
Demonstration Paper: Wearable Computing for Image-
Based Indoor Navigation of the Visually Impaired

Gladys Garcia
California State University, Northridge

Los Angeles, CA

gladysmae.garcia.999@my.csun.edu

Ani Nahapetian
California State University, Northridge

Los Angeles, CA

ani@csun.edu

ABSTRACT

In this paper, an image-based non-obtrusive indoor navigation
system for the visually impaired is presented. The system makes
use of image processing algorithms to extract floor regions from
images captured from a wearable eye-mounted heads-up display
device. A prototype system called VirtualEyes is presented, where
floor regions are analyzed to provide the user with voiced
guidance for navigation. The floor detection algorithm was tested
against over 200 images captured from indoor corridors of various
lighting conditions and achieved up to 81.8% accuracy.

Categories and Subject Descriptors

C.3.3 [Special-Purpose and Application-Based Systems]: Signal
Processing Systems.

General Terms

Algorithms, Design, Experimentation.

Keywords

Mobile computing, wearable computing, assistive technology,
image processing, floor detection, computer vision, Google Glass.

1. INTRODUCTION
There are an estimated 285 million people in the world that are
visually impaired [1], including 39 million who are blind and 246
million with low vision, i.e. with moderate to severe visual
impairment. The visually impaired often require help to navigate
unfamiliar environments, including relying on a walking stick or a
guide dog, to navigate spaces and avoid obstructions. Researchers
have focused on alternatives, with mobile and wearable
technology holding the potential to advance research in this area.

In the robotics field, image-based approaches are commonly used
for navigational guidance or obstacle detection. Information is
extracted from the captured images of the environment with the
use of image processing algorithms.

In this work, a floor detection algorithm that was used for the
automatic navigation of a mobile robot was adapted to create a

mobile indoor navigation system for the visually impaired. A
prototype system called VirtualEyes was developed using Google
Glass. Google Glass is a wearable device that is capable of
running Android applications. It has a camera feature that was
utilized to capture images from the surroundings. It is non-
obtrusive and is worn in a way that allows the camera to capture
an unobstructed view of the user’s environment.

The remainder of the paper presents the hardware and software
components of the system, along with the technical approach used
for navigational guidance using image processing. The algorithms
developed for the VirtualEyes system were tested on over 200
different images with the results provided and discussed.

2. RELATED WORK
Wearable devices have been widely used for different
applications. For example, Najeeb et al. present a wearable system
that uses an off-the-shelf EEG device that reads brain signals to
select letters, compile words, and create sentences meant for
people with paralysis [19]. A wearable system for determining
body and arm positioning using ambient light sensors is presented
in [22]. A smart watch is used in [20] to recognize arm gestures
for hands-free interaction. Altwaijry et al. present a system that
uses Google Glass in [21] that can recognize landmarks by
capturing an image of the scene and the GPS information if
available.

There has also been research in wearable devices for guiding the
visually impaired in unfamiliar environments. The underlying
technology varies from a modernized version of the walking stick
(a.k.a. white cane) to image-based approaches.

Fernandes et al. describe a system that uses RFID tags attached at
the end of the white cane [2]. A virtual white cane is presented in
[3] by using a laser pointer attached to a smartphone. Both
approaches require the use of specialized hardware.

In terms of the image-based approach, different systems made use
of a smartphone [4], Microsoft Kinect [5], and custom hardware
using two cameras mounted on the user’s shoulders [6] as
interfaces to gather images of the environment. The use of pre-
installed special markers in the environment to identify a safe
walking path for the user is also presented in [7].

Such image-based systems commonly adapt the floor detection or
obstacle detection implementation in the robotics field. The use of
stereo vision is common in this approach as discussed in [6][8].
These systems are able to detect floor regions and obstacles in the
environment and calculate the distance of such objects from the
user.

The work of Tapu et al. [4] uses monocular vision by utilizing the
camera in a smartphone which is a less obtrusive design. Obstacle

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions
from Permissions@acm.org.
WH '15, October 14-16, 2015, Bethesda, MD, USA
© 2015 ACM. ISBN 978-1-4503-3851-6/15/10…$15.00
DOI: http://dx.doi.org/10.1145/2811780.2811959

detection is performed to guide the user when walking in the
outdoor environment.

