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Abstract
With the increasing size and sophistication of circuits and specifically in 
the presence of IP blocks, new wirelength estimation methods are 
needed in the design flow of large-scale circuits. Up to now, the 
proposed techniques for wirelength estimation in the presence of IP 
blocks approached this problem either in a flat framework based on the 
geometrical structure of the circuit or in a hierarchical framework 
based on uniform distribution property for standard cells. In this paper, 
we propose a technique for hierarchical derivation of wirelength 
estimation in the presence of single and multiple blockages using Rent’s 
parameter of the circuit by assuming non-uniform probability 
distribution for standard cells. To measure the accuracy of our 
estimation, we compared our results with the results of placement and 
routing using a commercial CAD tool. The results illustrate that in the 
presence of multiple IP blocks, the average error of our technique is less 
than 8%, as compared to its counterparts with the  average error of 35% 
and 150%. 
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1. Introduction 
Computer-aided design flow is experiencing the trend of 
combining front-end floor-planning and back-end physical 
placement, which is indeed necessary to achieve more efficient 
designs. In this process, a fast and yet accurate estimation of 
system parameters such as power, clock frequency, and 
wirelength is critical to provide the front-end tool with accurate-
enough information to adjust the early design decisions before 
proceeding deep in the design flow.  
Early work on wirelength estimation is based upon an empirical 
model known as Rent’s Rule [4]. Rent’s Rule correlates the 
number of signal input and output terminals T, to the number of 
gates C, in a random logic network as T=ACP. A is often called 
Rent coefficient, which is the average number of pins per cell. 
The Rent exponent, P, is the feature parameter of the circuit [5] 
which determines its complexity. The higher the Rent exponent, 
the more complex a circuit is.  Using Rent’s Rule, the first work 
on wirelength estimation is done by Landman and Russo [6] 
which was later improved by Donath [2]. [10] presented a new 
analysis of Donath’s model that yields the length distribution 
functions of the interconnection at both the hierarchical level 
and system level.  More recent work improves the estimation by 
considering non-uniform probability [7, 11] or recursively 
applying Rent's rule on an entire monolithic system [8].  
Most of the research done on wirelength estimation is based on 
regularly placed circuits such as standard cell designs. With the 
trend toward IP-block-based design, macro cells as blockage 
(sometimes referred to as obstacle), are more likely to be present 
in the circuit [3]. The blockage may be an on-chip memory, 
analog or RF blocks, or pre-designed hard IP. The presence of 
the blockage may significantly increase wirelength and cause 
congestion [3]. Since the presence of blockage makes the 
traditional wirelength estimations far from reality, new 
techniques should be derived to address the problem of 
wirelength estimation. The first work on the wirelength 
estimation in the presence of obstacles has been done by Cheng 

et. al. [3, 9]. In [3], the authors identified two distinct effects of 
obstacles on interconnection length: (1) changes due to the 
redistribution of interconnect terminals and (2) detours that have 
to be made around the obstacles. Theoretical expressions of both 
effects for two-terminal nets have been derived in a flat 
framework based on geometrical characteristics of the circuits. 
In [9], the authors represent a more complicated analytical 
model using a polynomial generation technique considering the 
layout region aspect ratio and the presence of the blockages. 
Their work, however, does not consider the complexity of the 
circuits into account and hence the average wirelength obtained 
form these techniques overestimate the actual wirelength for 
circuits with large chip area. In their method as long as two 
circuits have the same chip area, number of IP blocks and 
geometrical parameters for the IP blocks, they result in a unique 
estimation for the length of wire for both circuits, even though 
these two circuits may have different number and characteristics 
for standard cells and interconnections. Another work has been 
done in [1] which is an extension to Donath’s hierarchical 
method for considering the effect of IP blocks. The major plus 
of this work is to consider the complexity of circuit (measured 
by its Rent exponent) in its analysis along with geometrical 
characteristics of the circuit. But, its main drawback is that it 
assumes a uniform probability distribution for all the standard 
cells which is not a realistic assumption.  
In the current research, starting from Donath’s hierarchical 
technique [2], his approach is extended to be able to consider 
obstacles in the placement area. It is shown how to derive a 
closed form expression for the total wirelength in the cases that 
the chip area includes either a single blockage or multiple 
blockages. In this work, we assumed a non-uniform probability 
distribution for standard cells over non-blocked parts of the 
circuit which was shown to be an accurate model for circuits in 
the real world [7]. Simulation results on the large circuits 
confirm that, in the presence of the obstacles, this technique is 
more suitable to estimate the wirelength than non-hierarchical 
techniques or techniques with uniform probability assumption. 
The remainder of this paper is organized as follows. In Section 2, 
our methodology is explained. While Sections 3 and 4 present a 
theoretical analysis of average wirelength in the presence of 
single or multiple obstacles, Section 5 shows the experimental 
setup and simulation results of the proposed technique. 
Concluding remarks and future work are presented in Section 6. 

