from the user to 

the wall that shows the floor region. 

Figure 7. Sample images captured when the user is standing 

close to the wall. 

Figure 8. The floor detection algorithm is able to estimate the 

floor region from captured images of corridors with different 

color, texture, and lighting. The images above shows the 

results of the floor detection phase from different datasets. 



Table 1. Table shows the number of correctly and incorrectly 

identified floor regions in the different sets of test images. 

Data Set 
Total 

Images 

% of 

Correctly 

Identified 

% of 

Incorrectly 

Identified 

1 48 75% 25% 

2 20 10% 90% 

3 22 81.82% 18.18% 

4 27 66.67% 33.33% 

5 48 77.08% 22.92 

6 24 70.83% 29.17% 

7 94 65.96% 34.04% 

 

Of all the sets of data for testing, dataset 2 has the lowest accuracy 
rate with just 10% as seen in Table 1. These are images of 
corridors where the floor and wall color are very similar as shown 
in Figure 11. The edge detection step failed to detect the wall-
floor boundary which caused the floor detection to fail. In this 
kind of input images, it might help to have an image pre-
processing step that would enhance the edges in the image 
without making the image noisy. 

Furthermore, the floor detection does not perform well on images 
captured when turning in corridors as shown in Figure 11. The 
algorithm relies on finding the wall-floor boundaries on both sides 
of the floor. When turning in corridors, there is only one side 
where the wall is visible. 

5.2 Walk Path Analysis 
The floor outline result of the floor detection phase is used as 
input in the walk path analysis. To analyze the results of the walk 
path analysis phase, the height of the floor outline was compared 
against the actual distance of the user from the wall when the 
image was captured. Since the walk path analysis phase is highly 
dependent on the accuracy of the results from the floor detection 
phase, images that did not have successful floor detection results 
were removed from the dataset for this testing. Furthermore, since 
dataset 2 had a very low overall accuracy in floor detection, it was 
not included for this testing. 

The results of the comparison are shown in Figure 12. The 
vertical axis indicates the height of the detected floor region in 
pixels. The horizontal axis indicates the distance of the user from 
the wall when the image was captured. 

It can be seen from Figure 12 that the overall trend of the graphs 
indicates a decreasing height of the floor outline. This reflects the 
decreasing distance as the user walk closer to the wall. At about 
10 feet or less, the height in pixels of the floor outline begins to 
decrease sharply. And at about 5 feet is where the floor outline 
height drops to 0. This indicates that the floor detection phase no 
longer detects any floor in the image which is accurate as seen in 
sample images in Figure 7. This shows that the floor region height 
can be used as a parameter in estimating the proximity of the user 
to the wall. 

Figure 12 also shows the floor outline height does not linearly 
decrease along with the decreasing actual distance of the user 
from the wall. There are random spikes in the graph which 
indicates that the floor region detected increased in height. This is 
mainly caused by the user movement while walking. The use of a 

head mounted camera is sensitive to changes in orientation. There 
will be a slight change to the height of the camera as the user 
makes a step forward. Furthermore, camera orientation will also 
be affected by movements of the head of the user. 

If the floor detection phase returns an inaccurate result, this 
affects the result of the walk path analysis phase. To overcome 
this, VirtualEyes was designed to keep a running average of the 
floor outline height as the user walks forward. The average height 
of the resulting floor outline of the past 10 images is computed. 
This value is used in determining the appropriate feedback sent to 
the user. With this approach, if only one image in a continuous 
image sequence fails in the floor detection step, this will not 
greatly affect the results of the walk path analysis phase. 

6. CONCLUSION 
This paper has shown the effectiveness of using mobile devices 

Figure 12. Comparison of the height of the floor outline and 

the actual distance from the wall for different datasets. 

Figure 11. The floor detection fails on images where the floor 

and wall pixels have low contrast. 

Figure 11. Other elements present in the image that could 

confuse the edge detection algorithm such as windows and 

bulletin boards cause the floor detection algorithm to fail. 

Figure 11. The floor detection algorithm fails on correctly 

estimating the floor outline when turning in corridors. 



for a navigational guidance system for the visually impaired. The 
approach can effectively alert the user when the floor outline 
height reaches a low value which indicates that there is no more 
walking space ahead of the user. 

The system uses floor detection in user indoor guidance, instead 
of the previously explored obstacle detection. The effectiveness of 
this approach was demonstrated with the VirtualEyes prototype. 
The system achieved up to 81.8% accurate detection of the floor 
on a set of over 200 distinct images. The floor detection algorithm 
implemented in the system works well in corridors where the wall 
on both sides are visible and have a distinctive color contrast 
between the floor and the walls. Detection of floors on images 
with minimal color contrast could be improved with the use of 
some image pre-processing algorithms.  
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