
Optimization for Real-Time Systems with Non-convex
Power versus Speed Models

Ani Nahapetian, Foad Dabiri, Miodrag Potkonjak, Majid Sarrafzadeh

Computer Science Department,
University of Calfornia Los Angeles (UCLA)
{ani, dabiri, miodrag, majid}@cs.ucla.edu

Abstract. Until now, the great majority of research in low-power sys-

tems has assumed a convex power model. However, recently, due to the
confluence of emerging technological and architectural trends, standard
convex models have been invalidated for the proper specification of power
models with different execution speeds. For example, the use of a shut-
down energy minimization strategy to eliminate leakage power in multi-
processor systems results in a non-convex trade-off between power and
speed. Non-convexity renders the majority of previous power management
schemes, algorithms, and even basic theorems invalid. For instance, the
main premise that one has to run continuously using a single speed in order
to minimize energy consumption for constant computation requirements is
not valid anymore.

We study techniques for energy minimization where the power versus
speed curve has a non-convex shape. We first identify and quantify sources
of non-convexity. Minimizing energy when the power-speed model is non-
convex is an NP-complete problem, even in the canonical and simple case
where a task is to execute a specified amount of computation without de-
pendencies, in a given amount of time. We address this problem using a
non-linear function minimization based approach and demonstrate that on
average the new solution saves at least 40% more energy on industrial
processors than techniques that follow the convexity paradigm. Then we
address common real-time task scenarios where the power-speed model is
non-convex. Specifically, we introduce a heuristic for scheduling tasks
onto a multiprocessor system with a non-trivial start-up cost and compare
its performance to our mixed integer linear programming (MIP) formula-
tion. We experimentally compare our neighbors heuristic with the well-
known average rate algorithm, and find that it results in a 106% improve-
ment while being only 14% worse than the optimal MIP solution.

1 Introduction

Traditionally, low power research has focused on a power model where the relation-
ship between power consumption and processor speed is convex. Convexity has a
number of profound ramifications when energy is minimized using variable voltage
strategies. For example, running the processor at the lowest speed possible continu-
ously, while still meeting the task deadline, has been the most advantageous strategy.
Also, it is well known, that convex objective functions are much more amenable to

both heuristic and provably optimal minimization [4]. All dynamic voltage scaling
research has essentially been governed by this fact.

There exist rapidly emerging application and technology scenarios, however,
where the relationship between power and processor speed is not convex, including
the following situations: (i) multiprocessor systems with powering-up power cost; (ii)
scaled down CMOS devices where the increased impact of leakage power dominates
the power consumption. (Leakage power does not have a convex relationship with
processor speed [7]); (iii) systems with simultaneously adaptive Vdd and Vt. (Energy
gains can be made by simultaneously varying Vdd, through dynamic voltage scaling,
and Vt, through adaptive body biasing, where Vdd is the supply voltage and Vt, is the
threshold voltage [17]. Lowering the threshold voltage increases the processor speed,
but at the expense of increasing the leakage power creating a non-convex relationship
between power and speed.) (iv) Finally, there is an important emerging class of sys-
tems that are subject to non-convex power minimization: subthreshold ultra low
power circuits. Recent work at MIT, University of Michigan, and Purdue University
have characterized the power versus speed of execution curve for subthreshold ultra
low power as non-convex using circuits, CAD, and architectural techniques
[5][6][14][18][20][23][24][28]. There is a widely held opinion that subthreshold logic
will dominate several rapidly growing segments of ICs and computer and communi-
cation architectures.

The optimization process under these new conditions will have numerous and pro-
found consequences and will significantly differ from the current variable voltage
approaches. As we mentioned, given a convex power model a single speed properly
chosen minimizes the energy consumption. In the non-convex case, on the other
hand, the selection of two or more different speeds minimizes energy consumption.
Even piecewise convex curves cannot be handled using a single speed, instead, they
are best handled, as other non-convex curves, using two speeds. Therefore, with
pending system and technology solutions, non-convex power models will dominate
the spectrum of power-constrained systems.