2. Methodology 
Similar to [1, 2], our technique to estimate the average 
wirelength is based on a top-down hierarchical placement of the 
circuit into a square Manhattan grid in the presence of obstacles. 
The circuit is partitioned hierarchically into four sub-circuits. 
This hierarchical partitioning is continued until the number of 
the standard cells in all of the sub-circuits is equal to or less than 
β, where β is a predefined constant.  At each level of hierarchy, 
we deduce the average number nh of interconnections and the 
average length rh of interconnections between each two sub-
circuits belonging to the same (h+1) level of hierarchy, but 
different h level of hierarchy.  



Given the above model for the circuit, the feature parameter of 
the circuit P which is given by Rent’s rule, and the above 
partitioning scheme, we want to estimate the total 
interconnection length of the circuit in the presence of obstacles. 
This is done by calculating the average number of 
interconnections nh and the average length of the 
interconnections Lh at every hierarchical level h. The total 
interconnection length over all hierarchical levels is  
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where H is the finest level of hierarchy. Since at every step of 
partitioning, each sub-circuit is divided by four, and in the last 
level of hierarchy the number of cells inside each sub-circuit is 
less than the factor β, the number of levels can be extracted from, 
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The average number of interconnections between the sub-
circuits in each level of hierarchy has been extracted using 
Rent’s exponent which is experimentally proven to be a good 
indicator of the complexity of the circuit [2]. 
Using a similar type of analysis as [3], the average length of 
interconnection between the sub-circuits is calculated in each 
level of the hierarchy. Then, using formula (1), we estimate the 
total wirelength by multiplying the average number of 
interconnections by the average length of interconnections for 
each level of the hierarchy and summing all these values over all 
the hierarchical levels. 
2.1. Average Number of Interconnections at Each 
Level of Hierarchy 
In [2], Donath showed that by apply Rent rule on each level of 
hierarchy, the average number of interconnections at each 
hierarchical level can be calculated from,  

)1(1 4)41( −−−= PLP
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where C is the total number of cells, P is the Rent exponent, A is 
the Rent coefficient and α is the fraction of the number of 
terminals for all the interconnections in one level. The value α is 
½ if each net has just two terminals, and is somewhat greater 
than ½ but less than 1 for circuits with multi-terminal nets [2]. 
Parameter L shows the level of hierarchy.  
2.2. The Average Length of Interconnections at Each 
Level of Hierarchy 
To start analyzing average wirelength at each level of hierarchy, 
we need to make some assumptions and define some 
terminologies at first. 
Assumption 1: To compute Lh we assume that all of the nets 
have two terminals. This simplification is based on the 
knowledge that these nets are much more than all the other nets 
in the circuit and that multi-terminal nets can be modeled as a 
collection of two-terminal nets [12]. The effect of multi-terminal 
nets is incorporated into our estimation by using higher values 
for α  in the calculation of the average number of 
interconnections nh as shown in the previous section. 
Assumption 2: We assume that the available routing layers are 
such that the blockages are obstructions for both placement and 
routing. This model is based on what commercial tools support 
for placement and routing of large-scale circuits. 
Definition 1: In level h of hierarchy an intra-bin wire is a wire 
that its terminals belong to the same bin, i.e. same part of the 
chip area. 
Definition 2: An inter-bin wire is a wire that its terminals 
belong to different bins in level h of hierarchy, but to one bin in 
the level (h+1) of hierarchy.   
Definition 3: In the presence of the obstacles, the transparent-
block wirelength, LTB, is defined as the wirelength when the 
obstacle is assumed to be transparent and wires can pass through 
it. For two-terminal nets, transparent-block wirelength is the 
Manhattan distance between them. 

