
 Scheduling on Heterogeneous Resources with
Heterogeneous Reconfiguration Costs

Ani Nahapetian

Soheil Ghiasi

Computer Science Department
University of California, Los Angeles

Los Angeles, California

{ani, soheil, majid}@cs.ucla.edu

Majid Sarrafzadeh

ABSTRACT
In this paper, we provide an optimal algorithm and a fully
polynomial time approximation algorithm for the problem of
scheduling independent tasks onto a fixed number of
heterogeneous unrelated resources with heterogeneous
reconfiguration costs. The notion of solution dominance is used
to consider all or approximately all possible assignments of tasks
to resources. To demonstrate the utility of the approximation
algorithm, it is used to schedule blocks of data that are to be
encrypted using the Rijndael encryption algorithm on a general-
purpose processor and an FPGA. The results confirm the
theoretical conclusions.

Keywords
Reconfiguration, Heterogeneous Resources, Fully Polynomial
Approximation, Rijndael.

1. INTRODUCTION
Today, many parallel systems are composed of heterogeneous
components, where the resources may have a reconfiguration cost
associated with them. The reconfiguration cost can be the
traditional cost associated with dynamically reconfiguring Field
Programmable Gate Arrays (FPGAs). Also, it can represent the
time cost of transmitting data and code to remote processors. Thus
with these reconfigurable systems arise new scheduling problems,
with a new reconfiguration cost constraint.

In this paper we present an optimal algorithm and a fully
polynomial-time approximation algorithm for the problem of
scheduling independent tasks onto heterogeneous resources with
reconfiguration costs.

The algorithm is utilized to schedule blocks of data that are to be
encrypted using the Rijndael encryption algorithm, where two
heterogeneous resources, a processor and an FPGA, are available.

The rest of the paper is organized as follows. In section 2, the
problem statement is formalized. This is followed an overview of
independent task scheduling algorithms, in section 3. In sections 4
and 5, respectively, the optimal and approximation algorithm are
presented and analyzed. Section 6 presents the experimental
framework and the results. Finally section 7 concludes the paper.

2. PROBLEM STATEMENT
In this paper, we examine the question of assigning and
scheduling independent tasks to a fixed number of heterogeneous
unrelated resources with heterogeneous reconfiguration costs, in a

non-preemptive manner, so as to minimize the final task
completion time, referred to as the makespan. The tasks are
independent in the sense that there exist no precedence relations;
all the tasks can be executed in parallel. Each of the tasks can
have different and unrelated execution times on each of the
heterogeneous resources. Finally, there is a reconfiguration cost
associated with each resource. The reconfiguration cost is
incurred on a resource each time there is a switch between task
types.

A task type is defined as follows. Tasks that incur no
reconfiguration cost when executed after each other on a resource
are of the same type. Tasks of different types would incur a
reconfiguration cost between executions.

The algorithms presented in this paper are robust enough to also
handle the case where the reconfiguration costs are associated
with each task type instead of each resource. This is the model
used for partial reconfigurations.

When examining the problem, the real issue is assigning tasks to
resources. The optimal scheduling of the tasks, which are already
assigned to the resources, is simply scheduling of the tasks of the
same type one after each other. This schedule incurs the minimum
amount of reconfiguration delay. Thus obtaining the optimal
schedule is trivial after the assignment has been carried. The real
issue is the assigning of the tasks to the available resources,
assuming the optimal scheduling will be used.

3. RELATED WORK
The problem of scheduling independent tasks onto heterogeneous
unrelated resources so as to minimize the makespan has been
examined before. A linear programming approach is taken in both
[7] and [8]. The problem is easily formulated as an integer linear
programming problem. The binary constraint is relaxed, which
results in a linear programming relaxation. After the tasks are
assigned to the resources, up to m-1 tasks can be split among
different resources, where m is the number of resources. There
exist multiple resources for one task, since the relaxation allows
tasks to be executed on multiple resources. To obtain a valid
binary solution, the split tasks must be reassigned to one resource.
This is done with complete enumeration as shown in [8]. Also, the
values can be rounded as shown in [7]. This paper goes on to give
a 2-approximation algorithm for the case of an unbounded
number of resources

More recently, [6] has improved on the previous work, by using
linear programming to schedule short tasks and dynamic
programming to schedule long tasks. The determination of long

versus short tasks is carried out according to the level of
approximation.