TABLE 1. EXAMPLE DATA POINTS

Convex Power Model Non-convex Power Model
Speed (million

cycles/sec)
Power (W) Speed (million

 cycles/sec)
Power (W)

0 0 0 0
1 1 1 0.5
2 4 2 2
3 8 3 2.5

Let us examine the difference between a convex and a non-convex power-speed

curve with the following example. Assume we are given a task that requires 20 mil-
lion cycles of computation in 10 seconds. With a convex power to processor speed
curve, as given in Table 1, the optimal speed to run the tasks is 2 million cy-
cles/second for 10 seconds at 4 W. On the other hand, with a non-convex curve, also

given in Table 1, the optimal schedule would be to run the task at 3 million cy-
cles/second for 5 seconds and at 1 million cycles/second for 5 seconds. The total
energy cost would be 15 J (= 2.5 J + 12.5 J), which is less than the 20 J consumed if
we had run at 2 million cycles/sec for the entire interval. This example highlights the
new paradigm of non-convex power minimization.

(1) We can no longer run the tasks at their slowest possible speed.
(2) We cannot assume that a single speed will be used by the optimal solution.
Our goal is to develop techniques that under the general non-convex power model

address scheduling onto a multiprocessor system with a startup cost for each proces-
sor. First, we solve the problem of scheduling single tasks onto a multiprocessor
system. Then we solve the more complex problem of scheduling multiple tasks, with
arrival times, deadlines, and cycles of computation, onto a multiprocessor system
with startups costs, using the solution of the first problem as the enabling procedure.
The major contributions of this paper are the following. We introduce and discuss the
new paradigm where there is a non-convex power relation between power and proc-
essor speed. We solve the fundamental problem of scheduling a single task on to a
multiprocessor system, by formulating the problem as non-linear function minimiza-
tion. We introduce the neighbors heuristic for scheduling tasks onto a multiprocessor
system with a significant startup cost. We also formulate a mixed integer program-
ming (MIP) formulation to solve the problem. Finally, we demonstrate the significant
improvement possible by experimentally comparing the neighbors heuristic, the MIP
approach, and the average rate algorithm.

2 Power Model and Related Work

We consider the case where a startup cost is incurred for transitioning a processor
from the sleep state to the on state. We use the startup cost calculated by Jejurikar et
al [13] that estimates the cost of changing the state of the processor to be 483µJ,
based on several assumptions including ones about the cache state. This cost domi-
nates, if it is incurred. Aside from the startup cost, we incur a cost for keeping a proc-
essor on. We use the following formula. fPE onon /= where Pon is taken to be
0.1Watts, similar to [13], and f is the frequency, which we take to be 300MHz, the
minimum frequency of the Transmeta Crusoe processor. Our power model is based
on real processors, specifically, the Transmeta Crusoe processor Model TM5500 [22]
and AMD-K6-IIIE+500 ANZ processor [1]. Although we use actual processor values
for our experimentation and for our problem abstraction, we do make a few simplify-
ing assumptions. We assume that the cost of transitioning between different voltage
values was zero. We also assume that the transition time is negligible. These assump-
tions are common in the recent literature [11][13][15][26].

Energy minimization techniques can be classified in two broad groups. The first,
called dynamic power management (DPM), aims to shutdown processors when they
are idle. The second, dynamic voltage scaling (DVS), dynamically varies the voltage

supplied to the processor, to provide just in time execution of tasks. Benini et al pro-
vide a survey in [2][3]. Irani et al combine the two methods, DPM and DVS, for
systems with DVS and multiple power modes [11].

A large portion of the research in power scheduling algorithms has focused on uni-
processors. The scheduling and assignment of tasks onto multiprocessors generally
has been solved utilizing heuristics that have a two-phase approach. They assign jobs
to the resources, then they allocate the voltages for the processors, assuming the job
assignment determined in the first phase [29][30]. Yu and Prasanna [27] examine the
two problems of assignment of jobs to resources and the determining of the voltage
levels in a joint manner. They formulate the problem as an integer linear program
(ILP), and they utilize a linear relaxation heuristic (LP-relaxation) to solve the prob-
lem.

The majority of the related work in DVS follows a convex power model
[11][15][21][26][27]. In general, they assume a quadratic relationship between power
and processor speed. Jejurikar et al [13] consider the effect of leakage power, but they
do not address the problem of scheduling in the non-convex region of the power
curve.