Definition 4: Detour wirelength, LDT, is the detour length 
needed in a routing wire in the presence of the obstacles. In 
other words, LTB =L -LDT, where L is the Steiner minimal length 
of the net such that no part of the wire is routed inside any of the 
obstacles. 
Figure 1 shows the intra-bin transparent-block and detour 
definitions. 
In the next two sections, we show how to obtain the average 
wirelength in each level of hierarchy in the cases that we have 
single blockage or multiple blockages in the chip area. For the 
case that there is only a single blockage, we describe the 
research done by [1] which assumes uniform probability 
distribution for standard cells and illustrate how to extend their 
method for non-uniform probability distribution to improve the 
accuracy of estimation. For the multiple blockages case we just 
describe our method which assumes non-uniform probability 
distribution for cells. It is shown how to derive transparent-block 
and detour wirelength for both intra-bin and inter-bin nets. 
Basically, the inter-bin average wirelength analysis is the one we 
need to use in our methodology. We introduce the analysis for 
intra-bin average wirelength to help us doing the analysis for 
inter-bin average wirelength. To obtain the average wirelength, 
we decompose it into three parts, namely transparent-block and 
detour in X and Y directions such that, 

v
DT

h
DTTB LLLL ++=  (4) 

where h
DTL and v

DTL  are the average detour in X and Y direction 
and TBL is the average transparent-block wirelength. 

3. Theoretical Analysis of the Average 
Wirelength with Single IP Blocks 
In this section, first we describe the method used in [1] to 
analyze the average wirelength in the presence of a single 
blockage by assuming a uniform probability distribution for 
cells and then we illustrate our approach to extend it by 
removing this assumption. 
3.1. Uniform Probability Distribution 
A. Average Intra-bin Wirelength 
If there is no obstacle in the bin area, the average intra-bin 
wirelength can be easily obtained from (5), as shown in [3]. 
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where subscript “intra” denotes that the average is taken over all 
intra-bin nets, in contrast to the inter-bin nets which will be 
discussed later. 
To obtain the average wirelength in the presence of an obstacle, 
let us assume the obstacle’s center is at position  
(a, b) and its width and height are respectively W and H (see 
Figure 1). Note that in this case P1 and P2 must be placed 
outside of the obstacle, i.e. SAPP −∈21 , , where A is the set of 
all the points inside the bin and S is the set of all the points 
inside the obstacle.  
With the same type of analysis as for formula (5), we can 
calculate the average transparent-block wirelength [3], 

intera,TBL , as 
ψ1(N,M, W, H, a, b)/ ψ2(N,M, W, H, a, b) where,  
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Basically, in equations (6a) and (6b), we get the integral over the 
non-blocked area of the bin. By that, we mean that the terminals 
can be everywhere except the blocked part of the bin, but the 
interconnections can pass through the blockage. 
For analyzing the intra-bin average detour wirelength in vertical 
direction, we consider the detour value as a random variable. For 
a random variable we have E(Y) = E(Y|X).Pr(X); so we have, 
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where v
DTL intra,

is the average detour in Y direction, given that a 
detour happens in that direction. In [1, 3] it was shown that  
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Figure 1: Definition of intra-bin transparent-block and 

detour wirelength.   
v
DTL intra, is equal to H3/1 . On the other hand, v

DTPr is the 
probability of occurrence of the detour in that direction. Thus we 
have, 
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B. Average Inter-bin Wirelength   
According to Definition 2, a two-terminal inter-bin net is 
defined as a net with one terminal in a bin and the other terminal 
in the adjacent bin, either horizontally, vertically or diagonally. 
In the following, it is shown how to derive expressions for 
calculating average inter-bin wirelength in the presence of an 
obstacle for horizontally adjacent bins. The cases of vertically 
and diagonally adjacent bins are similar to horizontally adjacent 
bins and so omitted from this discussion for brevity. 

M

W1

H

N

(a,b).

N

A B

W2

M

W1

H

N

(a,b).

N

A B

W2

 
Figure 2: Two horizontal adjacent bins 

B.1 Horizontally Adjacent Bins 
Horizontally adjacent bins are shown in Figure 2. In this case, 
the average transparent-block wirelength can be computed as [1], 
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where W=W1+W2, b1=b2=b, a1=a-W/2+W1/2, and a2=W2/2 and ψ1 is 
the same function as in (6a). 
The average detour wirelength in Y direction can be expressed as, 
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where v
DTPr is the probability of occurring a detour in Y direction 

which can be expressed as, 
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This probability is equal to the portion of the area which a 
detour can occur divided by the non-blocked area of the two 
bins. 

