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ABSTRACT 
In this paper, we provide an optimal algorithm and a fully 
polynomial time approximation algorithm for the problem of 
scheduling independent tasks onto a fixed number of 
heterogeneous unrelated resources with heterogeneous 
reconfiguration costs.  The notion of solution dominance is used 
to consider all or approximately all possible assignments of tasks 
to resources. To demonstrate the utility of the approximation 
algorithm, it is used to schedule blocks of data that are to be 
encrypted using the Rijndael encryption algorithm on a general-
purpose processor and an FPGA. The results confirm the 
theoretical conclusions. 

Keywords 
Reconfiguration, Heterogeneous Resources, Fully Polynomial 
Approximation, Rijndael. 

1. INTRODUCTION 
Today, many parallel systems are composed of heterogeneous 
components, where the resources may have a reconfiguration cost 
associated with them. The reconfiguration cost can be the 
traditional cost associated with dynamically reconfiguring Field 
Programmable Gate Arrays (FPGAs). Also, it can represent the 
time cost of transmitting data and code to remote processors. Thus 
with these reconfigurable systems arise new scheduling problems, 
with a new reconfiguration cost constraint.  

In this paper we present an optimal algorithm and a fully 
polynomial-time approximation algorithm for the problem of 
scheduling independent tasks onto heterogeneous resources with 
reconfiguration costs.  

The algorithm is utilized to schedule blocks of data that are to be 
encrypted using the Rijndael encryption algorithm, where two 
heterogeneous resources, a processor and an FPGA, are available. 

The rest of the paper is organized as follows. In section 2, the 
problem statement is formalized. This is followed an overview of 
independent task scheduling algorithms, in section 3. In sections 4 
and 5, respectively, the optimal and approximation algorithm are 
presented and analyzed.  Section 6 presents the experimental 
framework and the results. Finally section 7 concludes the paper. 

2. PROBLEM STATEMENT 
In this paper, we examine the question of assigning and 
scheduling independent tasks to a fixed number of heterogeneous 
unrelated resources with heterogeneous reconfiguration costs, in a 

non-preemptive manner, so as to minimize the final task 
completion time, referred to as the makespan. The tasks are 
independent in the sense that there exist no precedence relations; 
all the tasks can be executed in parallel. Each of the tasks can 
have different and unrelated execution times on each of the 
heterogeneous resources. Finally, there is a reconfiguration cost 
associated with each resource. The reconfiguration cost is 
incurred on a resource each time there is a switch between task 
types.  

A task type is defined as follows. Tasks that incur no 
reconfiguration cost when executed after each other on a resource 
are of the same type. Tasks of different types would incur a 
reconfiguration cost between executions. 

The algorithms presented in this paper are robust enough to also 
handle the case where the reconfiguration costs are associated 
with each task type instead of each resource. This is the model 
used for partial reconfigurations. 

When examining the problem, the real issue is assigning tasks to 
resources. The optimal scheduling of the tasks, which are already 
assigned to the resources, is simply scheduling of the tasks of the 
same type one after each other. This schedule incurs the minimum 
amount of reconfiguration delay. Thus obtaining the optimal 
schedule is trivial after the assignment has been carried. The real 
issue is the assigning of the tasks to the available resources, 
assuming the optimal scheduling will be used. 

3. RELATED WORK 
The problem of scheduling independent tasks onto heterogeneous 
unrelated resources so as to minimize the makespan has been 
examined before. A linear programming approach is taken in both 
[7] and [8]. The problem is easily formulated as an integer linear 
programming problem. The binary constraint is relaxed, which 
results in a linear programming relaxation. After the tasks are 
assigned to the resources, up to m-1 tasks can be split among 
different resources, where m is the number of resources. There 
exist multiple resources for one task, since the relaxation allows 
tasks to be executed on multiple resources. To obtain a valid 
binary solution, the split tasks must be reassigned to one resource. 
This is done with complete enumeration as shown in [8]. Also, the 
values can be rounded as shown in [7]. This paper goes on to give 
a 2-approximation algorithm for the case of an unbounded 
number of resources 

More recently, [6] has improved on the previous work, by using 
linear programming to schedule short tasks and dynamic 
programming to schedule long tasks. The determination of long 



versus short tasks is carried out according to the level of 
approximation. 

The problem of independent task scheduling has been examined 
many times before. However, the emphasis has not been on 
resources or tasks with reconfiguration costs. None of the 
referenced methods can be applied to resources with either full or 
partial reconfiguration costs, nor can they be applied to systems 
that incur a delay when transmitting code and/or data to remote 
resources. The remainder of the paper describes algorithms that 
do consider reconfiguration cost when scheduling independent 
tasks onto heterogeneous resources. 
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4. OPTIMAL EXPONENTIAL SOLUTION 
4.1 Example 
Consider the following example. Given two resources, a general-
purpose processor and an FPGA, with reconfiguration costs of 0 
and of 5, respectively, schedule the tasks listed in Table 1. 