Another common approach in the robotics field is to use image
sequences from the video feed as described in [9][10] to track the
movement in the scene.

In terms of floor detection, other approaches make use of a single
indoor image of the environment to classify floor regions. The
implementation presented in [11] makes use of image
segmentation to identify floor regions in the image. Authors of
[12][13] use horizontal and vertical lines found in the image to
detect floor regions.

3. SYSTEM OVERVIEW
In this section, the architectural overview with the hardware and
software components of VirtualEyes, a system for the visually
impaired navigation guidance, is presented. The system is
composed of a paired Google Glass and Android smartphone.
These two devices, connected via Bluetooth, work together in
gathering image data from the indoor environment using the
Google Glass camera, process the data on the smartphone, and
provide valuable feedback to the user through the use of the built-
in speaker on the Glass.

3.1 Google Glass
The Google Glass, as shown in Figure 1, is a head-mounted,

rechargeable battery-operated wearable device, which is capable
of running Android applications. This device has features similar
to a smartphone ranging from high resolution display, camera,
Bluetooth, Wi-Fi, etc. [14]. The camera in the Glass is capable of
taking 5 megapixel images. Since the device is worn over the eyes
of the user, similar to prescription glasses, the images taken from
the camera captures the surroundings in the perspective of the
user.

Since this device is still in its early stages, there are a few
limitations to its performance. The battery in the device typically
lasts one hour of usage, especially with the use of Bluetooth and
the camera. Heating of the device could also cause discomfort to
the user while the Glass is in operation. Furthermore, there is
limited processing power available in the Glass to perform the
image processing required in this system. To overcome these
limitations, the Bluetooth capability of the Glass was utilized to
pair it with an Android smartphone and offload processing that
would require substantial power.

3.2 Android Smartphone
Mobile smartphones have been a ubiquitous device that is

accessible for most people. The higher processing power and
better battery life in these smartphones as compared to Google
Glass allows for an ideal mobile and lightweight device for
performing powerful operations that might prove difficult to run
on the Glass.

The use of Android operating system allows the integration of
many open source third party libraries that provides an easy to use
framework in performing tasks required by the system such as
OpenCV.

3.3 OpenCV
Open Source Computer Vision (OpenCV) is a widely used library
of image processing algorithms. The library supports different
operating systems including Android and has interfaces for a
variety of programming languages such as C, C++, and Java [15].
The built-in functions in the OpenCV library were used in this
system for most of the image processing tasks.

3.4 Mobile Applications
There are two different applications developed for the system
which are installed in the respective devices. Figure 2 shows an
overview of the functionalities and communication between the
applications.

An android application (client app) is installed on the Google
Glass that will start up the Glass camera and send captured image
frames to the paired Android smartphone. This application also
receives text information coming from the Android smartphone
and converts this into voice guidance using the Text-To-Speech
framework of the Android operating system.

Another android application (server app) is installed on the
Android smartphone that is paired with the Google Glass. This
application performs various image processing algorithms using
OpenCV in order to extract information from the received images.
The features from the image are extracted which are then
evaluated to analyze the floor region. Once the image analysis has
been completed, a feedback is sent to the Google Glass through
the Bluetooth connection that has been established.

Figure 1. Google Glass is a rechargeable battery-

operated wearable device with built-in features such as

camera, speakers, Bluetooth, Wi-Fi, etc.

Figure 2. Images captured by the Google Glass are sent over

to the Android smartphone via Bluetooth for Image

Processing and Floor Detection and Analysis. The results of

the analysis are sent back to the Google Glass for voiced

guidance.

4. APPROACH
In this section, the implementation of VirtualEyes is discussed
which includes the communication between the paired devices,
floor extraction and analysis, and user feedback as seen in Figure
3.

4.1 Device Communication
The paired devices transmit data to each other over a Bluetooth
connection. The Glass application continuously sends image
frames to the Android smartphone for processing.