Moreover, v
DTL inter, is the average detour length in Y direction 

given that a detour occurred in this direction. Similar to 
(8), v

DTL inter, equals to 1/3H. So, the average detour wirelength in 
Y direction can be extracted from (10) as, 
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The average detour wirelength in X direction can be found from,  
h
DT

h
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h
DT LL inter,inter, .Pr=  (13) 

where h
DTL inter, can be calculated as, 
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and h
DTPr is the probability of occurring a detour in horizontal 

direction, which is equal to, 
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Having had TBL , h
DTL  and v

DTL as the average transparent-block 
and detour wirelength of horizontal adjacent bins A and B, 

),( BALh  in this case can be extracted form (4). 

3.2. Non-Uniform Probability Distribution   
In the technique discussed in the last section which was based 
on the Donath’s method for analysis, every hierarchical level is 
treated separately with no knowledge of the length of 
interconnections from other levels of hierarchy. However, the 
optimal placement techniques try to place the interconnected 
blocks as close to each other as possible. In the hierarchical 
model, this means that an optimal placement technique will 
place blocks that are interconnected to a block of another square 
closer to the border of the two squares as shown in Figure 5. The 
previous technique does not consider this information. 
Definition 5: We define the interconnection length distribution 
as the value indicates that for each length l, how many 
interconnections have this length. It was called the occupancy 
probability in [7].  
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Figure 3: Bin A and D are diagonally and bin B and D are 
horizontally adjacent 

 According to [7] it can be seen that for all but nearest-neighbor 
nets (l = 1), the power-law function of the form ( )Pl 24−−  can 
approximate the occupancy probability. This result was first 
reported in [2] and re-derived in [7, 8] using different techniques. 
This result suggests that, for any length of interconnection, the 
higher the length is the less the number of nets with this length 
can be, which reflect the behavior of the optimal placement.   
A. Average Intra-bin Wirelength 
Considering ( )Pl 24−−  as the occupancy probability of having a 
wire with the length of l instead of the uniform probability 
distribution, the estimation will be improved by multiplying this 
occupancy probability distribution by the structural probability 
distribution which we had before for the interconnection 



estimation. So, the formula (6a) will be transformed to intera,TBL , 
as ψ1(N,M, W, H, a, b)/ ψ2(N,M, W, H, a, b) where, 

( ) ( ) ( )
∫ ∫∫∫ −∈

−−− −+−=
SAPP

Puniformnon dydydxdxyyxxbaHWMN
2,1 2121

23
21211 ,,,,,ψ  (16) 

In order to solve this formula, according to Figure 4, there are 8 
different regions for each of the two points (x1, y1), and (x2, y2). 
So there would be 64 different integrals to consider for solving 
formula (16). Let us define, 

( ) ( )Pyyxx 23
2121

−−−+−=δ  (17) 
Consider the following equation, 
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formula (16) is the last term of the above formula.  
The first and third terms in the formula (18) can be easily 
computed by hand or by using Mathematica equation solver 
software. The Second term has 8 cases to consider, since the 
first point moves inside the non-blocked part which consists of 8 
regions and the second point moves inside the blocked area 
which consists of 1 region. So, the number of integration is 
reduced to 8 + 2 = 10. The formula for the case that the first 
point is in region 1 and the second point is in blocked area can 
be obtained from, 
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Figure 4: Integration regions for intra-bin 

transparent-block wirelength 
And the formula for the case that the first point is in region 2 
and the second point is in blocked area can be obtained from, 

( ) ( ) ( ) ( )
∫ ∫ ∫ ∫

−
−−++−=

H Hb W x
P

S dydydxdxyyxxbaHWMN
0

2/

0 0

2

0
2121

23
1212,2 ,,,,,ψ  (20) 

Because of the symmetry of the problem, the integration for all 
of the other regions can be calculated from (19) and (20) using 
different limits for the integrals. 
Note that the denominator of the average transparent-block 
wirelength should be modified to, 