3 Fundamental Problem

Let us consider a constrained yet fundamental case of the scheduling problem to
gain intuition and to create a powerful procedure for the final steps of the energy
optimization in more complex scenarios. The problem is the following. Given a single
required average speed at which to run the processor for a period of time, determine
the speeds at which to run each segment of the time interval in such a way that the
total energy is minimized given a non-convex power-speed relationship. The problem
is NP-complete. We prove the claim using reduction from the well-known knapsack
problem [8]. The knapsack problem is reduced in polynomial time to the fundamental
problem by mapping the weight of the objects to the energy of a chosen speed for a
given period of time and by mapping the value of the objects to the speed chosen.
The resulting problem is a discretized instance of the fundamental problem, given
below.

Instance: Finite set P, for each p∈P an energy e(p)∈Z+ and a speed s(p)∈Z+, and
positive integers C and E.

Question: Is there a subset P’ P such that ⊆ ∑
∈

≤⋅
Pp

Epspe)()(and such

that . ∑
∈

≥⋅
Pp

Cpspe)()(

To solve the fundamental problem for multiple processors, we start with multiple
energy versus speed curves that correspond to using a different number of processors,
and we juxtapose the curves to obtain a new energy versus speed curve. Then given
an average speed and a time interval, nonlinear function minimization is used to de-
termine the most energy efficient selection of the number of processors and their

execution speeds. To create the new function, we examine k possible energy versus
processor speed mappings, where k is the number of processors. The k curves are then
combined, and the minimal assignment and schedule is found.

0

0.5

1

1.5

2

2.5

3

3.5

200 700 1200 1700

Total Speed (MHz)

En
er

gy
/C

ef
f

One Processor
Two Processors
Three Processors

Figure 1. Energy vs. Speed Curves for 3 Types of Multiprocessor Systems

Figure 1 graphs three different curves, where each curve represents the energy con-

sumption (divided by the effective capacitance) for running at the given speed. Each
of the curves assumes a certain number of processors available for use. The first
curve graphs the energy versus speed curves for the simple case, where there is a
single processor, using the data values from the slides associated with [13]. The sec-
ond curve graphs the case where there are two processors, each running at the same
speed. The speed is two times that of the uniprocessor case, because there are two
processors. The energy is equal two times the energy required if a single processor
were running at half the speed, basically the speed of each of the two processors. This
analysis is carried out for k processors or in the case of Figure 1 for three processors.
To obtain the solution for the fundamental problem, a nonlinear equation minimiza-
tion function can be used to determine the number of processors and their speeds that
consume the minimum amount of energy. The NLP has been omitted due to space
limitations.

As illustration, we ran a nonlinear minimizer, specifically the Powell, or Direction
Set, Method in Multidimensions [19] on a four processor system. The results are
shown in Figure 2. Figure 2 shows that NLP solution is able to consistently improve
by on average 45.8% on the solution obtained with traditional convex scheduling
techniques. Note that we assumed the processors exhibit no cost in starting up and/or
changing their voltage values. The results are obtained using a 1000 random restarts
for the Powell method. The results may somewhat improve with a larger number of
restarts. Once we have the solution to the fundamental problem, we can use it to sim-
plify our overall problem. As long as we can determine the total number of cycles that
are needed to be executed in an interval, then the solution given in this section can be

applied to the determine the most energy efficient execution of the cycles.

0

1

2

3

4

5

6

0.
5

0.
72

0.
94

1.
16

1.
38

1.
59

1.
81

2.
03

2.
25

2.
47

2.
69

2.
91

3.
13

3.
34

3.
56

3.
78

Cycles (million)

En
er

gy
/C

ef
f

Traditional Techniques's Energy
NLP's Energy

Figure 2. Energy Consumption using NLP Solution

4 Scheduling for Non-convex Power Model

In this section, we highlight a provably optimal ILP-based approach for power
minimization in systems subject to non-convex power-speed relationship, as well as a
new heuristic approach for the same problem. Before addressing energy minimization
with non-convex power-speed models, we formally define the addressed problem of
minimizing energy for a set of tasks with known computational requirements and
arrival and deadline times.

Let us consider the problem of scheduling tasks onto multiprocessors with a startup
cost. The problem requires determining the number of processors to use and speed at
which to execute the cycles at any given time, such that the energy consumption is
minimized. More formally, we are given as input a set of n tasks. Each task is charac-
terized by the following: ai – arrival time before which task i cannot be executed, di –
deadline by which time task i must be completed, ci – cycles of computation associ-
ated with task i.