A 320x240 RGBA image frame captured by the Glass is about
300 kilobytes. To increase the frame rate of the application, this is
compressed to a jpeg format using the built-in compression
function in the OpenCV library. This reduces the size of the
image to less than 100 kilobytes.

4.2 Floor Detection
The images captured by the Glass typically contain the walls,
floor, ceiling, and other objects within the frame. The floor region
is surrounded by walls in all sides. By detecting the wall-floor
boundaries from the image, the floor region can be detected

within the image as shown in Figure 4 and later analyzed to
provide feedback to the user.

The floor detection approach discussed in [12] was adapted in the
implementation of this system. This approach is capable of
detecting floor regions from a single indoor corridor image.

The first step is to apply the Canny Edge detection [16] algorithm
in the image to identify the edges in the image. An edge is a
region in the image where there is a sudden change in the pixel
intensity. This outputs a black and white image where the white
pixels are the identified edges in the image.

From the black and white edge image, we try to find vertical and
horizontal lines in the image using Hough Line Transform [17].
Vertical lines are defined as lines that are within 10 degrees from
the vertical direction. Horizontal lines, on the other hand, can go
from 40-70 degrees from the horizontal direction. Due to the
noisy conditions in the scene (i.e. posters on the walls, shadows
from lighting, etc.), there could be vertical and horizontal lines
that are detected which are not part of the wall-floor boundary. In
order to minimize the incorrect line extraction, lines that match
any of the below conditions are removed:

• Lines that are shorter than 30 pixels

• Vertical lines that exist entirely on the upper half of the
image

• Horizontal lines that appear above the vanishing point

All the remaining vertical and horizontal lines are assumed to be
part of the wall-floor boundaries. The convex hull for all the
endpoints of the lines is computed which gives the rough estimate
shape of the floor region in the image. The convex hull
implementation in OpenCV [18] was used for the prototype.

4.3 Walk Path Analysis
The output from the previous floor detection step is a polygon
indicating the detected floor. In the walk path analysis step, the
outline of the floor is used to determine how much floor space is
ahead of the user.

When walking along a corridor, the perspective of the user shows
the walls on each side of the corridor, floor, and ceiling as seen in
Figure 4 (a). The vanishing point of the perspective line in the
image is roughly located at the center of the image depending on
the height and viewing angle of the user. The floor region in such
viewing angle is roughly shaped like a trapezoid where the base is
wider than the top. The height of the floor region would indicate
the proximity of the user to the end of the corridor. The height
decreases as the user approaches the end of the corridor as seen in
Figure 5. By using the height of the estimated floor outline, the
system can make an analysis on whether the user is safe to
proceed walking or should stop to avoid hitting a wall.

Figure 4. Results of each image processing step. From top-

bottom, left-right: (a) input image, (b) vertical lines in red, (c)

horizontal lines in green, (d) cyan dots as the intersections of

every pair of horizontal lines (vanishing point), (e) yellow line

as the average y-axis value of all vanishing points, (f) convex

hull of detected horizontal lines.

Figure 5. Consecutive image frames showing the decreasing

height of the detected floor region as the user approaches the

end of the corridor.

Figure 3. The Google Glass app provides the input and

output information from and to the user. The

Smartphone app performs Floor Extraction and

Analysis by performing a series of image processing

algorithms.

The floor detection phase returns a list of points that forms the
outline of the detected floor region. The height of this floor region
is computed by taking the difference between the lowest and
highest point in the outline. By testing the system using 320x240
pixel images from multiple environments, it was found that a good
threshold for the floor outline height is 30 pixels. An image where
the height of the floor region is less than the threshold value
indicates that the user is standing close to a wall. On the other
hand, a floor region height that is greater than the threshold
indicates that the user has enough walking space from the wall.

4.4 User Feedback
The Google Glass has a built-in speaker that uses bone conduction
technology. The speaker is utilized to give guidance to the user
while navigating in an indoor environment.

The walk path analysis phase determines whether it is safe for the
user to continue walking forward or should the user stop. This
information is delivered to the user using the built-in speaker. By
the using the Text-To-Speech library in Android, the user can hear
alerts from the system. VirtualEyes will tell the user to “Stop” or
“Walk” every few seconds.