The problem of independent task scheduling has been examined
many times before. However, the emphasis has not been on
resources or tasks with reconfiguration costs. None of the
referenced methods can be applied to resources with either full or
partial reconfiguration costs, nor can they be applied to systems
that incur a delay when transmitting code and/or data to remote
resources. The remainder of the paper describes algorithms that
do consider reconfiguration cost when scheduling independent
tasks onto heterogeneous resources.

5

7

Processor

5+2

0+5

FPGA

4. OPTIMAL EXPONENTIAL SOLUTION
4.1 Example
Consider the following example. Given two resources, a general-
purpose processor and an FPGA, with reconfiguration costs of 0
and of 5, respectively, schedule the tasks listed in Table 1.

Table 1. Tasks to Be Scheduled

Task Task
Type

Execution
Time on

Processor

Execution
Time on
FPGA

1 1 5 2

2 2 4 3

3 3 3 1

4 3 2 1

Figure 1. Assigning Task 1

As shown in Figure 1, we begin with a two dimensional space,
where the x-axis represents the processor and the y-axis
represents the FPGA. Then we begin by assigning the first task to
both of the resources. In doing so we plot the points (0+4, 0) and
(0, 5+2). Note that we include the reconfiguration cost in the
calculations. Figure 2 demonstrates the assignment of task 2, to
the already assigned task 1. Points (0,15), (4, 7), (5,8), and (9,0)
are all plotted, while the previous points are discarded. At this
point it is obvious that (5,8) will not be part of the optimal
solution. Since the point (4,7) is clearly a better choice up to this

point. Thus this point can be eliminated without compromising
the optimality of the algorithm.

FPGA

15
Eliminate this
point

5+3

7
0+4

5+3

Processor5 8
0+3

Figure 2. Assigning Task 2

4.2 Algorithm
As demonstrated in the example, an m dimensional space is
created, where m is the number of resources. Points are plotted
onto the graph, according to their execution times, or cost. For
example the point (3, 4, 0) represents 3 units of time on the first
resource, 4 units of time on the second resource, and 0 units of
time on the third. The psuedocode for this algorithm is given
below.

Optimal Algorithm

1: Sort tasks to group together according to their type

2: for each tasks t
3: ►Keep track of what group has been assigned

4: if this task has a different type than the previous task
5: currentTaskType = t.type

6: for each old point o OldPointsList
7: for each resource r
8: o.reconfiged[r] = false
9: end for

10: end for
11: end if
12: ►Add m new points to the graph for each old point

13: for each old point o in list of old points
14: for each resource r
15: Create a new point n
16: ►Initialize new point to old point

17: for each resource r1
18: n.Cost[r1] = o.Cost[r1]
19: n.configed[r1] = o.configed[r1]

20: end for
21 ►Add new costs to the point

22: if n.configed[r] == false
23: n.Cost[r]= n.Cost[r] + resource[r].ReconfigCost
24: n.Cost[r] = true

25: end if
26: n.Cost[r] = n.Cost[r] + t.Cost[r]

27: add n to list of NewPointsList
28: end for

29: end for
30: RemoveEliminatablePoints(NewPointsList)
31: OldPointsList = NewPointsList

32: end for
33: return assignment with the minimum makespan

The algorithm proceeds as follows. First, the tasks are sorted
according to their type, to allow for concise record keeping of
reconfigurations. The first m points are placed in the space. The
reconfiguration cost, if applicable, is summed with the execution
time to plot the points. Each remaining task creates m new points
for each existing point in the graph. The cost of each new point is
the sun of the cost of the old point and the cost of the current task
on the current resource. The reconfiguration cost is added, only if
the reconfiguration cost has not yet been incurred on the current
task.
In the pseudocode, the position of the point in the space is
represented by the array named Cost. Cost stores the cost incurred
on each resource. In other words, Cost stores the distance of the
point from the origin along each axis.
The reconfiguration history for each point on each resource is
maintained using the variable reconfiged. At each iteration after
the new points are added, the old points are discarded.
After all the tasks have been graphed, the optimal solution is the
one with the smallest makespan. The makespan of all the points
on the graph can simply be calculated as the maximum of the
finish times on each of the resources.
While plotting points, certain cases arise, where a point will
obviously not lead to an optimal solution, thus these points can be
eliminated from consideration. The psueodcode for this
elimination procedure is given here.