( ) ( ) ( )
∫ ∫∫∫

−−− −+− 2121
24

21212 ,,,,, dydydxdxyyxxbaHWMN Puniformnonψ  (21) 
on any specified region of integration. 
B. Average Inter-bin Wirelength 
As it was shown in section 2, all of the formulas for inter-bin 
transparent-block part of the wirelength are using the formulas 
for the intra-bin transparent-block analysis. Having modified the 
formulas for transparent-block intra-bin wirelength, the formulas 
for transparent-block inter-bin wirelength can be extracted 
accordingly with no further analysis. In the next part we show 
how to extract detour inter-bin wirelength with non-uniform 
probability. 
B.1. Horizontally Adjacent Bins 
Let us consider Figure 5, for calculating the detour part of the 
wirelength. The behavior of an optimal placement necessitates 
having higher density of terminals closer to the middle border. A 
simple observation shows us that the non-uniform probability 
distribution of terminals does not have an effect on the vertical 

detour of the points on the right and left sides of the obstacle, 
since the concentration of cells differs in X direction.  
However, the non-uniform probability distribution has an effect 
on the horizontal detour of the points on the top and the bottom 
sides of the obstacle. The effect of non-uniform terminal 
distribution on the total horizontal detour in X direction given 
that a detour happens would be of the form of, 
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Figure 5: The optimal placement behavior in presence of 
blockage 

where ( )( )222111121 ,2/min),( WxWWWaxxx ′+−′+−−=ω . 
As it can be seen, solving the nominator of the above equation 
manually is difficult. Numerical equation solvers can always 
help in these cases. 

4. Theoretical Analysis of the Average 
Wirelength with Multiple Blockages 
The analysis of inter-bin average wirelength in the presence of 
multiple blockages can be performed by using the analysis for 
average wirelength in the presence of a single blockage. The 
inter-bin average wirelength for vertically and diagonally 
adjacent bins use the same type of analysis as horizontally 
adjacent bins and are omitted here for brevity.  
4.1. Horizontally Adjacent Bins 
As shown in Figure 6, in the presence of multiple blockages, 
similar to [3] the average transparent-block wirelength can be 
calculated from, 
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where, 
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where (x1,y1) and (x2,y2) are the coefficients of the two points on 
every rectangular regions A and B, respectively. 
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Figure 6: Horizontal adjacent bins with multiple 
blockages[1] 

The average detour wirelength is more complicated in this case.  
If the obstacles do not overlap neither in X span nor in Y span, 
Cheng et. al. [3] showed that the effect of the obstacles on the 
average detour wirelength is additive and this problem can be 
treated as a combination of single blockage problems. But for 
real circuits this assumption seems to be too simplifying and it 
might overestimate the detour in some cases. Figure (7) illustrate 
this problem. The detour for the terminals inside region A and B 



equal to the maximum detour around A and B which is less than 
the summation of the detour for these two blocks. Instead we use 
a heuristic to estimate the amount of detour for this case. 
Lemma 1. Every two disjoint blocks overlap at most in either X 
or Y spans. If two blocks overlaps in both spans, one covers all 
or part of the other one; so we decompose them to several blocks 
with no overlap.   
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Figure 7: Horizontal adjacent bins detour with multiple blockages 
To tackle this problem, first we enumerate all the regions 
generated by blockages as shown in Figure (7).  If we have n 
blockages, the number of these regions equal to (2n + 1)2 since 
every blockages has two border lines in each direction which 
generates (2n + 1) regions in that direction. The main problem 
happens for the terminals inside the regions which located on the 
overlapping parts of two or more blockages in either X or Y 
spans. For these regions we use a trick to transform them to the 
standard horizontal or vertical detour problems.  
Algorithm 1. As shown in Figure (8) for regions A and B, we 
cut them into two parts using a dashed line. We define the 
detour between (A1, B1) to be equal to minimum of the detours 
of the top and bottom part of the dotted line and the addition of 
the detours for all the blocks generating these two regions. All 
these detours can be solved using the formula (22). Similar type 
of analysis holds for terminals in (A2, B2), (A2, B1) and (A1, B2). 
Since the number of regions to consider is large, we perform the 
complete calculation for the detour of θ% biggest blockages and 
add up the detour of the rest. By adjusting θ%, we can tune the 
accuracy and run time trade-off. In our experiments, we picked 
θ=10. 