Table 1. Tasks to Be Scheduled 

Task Task 
Type 

Execution 
Time on 

Processor 

Execution 
Time on 
FPGA 

1 1 5 2 

2 2 4 3 

3 3 3 1 

4 3 2 1 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Assigning Task 1 

As shown in Figure 1, we begin with a two dimensional space, 
where the x-axis represents the processor and the y-axis 
represents the FPGA. Then we begin by assigning the first task to 
both of the resources. In doing so we plot the points (0+4, 0) and 
(0, 5+2). Note that we include the reconfiguration cost in the 
calculations. Figure 2 demonstrates the assignment of task 2, to 
the already assigned task 1. Points (0,15), (4, 7), (5,8), and (9,0) 
are all plotted, while the previous points are discarded. At this 
point it is obvious that (5,8) will not be part of the optimal 
solution. Since the point (4,7) is clearly a better choice up to this 

point. Thus this point can be eliminated without compromising 
the optimality of the algorithm. 
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Figure 2. Assigning Task 2 

4.2 Algorithm 
As demonstrated in the example, an m dimensional space is 
created, where m is the number of resources. Points are plotted 
onto the graph, according to their execution times, or cost.  For 
example the point (3, 4, 0) represents 3 units of time on the first 
resource, 4 units of time on the second resource, and 0 units of 
time on the third. The psuedocode for this algorithm is given 
below.  

Optimal Algorithm 

1: Sort tasks to group together according to their type 

2: for each tasks t 
3:    ►Keep track of what group has been assigned 

4:    if this task has a different type than the previous task 
5:        currentTaskType = t.type 

6:        for each old point o OldPointsList 
7:            for each resource r 
8:     o.reconfiged[r] = false 
9: end for 

10:        end for 
11:    end if 
12:    ►Add m new points to the graph for each old point 

13:    for each old point o in list of old points 
14:        for each resource r 
15:            Create a new point n 
16: ►Initialize new point to old point 

17: for each resource r1 
18:     n.Cost[r1] = o.Cost[r1] 
19:     n.configed[r1] = o.configed[r1] 

20: end for 
21 ►Add new costs to the point 



22: if n.configed[r] == false 
23:     n.Cost[r]= n.Cost[r] + resource[r].ReconfigCost 
24:     n.Cost[r] = true 

25: end if 
26: n.Cost[r] = n.Cost[r] + t.Cost[r] 

27: add n to list of NewPointsList 
28:        end for 

29:    end for 
30:    RemoveEliminatablePoints(NewPointsList) 
31:    OldPointsList = NewPointsList 

32: end for 
33: return assignment with the minimum makespan  

The algorithm proceeds as follows. First, the tasks are sorted 
according to their type, to allow for concise record keeping of 
reconfigurations. The first m points are placed in the space. The 
reconfiguration cost, if applicable, is summed with the execution 
time to plot the points. Each remaining task creates m new points 
for each existing point in the graph. The cost of each new point is 
the sun of the cost of the old point and the cost of the current task 
on the current resource. The reconfiguration cost is added, only if 
the reconfiguration cost has not yet been incurred on the current 
task. 
In the pseudocode, the position of the point in the space is 
represented by the array named Cost. Cost stores the cost incurred 
on each resource. In other words, Cost stores the distance of the 
point from the origin along each axis. 
The reconfiguration history for each point on each resource is 
maintained using the variable reconfiged. At each iteration after 
the new points are added, the old points are discarded. 
After all the tasks have been graphed, the optimal solution is the 
one with the smallest makespan. The makespan of all the points 
on the graph can simply be calculated as the maximum of the 
finish times on each of the resources. 
While plotting points, certain cases arise, where a point will 
obviously not lead to an optimal solution, thus these points can be 
eliminated from consideration. The psueodcode for this 
elimination procedure is given here. 

RemoveEliminatablePoints(NewPointsList) 

1: for each point n in NewPointsList 

2:        for every other point p in NewPointsList 
3:            if n.Cost[r] <= p.Cost[r] for all resources r  

4:     if n.configed[r] >= p.configed[r] for all resources r or 
currentTaskType <> nextTaskType 
5:         remove n from newPointsList 