5. RESULTS
The floor detection and walk path analysis algorithms presented in
the previous section are tested using test images taken from
various locations in California State University, Northridge
(CSUN) campus. The client application was installed in a Google
Glass Explorer Edition version 2 with firmware version XE22.
This device runs on a Texas Instruments OMAP 4430 SoC
1.2GHz Dual (ARMv7) processor with 2GB of RAM. The server
application is installed in a Samsung Galaxy S4 running Android
version 4.4. This smartphone has a Qualcomm MDM9215 +
APQ8064T 1.9GHz Quad-core with 2GB of RAM.

Different datasets were collected from various corridors in the
CSUN campus specifically in Jacaranda Building, Bayramian
Hall, and Sierra Hall. The images were captured while walking in
a constant pace along the corridor towards a wall. For each of the
7 datasets, the first image was taken with a distance from the user
to the wall that ranges from 30 to 60 feet. As the user approaches
the wall in a constant pace, this distance becomes smaller as seen
in Figure 6. The last few images in the dataset were about 2 to 5
feet from the wall where the floor is no longer visible which is
shown in Figure 7.

5.1 Floor Detection Results
The test data were taken from different locations with a variety of
color and texture of the floor and walls. Dataset 1 contains images

of corridors with good floor and wall color contrast. The images
have varying lighting conditions due to the windows that are
present on the right side of the corridor. Dataset 4 contains images
where the floor and walls have different colors. These images
contain reflective floor surfaces as opposed to dataset 1 and have
bulletin boards on the wall. The rest of the datasets are composed
of images where the floor and walls have a poor contrast.
However, there is a darker colored baseboard that separates the
wall and floor in images in dataset 3, 5, 6, and 7. Sample results
from different datasets are shown in Figure 8.

The floor detection algorithm relies heavily on edges found in the
images. If there is a good contrast between the floor and the wall
pixels in the image, the system will more accurately detect the
floor region in the image. Datasets 3 and 7 have the highest
accuracy out of all the datasets that were tested with about 81.8%
and 77.1% respectively. Although the floor and walls have a
similar color, there is a darker colored baseboard on the wall that
clearly separates floor pixels from the wall pixels. The algorithm,
however, failed in situations where the user is turning into another
corridor.

Images from datasets 1 and 4 have very distinct floor and wall
boundaries but some images were affected by other conditions,
shown in Figure 11. Images from dataset 1 contain a window on
the right side of the image. Objects outside the window contain
edges that were also detected by the edge detection algorithm
which negatively affected the floor detection. For dataset 4,
bulletin boards that are attached on the wall caused stray edges to
be detected which cause the floor detection to incorrectly identify
the floor region.

Figure 6. Sample images with enough distance from the user to

the wall that shows the floor region.

Figure 7. Sample images captured when the user is standing

close to the wall.

Figure 8. The floor detection algorithm is able to estimate the

floor region from captured images of corridors with different

color, texture, and lighting. The images above shows the

results of the floor detection phase from different datasets.

Table 1. Table shows the number of correctly and incorrectly

identified floor regions in the different sets of test images.

Data Set
Total

Images

% of

Correctly

Identified

% of

Incorrectly

Identified

1 48 75% 25%

2 20 10% 90%

3 22 81.82% 18.18%

4 27 66.67% 33.33%

5 48 77.08% 22.92

6 24 70.83% 29.17%

7 94 65.96% 34.04%

Of all the sets of data for testing, dataset 2 has the lowest accuracy
rate with just 10% as seen in Table 1. These are images of
corridors where the floor and wall color are very similar as shown
in Figure 11. The edge detection step failed to detect the wall-
floor boundary which caused the floor detection to fail. In this
kind of input images, it might help to have an image pre-
processing step that would enhance the edges in the image
without making the image noisy.

Furthermore, the floor detection does not perform well on images
captured when turning in corridors as shown in Figure 11. The
algorithm relies on finding the wall-floor boundaries on both sides
of the floor. When turning in corridors, there is only one side
where the wall is visible.