RemoveEliminatablePoints(NewPointsList)

1: for each point n in NewPointsList

2: for every other point p in NewPointsList
3: if n.Cost[r] <= p.Cost[r] for all resources r

4: if n.configed[r] >= p.configed[r] for all resources r or
currentTaskType <> nextTaskType
5: remove n from newPointsList

6: end if
7: end if

8: end for
9: end for

Consider the case where all the points of one type have been
plotted, but before any of the points of the following type have

been plotted. The points that are larger in all dimensions can be
eliminated. The larger points will not be a part of the optimal
solution, because a better assignment exists up to that point. Thus
eliminating these points will not diminish the quality of the
solution.
In between plotting points for tasks of the same type, a greater
cost is not enough to eliminate a point. Points with a larger cost
may have one, because of an already incurred reconfiguration
cost. If a point is larger than another point, which has not
incurred the reconfiguration cost, it is too early to say if the point
will be larger than the other point after all the tasks of the same
resource have been plotted. Points, however, can be eliminated if
they have equal or worse reconfiguration histories. The
reconfiguration history of each point is maintained by the array
configed. The configed array stores whether the point’s
assignment, so far, has involved a reconfiguration of the resource,
r, on the current task type.
Up until now, we have only considered the case where the
reconfiguration cost is associated with the resource. There exist
many cases where the reconfiguration is associated with the task.
For example, when considering data transmission delay to a
remote processor, the reconfiguration cost is proportional to the
size of the data. The algorithms presented in this paper are robust
enough to handle both of these situations and even a combination
of the two. The only change is that the reconfiguration cost is
stored for each task type instead of for each resource.
Theorem 1: The algorithm presented in this section schedules the
input tasks, such that the makespan is optimally minimized.
Proof: The algorithm carries out an exhaustive search of all of the
possible assignment of tasks. The algorithm only eliminates
points from its consideration, when they will obviously not lead to
the optimal solution. Thus the algorithm produces an optimal
solution. ‫
The algorithm, however, has an exponential time and space
complexity on the order of O(mn), where m is the number of
resources and n is the number of tasks.

5. APPROXIMATION ALGORITHM
The problem as formulated in section 2 is an NP-complete
problem, proven by reduction to the well-known set-sum problem.
Therefore, an optimal polynomial time algorithm does not exist,
unless P=NP[3].

The optimal algorithm expressed above is an exponential
algorithm. By using a trimming procedure, however, a fully
polynomial approximation algorithm can be produced.
Proportional to the amount of time given, the approximation
algorithm can find solutions a factor of ε away from the optimal
solution.

5.1 Algorithm
As shown below the only difference between the optimal
algorithm and the approximation algorithm is the addition of an
approximation scheme.

Approximation Algorithm

1: Sort tasks to group together according to their type

2: for each tasks t

3: ►Keep track of what group has being assigned
4: if this task has a different type than the previous task
5: currentTaskType = t.type

6: for each old point o OldPointsList
7: for each resource r
8: o.reconfiged[r] = false
9: end for

10: end for

11: end if
12: ►Add m new points to the graph for each old point

13: for each old point o in list of old point
14: for each resource r

15: Create a new point n
16: ►Initialize new point to old point

17: for each resource r1
18: n.Cost[r1] = o.Cost[r1]
19: n.configed[r1] = o.configed[r1]
20: end for
21 ►Add new costs to the point
22: if n.configed[r] == false
23: n.Cost[r]= n.Cost[r] + resource[r].ReconfigCost
24: n.Cost[r] = true

25: end if
26: n.Cost[r] = n.Cost[r] + t.Cost[r]
27: add n to list of NewPointsList

28: end for
29: end for
30: RemoveEliminatablePoints(NewPointsList)
31: ►The only change to the code
32: Approximate(NewPointsList)
33: OldPointsList = NewPointsList

34: end for

35: return assignment with the minimum makespan

The idea is that if two values are close enough together, then in an
approximation scheme, only one of them needs to be further
examined. A point, o, in the original space is not transferred to a
new space if

 ao
a makespanmakespan

makespan
≤≤

+)1(δ
,

where a is the point in the new space and δ the factor by which
points are trimmed.
When approximating points, two considerations need to be made.
The first is that the latest finish time of the points o and a are on
the same resource. This requirement is in place, so that points
with the same makespan, but in two very different parts of the

approximating in between the assignment of tasks of the same
type, the point in the new space needs to have a larger or equal
approximation history. This is based on the same reasoning
applied to eliminating points.
The psuedocode for the approx

space do not approximate each other. Second, when

imation scheme is given below.