6:     end if 
7:            end if 

8:    end for 
9: end for   

Consider the case where all the points of one type have been 
plotted, but before any of the points of the following type have 

been plotted. The points that are larger in all dimensions can be 
eliminated. The larger points will not be a part of the optimal 
solution, because a better assignment exists up to that point. Thus 
eliminating these points will not diminish the quality of the 
solution.  
In between plotting points for tasks of the same type, a greater 
cost is not enough to eliminate a point. Points with a larger cost 
may have one, because of an already incurred reconfiguration 
cost.  If a point is larger than another point, which has not 
incurred the reconfiguration cost, it is too early to say if the point 
will be larger than the other point after all the tasks of the same 
resource have been plotted. Points, however, can be eliminated if 
they have equal or worse reconfiguration histories. The 
reconfiguration history of each point is maintained by the array 
configed. The configed array stores whether the point’s 
assignment, so far, has involved a reconfiguration of the resource, 
r, on the current task type. 
Up until now, we have only considered the case where the 
reconfiguration cost is associated with the resource. There exist 
many cases where the reconfiguration is associated with the task. 
For example, when considering data transmission delay to a 
remote processor, the reconfiguration cost is proportional to the 
size of the data. The algorithms presented in this paper are robust 
enough to handle both of these situations and even a combination 
of the two. The only change is that the reconfiguration cost is 
stored for each task type instead of for each resource. 
Theorem 1: The algorithm presented in this section schedules the 
input tasks, such that the makespan is optimally minimized. 
Proof: The algorithm carries out an exhaustive search of all of the 
possible assignment of tasks. The algorithm only eliminates 
points from its consideration, when they will obviously not lead to 
the optimal solution. Thus the algorithm produces an optimal 
solution. ‫ 
The algorithm, however, has an exponential time and space 
complexity on the order of O(mn), where m is the number of 
resources and n is the number of tasks. 

5. APPROXIMATION ALGORITHM 
The problem as formulated in section 2 is an NP-complete 
problem, proven by reduction to the well-known set-sum problem. 
Therefore, an optimal polynomial time algorithm does not exist, 
unless P=NP[3]. 

The optimal algorithm expressed above is an exponential 
algorithm. By using a trimming procedure, however, a fully 
polynomial approximation algorithm can be produced. 
Proportional to the amount of time given, the approximation 
algorithm can find solutions a factor of ε away from the optimal 
solution. 

5.1 Algorithm 
As shown below the only difference between the optimal 
algorithm and the approximation algorithm is the addition of an 
approximation scheme. 

Approximation Algorithm 

1: Sort tasks to group together according to their type 

2: for each tasks t 



3:    ►Keep track of what group has being assigned 
4:    if this task has a different type than the previous task 
5:        currentTaskType = t.type 

6:        for each old point o OldPointsList 
7:            for each resource r 
8:     o.reconfiged[r] = false 
9: end for 

10:        end for 

11:    end if 
12:    ►Add m new points to the graph for each old point 

13:    for each old point o in list of old point 
14:        for each resource r 

15:            Create a new point n 
16: ►Initialize new point to old point 

17: for each resource r1 
18:      n.Cost[r1] = o.Cost[r1] 
19:      n.configed[r1] = o.configed[r1] 
20:           end for 
21 ►Add new costs to the point 
22: if n.configed[r] == false 
23:     n.Cost[r]= n.Cost[r] + resource[r].ReconfigCost 
24:     n.Cost[r] = true 

25: end if 
26: n.Cost[r] = n.Cost[r] + t.Cost[r] 
27: add n to list of NewPointsList 

28:        end for 
29:    end for 
30:    RemoveEliminatablePoints(NewPointsList) 
31:    ►The only change to the code 
32:    Approximate(NewPointsList) 
33:    OldPointsList = NewPointsList 

34: end for 

35: return assignment with the minimum makespan  

The idea is that if two values are close enough together, then in an 
approximation scheme, only one of them needs to be further 
examined. A point, o, in the original space is not transferred to a 
new space if 

 ao
a makespanmakespan
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where a is the point in the new space and δ the factor by which  
points are trimmed.  
When approximating points, two considerations need to be made. 
The first is that the latest finish time of the points o and a are on 
the same resource. This requirement is in place, so that points 
with the same makespan, but in two very different parts of the 

approximating in between the assignment of tasks of the same 
type, the point in the new space needs to have a larger or equal 
approximation history. This is based on the same reasoning 
applied to eliminating points. 
The psuedocode for the approx

space do not approximate each other. Second, when 

imation scheme is given below. 

Approximate(NewPointsList) 

1: Sort points in NewPointsList in non-increasing order of 
makespan 
2: Place the first point in ApproxPointList and remove it from 
NewPointsList 
3: for each point n in NewPointsList 

4:    for each point p in ApproxPointsList 

5:        if makespan of n and p is due to different resources 
6:            continue 

7:        end if 
8:        if n.configed[r] > p.configed[r] for at least one resources r 
and currentTaskType = previousTaskType 
9: continue 

10: d if        en

11:       if n.makespan*(δ+1) < p.makespan  
12: continue 

13:  d if              en

11:       remove n from NewPointsList 
12:       break 

13:   end for 

14:   if n not removed from NewPointsList 
15:       add n to ApproxPointsList 

16:       remove n from NewPointsList  

17:   end if    
18: end for 
19: NewPointsList = ApproxPointList  

The approximation algorithm starts off by adding the first point in 

5.2 Proof 
on procedure presented in the previous section, 

ly discussed δ by the 

following equation: 

NewPointsList to the newly formed list, named ApproxPointList. 
The remaining points are added to ApproxPointList, if a point 
does not already exist in ApproxPointList that approximates them. 