5.2 Walk Path Analysis
The floor outline result of the floor detection phase is used as
input in the walk path analysis. To analyze the results of the walk
path analysis phase, the height of the floor outline was compared
against the actual distance of the user from the wall when the
image was captured. Since the walk path analysis phase is highly
dependent on the accuracy of the results from the floor detection
phase, images that did not have successful floor detection results
were removed from the dataset for this testing. Furthermore, since
dataset 2 had a very low overall accuracy in floor detection, it was
not included for this testing.

The results of the comparison are shown in Figure 12. The
vertical axis indicates the height of the detected floor region in
pixels. The horizontal axis indicates the distance of the user from
the wall when the image was captured.

It can be seen from Figure 12 that the overall trend of the graphs
indicates a decreasing height of the floor outline. This reflects the
decreasing distance as the user walk closer to the wall. At about
10 feet or less, the height in pixels of the floor outline begins to
decrease sharply. And at about 5 feet is where the floor outline
height drops to 0. This indicates that the floor detection phase no
longer detects any floor in the image which is accurate as seen in
sample images in Figure 7. This shows that the floor region height
can be used as a parameter in estimating the proximity of the user
to the wall.

Figure 12 also shows the floor outline height does not linearly
decrease along with the decreasing actual distance of the user
from the wall. There are random spikes in the graph which
indicates that the floor region detected increased in height. This is
mainly caused by the user movement while walking. The use of a

head mounted camera is sensitive to changes in orientation. There
will be a slight change to the height of the camera as the user
makes a step forward. Furthermore, camera orientation will also
be affected by movements of the head of the user.

If the floor detection phase returns an inaccurate result, this
affects the result of the walk path analysis phase. To overcome
this, VirtualEyes was designed to keep a running average of the
floor outline height as the user walks forward. The average height
of the resulting floor outline of the past 10 images is computed.
This value is used in determining the appropriate feedback sent to
the user. With this approach, if only one image in a continuous
image sequence fails in the floor detection step, this will not
greatly affect the results of the walk path analysis phase.

6. CONCLUSION
This paper has shown the effectiveness of using mobile devices

Figure 12. Comparison of the height of the floor outline and

the actual distance from the wall for different datasets.

Figure 11. The floor detection fails on images where the floor

and wall pixels have low contrast.

Figure 11. Other elements present in the image that could

confuse the edge detection algorithm such as windows and

bulletin boards cause the floor detection algorithm to fail.

Figure 11. The floor detection algorithm fails on correctly

estimating the floor outline when turning in corridors.

for a navigational guidance system for the visually impaired. The
approach can effectively alert the user when the floor outline
height reaches a low value which indicates that there is no more
walking space ahead of the user.

The system uses floor detection in user indoor guidance, instead
of the previously explored obstacle detection. The effectiveness of
this approach was demonstrated with the VirtualEyes prototype.
The system achieved up to 81.8% accurate detection of the floor
on a set of over 200 distinct images. The floor detection algorithm
implemented in the system works well in corridors where the wall
on both sides are visible and have a distinctive color contrast
between the floor and the walls. Detection of floors on images
with minimal color contrast could be improved with the use of
some image pre-processing algorithms.

7. REFERENCES
[1] WHO Visual impairment and blindness

http://www.who.int/mediacentre/factsheets/fs282/en/
Accessed on April 7, 2015.

[2] Faria, J.; Lopes, S.; Fernandes, H.; Martins, P.; Barroso, J.,
"Electronic white cane for blind people navigation
assistance," World Automation Congress (WAC), 2010 ,
vol., no., pp.1,7, 19-23 Sept. 2010.

[3] Pablo Vera, Daniel Zenteno, and Joaquín Salas. 2014. A
smartphone-based virtual white cane. Pattern Anal. Appl. 17,
3 (August 2014), 623-632.

[4] Tapu, R.; Mocanu, B.; Zaharia, T., "A computer vision
system that ensure the autonomous navigation of blind
people," E-Health and Bioengineering Conference (EHB),
2013 , vol., no., pp.1,4, 21-23 Nov. 2013.

[5] Zenteno Jiménez, Enrique Daniel, and Joaquín Salas
Rodríguez. Electronic Travel Aids With Personalized Haptic
Feedback for Visually Impaired People. Instituto Politécnico
Nacional (IPN), 2014.