Approximate(NewPointsList)

1: Sort points in NewPointsList in non-increasing order of
makespan
2: Place the first point in ApproxPointList and remove it from
NewPointsList
3: for each point n in NewPointsList

4: for each point p in ApproxPointsList

5: if makespan of n and p is due to different resources
6: continue

7: end if
8: if n.configed[r] > p.configed[r] for at least one resources r
and currentTaskType = previousTaskType
9: continue

10: d if en

11: if n.makespan*(δ+1) < p.makespan
12: continue

13: d if en

11: remove n from NewPointsList
12: break

13: end for

14: if n not removed from NewPointsList
15: add n to ApproxPointsList

16: remove n from NewPointsList

17: end if
18: end for
19: NewPointsList = ApproxPointList

The approximation algorithm starts off by adding the first point in

5.2 Proof
on procedure presented in the previous section,

ly discussed δ by the

following equation:

NewPointsList to the newly formed list, named ApproxPointList.
The remaining points are added to ApproxPointList, if a point
does not already exist in ApproxPointList that approximates them.

The approximati
takes as input n tasks, m resources, and an approximation
parameter ε, where 0 < ε < 1. It returns a schedule for the tasks on
the resources, where the makespan of the schedule is 1+ ε factor
of the makespan of the optimal schedule.

The ε value is related to the previous

n2
εδ = .

Theorem 2: The approximation procedure presented in section
5.1 returns a schedule for the input tasks on the given resources,

where the makespan of the schedule is 1+ ε factor of the
makespan of the optimal schedule.

Proof: The approximation algorithm introduces no error except in
the trimming of points from the space. Thus we consider only that
part of the algorithm.

Since makespan , we need to show that **
ao makespan≤

ε+≤ 1*

*

o

a

makespan
makespan

, where the subscript a represents the

approximation solution, the subscript o represents the optimal
solution, and the asterisk represents the solution of the final
iteration.

By induction on i, it can be shown that for every point o
belonging to in the original space at iteration i, there is a point, a,
belonging to the new space in iteration i, such that

.

ao
i

a makespanmakespan

n
e

makespan
≤≤

+)1
2

(

This inequality must hold for the final iteration also.

**
*

)1
2

(
ao

n

a makespanmakespan

n

makespan
≤≤

+
⇒

ε

n

o

a

nmakespan
makespan

)1
2

(*

*

+≤⇒
ε

∞→≤⇒ n as2/
*

*
εe

makespan
makespan

o

a

2
*

*

)
2

(
2

1 εε
++≤⇒

o

a

makespan
makespan

because 22/)
2

(
2

1 εεε ++≤e

ε+≤⇒ 1*

*

o

a

makespan
makespan

 because 0<ε<1 ‭

Now, that we have proven the quality of the algorithm, we must
prove that the algorithm is indeed a polynomial-time algorithm.

Theorem 3: The approximation procedure presented in section
5.1 is a fully polynomial-time algorithm.

Proof: First we bound the number of points in the space. We do
this by using a maximum value for the makespan, M. M can
simply be the makespan of all the tasks scheduled onto one of the
resources. The optimal solution will obviously be smaller than or
equal to this value. Previously we stated that each point with a
maximum finish time on the same resource must differ by at least

a factor of 1+ε/2n. Therefore, each space will contain at most

  mMn ×++)1log(2/1 ε points.

m
n

MmMn ×+
+

=×++)1
)2/1ln(

ln()1(log 2/1 εε

mMnn
×+

+
≤)1ln)2/1(2(

ε
ε

mMn
×+≤)1ln4(

ε

The number of points in the space is polynomial in the size of the
input and 1/ε, since the number of resources is supposed to be a
fixed value. Since the complexity of the algorithm is polynomial
in terms of the number of points in the space and ε, the
approximation algorithm presented in section 5.1 is a fully
polynomial-time approximation scheme. ⁪

6. EXPERIMENTAL RESULTS

6.1 Experimental Framework
The value of the scheduling algorithms presented in this paper
was evaluated experimentally. The goal of the experiments was to
schedule the encryption of heterogeneous inputs using the
Rijndael encryption algorithm. Provided for the encryption was a
general-purpose processor and an FPGA, with a known full
reconfiguration cost.