A A1
A2

BB1
B2

A A1
A2

BB1
B2

Figure 8: Algorithm 1 for detour with multiple blockage 
In [3], the authors investigated the detour wirelength for the case 
that there is one big single blockage and numerous small 
blockages. There, they showed that the average detour 
wirelength is strongly correlated with the geometrical 
parameters of the big blockage such as width, height, 
displacement and aspect ratio, and is not related to the 
geometrical parameters of other small blockages. This motivates 
us to estimate the detour wirelength for these types of circuits by 
just considering the big blockage and ignoring the small 
blockages using the exact method presented in the previous 
section. But if all the blockages are of the same size, the exact 
method in previous section does not work and we use the 
heuristic presented in this section.    
The analysis for the transparent-block and detour parts of the 
wirelength would be the same for vertically-adjacent and 
diagonally-adjacent bins and are so omitted from this discussion 
for brevity. 
4.2 Average Wirelength   
Having had the average inter-bin wirelength for horizontally, 
vertically and diagonally adjacent bins, the average inter-bin 

wirelength can be obtained for every level of hierarchy h like in 
[1]. For every level of hierarchy, shown in Figure 3, the average 
inter-bin wirelength can be written as, 
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where h, v, and d, respectively, denote that the corresponding 
bins are horizontally, vertically, or diagonally adjacent. 
Moreover, δ is a parameter to capture the optimization behavior 
of placement algorithm which favors horizontally and vertically 
adjacent bins to diagonally adjacent bins. Placement algorithms 
try to minimize the length of wires as much as possible. So, the 
probability of having a short wire is more than having a long 
wire. That necessitates us to differentiate between 
horizontally/vertically adjacent bins and diagonally adjacent 
bins. To compute δ, we use the equation derived in [2, 7] for 
wire length distribution for the entire circuit. In [2] by using 
simple theoretical considerations it is shown that the normalized 
wirelength distribution

lε for a good two-dimensional placement 
is of the form of, 
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whichγ is related to Rent Exponent through equation, 
32 =+ γP  (27) 

and lmax is a constant directly related to the size of the bin. This 
formula indicates that the number of wires with length l is 
decreasing with the factor of ( )32 −Pl  by increasing the length of 
the wire. Similar to [1], if we consider vh /ε as the wirelength 
distribution between horizontal or vertical bins, and dε as the 
wirelength distribution between diagonal bins, we have, 

124 / =+ dvh εε  (28) 
Since the relationship between length of the horizontal/vertical 
wires lh/v and diagonal wires ld for the bin configuration in 
Figure 3 is as vhd ll /2= , we can extract the length 
distribution vh /ε , and dε from, 
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and, 
vh /4εδ =  (30) 

5. Experimental Results 
We have implemented the techniques proposed in sections 3 and 
4 in C. We compared our wirelength estimation method with the 
method in [1], Cheng wirelength estimation method [3], and the 
actual wirelength of the circuit after the routing. For placement 
and routing, we used the Magma BlastFusion which is a 
commercial CAD tool.  
For doing simulations, we considered both medium and large 
size circuits. In order to verify our theoretical results, on the 
real-world circuits, we picked most of our benchmarks from the 
ISPD 2005 placement benchmark suite [13]. Bigblue3 is not 
used since it has several movable macros which should go 
through a process of floorplanning to fix the macros for running 
the estimation algorithms on it. So we excluded this benchmark 
from the experiments. Bigblue4 is a very huge benchmark and 
we couldn’t run them on our available systems.  
The file format of ISPD suite benchmarks is Bookshelf. The 
Magma BlastFusion tool accepts LEF/DEF format. We used the 
converter from [15] to convert the Bookshelf format to the 
LEF/DEF format to route the benchmarks with this tool. 
For the first set of experiments we used the benchmarks with 
just a big single IP block. To adapt the benchmarks to our 



experimental purpose, we kept the biggest blockage and 
changed all the other blockages to standard cells. The second set 
of experiments is for estimating wirelength in the presence of 
multiple blockages. For this set of experiments we used the 
original circuits from ISPD 2005 benchmark suite. The number 
of cells and nets in each of these test circuits are shown in  
Table 1. The number of fixed cells is the number of obstacles 
inside the chip area, and does not include the fixed I/O terminals. 
The utilization is the percentage of area of standard cells over 
the non-blocked area of chip.  
For extracting Rent’s exponent for each benchmark, we used the 
same method as [5] by performing a global placement of the 
benchmarks using the Dragon placement tool [14] which is an 
academic placement tool based on hierarchical min-cut 
partitioning with terminal propagation.  