[6] Shang Wenqin; Jiang Wei; Chu Jian, "A machine vision
based navigation system for the blind," Computer Science
and Automation Engineering (CSAE), 2011 IEEE
International Conference on , vol.3, no., pp.81,85, 10-12
June 2011.

[7] Fernandes, H.; Costa, P.; Filipe, V.; Hadjileontiadis, L.;
Barroso, J., "Stereo vision in blind navigation assistance,"
World Automation Congress (WAC), 2010 , vol., no., pp.1,6,
19-23 Sept. 2010.

[8] Okada, K.; Inaba, M.; Inoue, H., "Walking navigation system
of humanoid robot using stereo vision based floor
recognition and path planning with multi-layered body
image," Intelligent Robots and Systems, 2003. (IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on ,
vol.3, no., pp.2155,2160 vol.3, 27-31 Oct. 2003.

[9] Young-geun Kim; Hakil Kim, "Layered ground floor
detection for vision-based mobile robot navigation,"
Robotics and Automation, 2004. Proceedings. ICRA '04.

2004 IEEE International Conference on , vol.1, no., pp.13,18
Vol.1, 26 April-1 May 2004

[10] Pears, N.; Bojian Liang, "Ground plane segmentation for
mobile robot visual navigation," Intelligent Robots and
Systems, 2001. Proceedings. 2001 IEEE/RSJ International
Conference on , vol.3, no., pp.1513,1518 vol.3, 2001

[11] Changhwan Chun; Dongjin Park; Wonjun Kim; Changick
Kim, "Floor detection based depth estimation from a single
indoor scene," Image Processing (ICIP), 2013 20th IEEE
International Conference on , vol., no., pp.3358,3362, 15-18
Sept. 2013

[12] Yinxiao Li; Birchfield, S.T., "Image-based segmentation of
indoor corridor floors for a mobile robot," Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International
Conference on , vol., no., pp.837,843, 18-22 Oct. 2010

[13] Barcelo, G.C.; Panahandeh, G.; Jansson, M., "Image-based
floor segmentation in visual inertial navigation,"
Instrumentation and Measurement Technology Conference
(I2MTC), 2013 IEEE International , vol., no., pp.1402,1407,
6-9 May 2013.

[14] Google Glass - Tech Specs.
https://support.google.com/glass/answer/3064128?hl=en
Accessed on February 24, 2015.

[15] OpenCV http://opencv.org/ Accessed on March 8, 2015

[16] Canny Edge Detector - OpenCV 2.4.9.0 Documentation
http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/canny
_detector/canny_detector.html Accessed on March 1, 2015.

[17] Hough Line Transform - OpenCV 2.4.9.0 Documentation
http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/hough
_lines/hough_lines.html Accessed on March 1, 2015.

[18] Convex Hull – OpenCV 2.4.11.0 Documentation
http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptor
s/hull/hull.html Accessed on April 20, 2015.

[19] Dina Najeeb, Antonio Grass, Gladys Garcia, Ryan Debbiny,
and Ani Nahapetian. 2014. MindLogger: a brain-computer
interface for word building using brainwaves. In Proceedings
of the 1st Workshop on Mobile Medical Applications (MMA
'14). ACM, New York, NY, USA, 6-11.

[20] Costante, G.; Porzi, L.; Lanz, O.; Valigi, P.; Ricci, E.,
"Personalizing a smartwatch-based gesture interface with
transfer learning," Signal Processing Conference
(EUSIPCO), 2014 Proceedings of the 22nd European , vol.,
no., pp.2530,2534, 1-5 Sept. 2014.

[21] Altwaijry, H.; Moghimi, M.; Belongie, S., "Recognizing
locations with Google Glass: A case study," Applications of
Computer Vision (WACV), 2014 IEEE Winter Conference
on , vol., no., pp.167,174, 24-26 March 2014.

[22] Arsen Papisyan, Ani Nahapetian. LightVest: A Wearable
Body Position Monitor Using Ambient and Infrared Light.
ACM International Conference on Body Area Networks
(BodyNets), September 2014.