Encrypting input using the Rijndael algorithm is highly
parallelizable. Thus the inputs are broken up into blocks, which
are then to be encrypted on the parallel resources. The inputs are
split into blocks of three different sizes: 128 bits, 196 bits, and
256 bits. Also, depending on the security and time requirements
there are three key sizes: 128 bits, 196 bits, and 256 bits. The
results are nine different types of tasks. For switching among the
different configuration of block sizes and key sizes, a
reconfiguration cost needs to be paid on the FPGA.

Three scheduling algorithms were used in the experiments. The
optimal and approximation algorithms were compared with the
first-available heuristic algorithm. The first-available algorithm
schedules the current task on the resource with the earliest finish
time at that point. It is a simple algorithm, chosen for the purposes
of comparison.

Sample values were chosen for the execution times and the
reconfiguration cost. The results of these experiments are
discussed in the next section.

6.2 Experimental Results
Figure 3 demonstrates that the approximation algorithm, where ε
= .9, is indeed at most a factor of 1+.9 away from the optimal
solution. The y-axis shows the number of experiments out of a
1000, and the x-axis represents the maximum factor by which the
approximation makespan was different from the optimal value. As
shown in the graph, all of the thousand test cases resulted in
schedule with a makespan of at most 1.9 times the optimal
solution.

The algorithm is shown both theoretically and experimentally to
be a (1+ε)-approximation. It is capable of scheduling the
encryption of heterogeneous inputs onto heterogeneous resources,
dramatically more effectively than the first-available heuristic. Its
quality of solution also compares well with the optimal
exponential algorithm.

Error Distribution: Approximation vs Optimal

0

200

400

600

800

1000

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Factor away from the Optimal

N
um

be
r o

f E
xp

er
im

en
ts

Figure 3.

8. REFERENCES
[1] Cryptography Technology.

http://fp.gladman.plus.com/crypotography
technology/index.htm

[2] Daeman, J., and Rijmen, V. AES Proposal: Rijndael. In First
Advanced Ecryption Standard Conference (1998).

[3] Garey, M.R., and Johnson, D.S. Computers and
Intractability, A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, New York, 1979. Figure 4 gives the error distribution of the makespan using the

first-available heuristic versus using an optimal algorithm. The
results using the first-available heuristic are up to 5.7 times the
optimal value. These results reinforce the quality of the
approximation algorithm.

[4] Horowitz, E., and Sahni, S. Exact and Approximate
Algorithms for Scheduling Nonidentical Processors. Journal
of the Association of Computing Machinery 23, 2 (April
1976), 317-327.

[5] Implementation of AES (Rijndael) in C/C++.
http://fp.gladman.plus.com/cryptography_technology/rijndae
l/index.htm

Error Distribution: First-Available Heuristic vs
Optimal

0
50

100
150
200
250
300
350

1 1.6 2.2 2.8 3.4 4 4.6 5.2 5.8

Factor Away from Optimal

N
um

be
r o

f E
xp

er
im

en
ts

Figure 4.

[6] Jansen, K., and Porkolab, L. Improved Approximation
Schemes for Scheduling Unrelated Parallel Machines. In
Proceedings 31st ACM Symposium on Theory of Computing
(STOC ’99), 408-417.

[7] Lenstra, J.K., Shmoys, D.B., and Tardos, E. Approximation
Algorithms for Scheduling Unrelated Parallel Machines.
Mathematical Programming 46 (1990), 259-271.

[8] Potts, C.N. Analysis of a Linear Programming Heuristic for
scheduling Unrelated Parallel Machines. Discrete Applied
Mathematics 10 (1985), 155-164.

[9] Verbauwhede, I. Schaumont, P., and Kuo H. Design and
Performance Testing of a 2.29-GB/s Rijndael Processor.
IEEE Journal of Solid-State Circuits 38, 3 (March 2003),
569-572. 7. CONCLUSION

In this paper, we have presented a fully polynomial
approximation algorithm for determining the optimal scheduling
of independent tasks onto heterogeneous resources with
heterogeneous reconfiguration costs. The approximation is
derived form the optimal algorithm, by trimming the number of
points in the space.

	INTRODUCTION
	PROBLEM STATEMENT
	RELATED WORK
	OPTIMAL EXPONENTIAL SOLUTION
	Example
	Algorithm

	APPROXIMATION ALGORITHM
	Algorithm
	Proof

	EXPERIMENTAL RESULTS
	Experimental Framework
	Experimental Results

	CONCLUSION
	REFERENCES