The approximati
takes as input n tasks, m resources, and an approximation 
parameter ε, where 0 < ε < 1. It returns a schedule for the tasks on 
the resources, where the makespan of the schedule is 1+ ε factor 
of the makespan of the optimal schedule. 

The ε value is related to the previous

n2
εδ = .  

Theorem 2: The approximation procedure presented in section 
5.1 returns a schedule for the input tasks on the given resources, 



where the makespan of the schedule is 1+ ε factor of the 
makespan of the optimal schedule. 

Proof: The approximation algorithm introduces no error except in 
the trimming of points from the space. Thus we consider only that 
part of the algorithm. 

Since makespan , we need to show that **
ao makespan≤

ε+≤ 1*

*

o

a

makespan
makespan

, where the subscript a represents the 

approximation solution, the subscript o represents the optimal 
solution, and the asterisk represents the solution of the final 
iteration. 

By induction on i, it can be shown that for every point o 
belonging to in the original space at iteration i, there is a point, a, 
belonging to the new space in iteration i, such that  

. 
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This inequality must hold for the final iteration also. 
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 because 0<ε<1 ‭ 

Now, that we have proven the quality of the algorithm, we must 
prove that the algorithm is indeed a polynomial-time algorithm. 

Theorem 3: The approximation procedure presented in section 
5.1 is a fully polynomial-time algorithm. 

Proof: First we bound the number of points in the space. We do 
this by using a maximum value for the makespan, M. M can 
simply be the makespan of all the tasks scheduled onto one of the 
resources. The optimal solution will obviously be smaller than or 
equal to this value. Previously we stated that each point with a 
maximum finish time on the same resource must differ by at least 

a factor of 1+ε/2n. Therefore, each space will contain at most 

  mMn ×++ )1log( 2/1 ε  points.  

m
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The number of points in the space is polynomial in the size of the 
input and 1/ε, since the number of resources is supposed to be a 
fixed value. Since the complexity of the algorithm is polynomial 
in terms of the number of points in the space and ε, the 
approximation algorithm presented in section 5.1 is a fully 
polynomial-time approximation scheme. ⁪ 

6. EXPERIMENTAL RESULTS 

6.1 Experimental Framework 
The value of the scheduling algorithms presented in this paper 
was evaluated experimentally. The goal of the experiments was to 
schedule the encryption of heterogeneous inputs using the 
Rijndael encryption algorithm. Provided for the encryption was a 
general-purpose processor and an FPGA, with a known full 
reconfiguration cost. 

Encrypting input using the Rijndael algorithm is highly 
parallelizable. Thus the inputs are broken up into blocks, which 
are then to be encrypted on the parallel resources. The inputs are 
split into blocks of three different sizes: 128 bits, 196 bits, and 
256 bits. Also, depending on the security and time requirements 
there are three key sizes: 128 bits, 196 bits, and 256 bits. The 
results are nine different types of tasks. For switching among the 
different configuration of block sizes and key sizes, a 
reconfiguration cost needs to be paid on the FPGA. 

Three scheduling algorithms were used in the experiments. The 
optimal and approximation algorithms were compared with the 
first-available heuristic algorithm. The first-available algorithm 
schedules the current task on the resource with the earliest finish 
time at that point. It is a simple algorithm, chosen for the purposes 
of comparison. 

Sample values were chosen for the execution times and the 
reconfiguration cost. The results of these experiments are 
discussed in the next section. 

6.2 Experimental Results 
Figure 3 demonstrates that the approximation algorithm, where ε 
= .9, is indeed at most a factor of 1+.9 away from the optimal 
solution. The y-axis shows the number of experiments out of a 
1000, and the x-axis represents the maximum factor by which the 
approximation makespan was different from the optimal value. As 
shown in the graph, all of the thousand test cases resulted in 
schedule with a makespan of at most 1.9 times the optimal 
solution. 



The algorithm is shown both theoretically and experimentally to 
be a (1+ε)-approximation. It is capable of scheduling the 
encryption of heterogeneous inputs onto heterogeneous resources, 
dramatically more effectively than the first-available heuristic. Its 
quality of solution also compares well with the optimal 
exponential algorithm. 

Error Distribution: Approximation vs Optimal
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