Table 1: Specification of the Benchmarks 
Test 

Circuit #Cells #Fixed 
Cells #Net Utilization 

(%) 
Blocked 

Area (%) 

Test3 12,997 3 13,865 61.62 8.3 
Adaptec1 211447 63 211447 57.32 43 
Adaptec2 255,023 159 266,009 55.7 61.5 
Adaptec3 451,650 723 466,758 33.64 61.4 
Adaptec4 496045 1329 515951 27.22 48.6 
Bigblue1 278164 32 284479 44.67 17.2 
Bigblue2 557866 23083 577235 37.84 38.2 

Table 1 shows the total wirelength estimation in presence of a 
single blockage for Cheng’s method, the method presented in [1] 
and our method. Actual wirelength is reported by BlastFusion 
tool after the placement and routing. Table 2 illustrates the same 
data for wirelength in presence of multiple blockages.    
As it was shown in [1], the reason that Cheng’s estimation is far 
from actual wirelength on the circuits with high complexity is 
that it only considers the geometrical characteristics of the 
circuit toward estimating wirelength at the top level and ignores 
the complexity of the circuit totally. Both of the methods in [1] 
and our method, however, consider the complexity of the 
circuits into account through calculation of nk in each level of 
hierarchy. As it can be seen, Cheng’s method results in better 
estimation for the medium benchmark Test3. The reason is that 
on the medium-size benchmarks with lower complexity, 
wirelength depends more on the geometrical structure of the 
circuit and not on its complexity. 

Table 2: Total Wirelength Estimation for Single Blockages 
Estimated WL 

Circuit 
Cheng Method 

in [1] Ours 
Actual 

WL 

Test 3 3.12 4.085 2.97 2.98 
Adaptec1 325.64 146.92 108.61 105.10 
Adaptec2 510.71 226.76 164.60 148.90 
Adaptec3 1156.84 473.39 381.29 390.55 
Adapcte4 1020.99 412.15 383.60 369.29 

Average Error (%) 166.04 27.65 4.09 0.0 

The reason that both approaches by Cheng and [1] overestimate 
the wirelength is that the probability distribution of the cells on 
the non-blocked portion of the chip area is considered as 
uniform for both approaches. Placement tools try to keep the 
connected cells as close to each other as possible. So, the 
number of short wires in the chip area is more than the number 
of long wires after the placement. That is the reason that uniform 
distribution probability overestimates the length of wires, since 
it considers equal probability of occurrence for every length of 
wire. Our approach fixed this problem by considering non-
uniform probability distribution for cells.  
All of the three techniques perform wirelength estimation quite 
fast. For the largest test case Bigblue2, our method takes 85  

Table 3: Total Wirelength Estimation for Multiple Blockages 
Estimated WL 

Circuit 
Cheng Method 

in [1] Ours 
Actual 

WL 

Test 3 4.10 4.42 4.01 3.02 
Adaptec1 366.36 197.37 148.4 156 
Adaptec2 438.1 287.30 188.86 195 
Adaptec3 1186.66 597.60 586.14 572 
Adapcte4 1060.15 546.25 421.25 425 
Bigblue1 532.50 175.50 167.43 154 
Bigblue2 957.78 445.50 260.07 265 

Average Error (%) 149.79 31.96 7.81 0.0 

seconds, the method in [1] takes 80 seconds and Cheng method 
takes 75 seconds. These values include the running time for 
processing the input files and building the data structures. 
6. Conclusions and Future Work 
In this paper we proposed a hierarchical technique for 
wirelength estimation in the presence of blockages based on the 
assumption of non-uniform probability for the distribution of 
standard cells. Simulation results show that this technique 
estimated the wirelength much more accurately as compared to 
its other counterparts such as [1, 3]. The average error of this 
technique for large circuits is 4.09% for single blockage and 
7.8% for multiple blockages. This work can be used in early 
design stages to provide an estimation of the end-point 
wirelength of a design. This method can also be extended to 
perform hierarchical probabilistic congestion estimation in 
presence of IP blocks. 
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