We assume a hard real-time scenario where tasks are periodic, and where the dead-
line for each period is equal to its worst-case execution time (WCET), as is common
among the literature [11][13][15][16]. We are also given a set of homogenous proces-
sors, whose applied voltages can be varied dynamically. We assume homogenous
processors for the sake of clarity, but the algorithms and software tools can easily be
extended to handle heterogeneous processors as well. We consider processors that
can be transitioned into sleep mode to save energy, if they are idle, and we assume
that the processors have a start-up cost associated with them.

We formulate the problem as a mixed integer programming (MIP) problem and

solve it optimally using an MIP solver such as CPLEX [10]. Although MIP in the
worst case can take an exponential amount of time, this MIP formulation is often fast
for instances of practical interest. For D total time units and N tasks, there are D·N
continuous variables and 2N integer variables. There are six types of constraints, with
a total of 3N + 3D constraints. There is on average 3D/N + (N+5)/D variables per
constraint. The MIP formulation has been omitted due to space limitations

For the problem formulated in section 4, we have also developed the neighbors
heuristic. Unlike the MIP, the heuristic does not always produce the optimal solution;
however, it is useful for large problem instances where the MIP may be prohibitive.
Also, it allows the addition of nonlinear constraints to the problem, such as allowing
the processors to go to sleep at any time instance.

Intuitively, the heuristic evens out the load on neighboring intervals, by reducing
the instances of change in the number of processors used. It also attempts to run the
active processors with the voltage values that were determined to be advantageous by
the solution of the fundamental problem. The psuedocode for the heuristic is given
below.

The heuristic initially assigns tasks to execute based on their average rate, given by

the equation Average ratei

ii

i

ad
c
−

= . The solution is iteratively improved by evening

out the load on neighboring intervals, by reallocating the cycles of overlapping tasks.
We iteratively choose the two intervals that have the largest density difference that
share a common task. If there are multiple tasks to choose from, we move the task
that is less likely to be redistributed in a following iteration. Finally, we optimize each
interval using the solution for the fundamental problem.

The intuition behind the neighbors heuristic is based on the fact that the less
change there is in the required average speed, the better the speed assignments can be.
Although, the neighbors heuristic will not be useful for all speed energy tradeoff, it is
very useful for the common case in multiprocessor systems where, roughly, the larger
the computation requirement the less efficient the speed energy tradeoff is, especially
if we are dealing with a piecewise convex model.

Neighbors Heuristic(tasks)
for all tasks

Assign the tasks to their execution intervals at their average rate
for a certain number of iterations

for each interval i and its neighboring interval j
Choose the task belonging to both intervals that has the earliest deadline
Move the cycles of execution of the chosen task from the more dense inter-
val to the less dense interval until the intervals are even or until all of the
common task has been moved

for each interval
Optimize the voltage settings using the fundamental problem’s solution

5 Experimental Results

We evaluated the effectiveness of the neighbors heuristic experimentally against
randomly generated task sets, which are standard among the related work
[13][15][21][27]. The tasks’ values were based on the work of Kwon et al [15], by
choosing arrival times and deadlines to be in the range of 1 to 20 seconds and cycles
of execution from the range of 1 to 400 million cycles. For comparison purposes, we
also implemented the following heuristics. (1) The average rate algorithm [26] as-
signs tasks to their execution intervals to be executed at their average rate. The num-
ber of processors is based on the number of cycles to be executed at that time in-
stance. (2) The contention-based algorithm is an enhancement to the average rate
algorithm. It moves tasks from high contention intervals to low contention intervals,
where an interval with low contention is characterized as having a small number of
live tasks during the interval. The contention-based heuristic chooses the interval with
the least contention to which to move task cycles. Among the tasks that are live in
that interval, the task with the largest density is moved to the interval. (3) The flatten-
ing heuristic aims to flatten the scheduled execution of cycles by eliminating peaks
and valleys in the schedule to decrease the number of startups. As in the contention-
based and neighbors heuristic, the tasks are initially scheduled according to the aver-
age rate algorithm. Then, the solution is iteratively improved, by choosing two inter-
vals that have the largest density difference that share a common task. The common
task is redistributed so that the intervals are even in terms of density. Of course, we
are limited by the number of cycles belonging to the chosen task, and thus cannot
move more cycles than the task requires. As the process of flattening is done itera-
tively, the schedule will eventually flatten out, if intervals have multiple tasks in
common. If there are multiple tasks that lie in both of the intervals, then the task with
the greatest density is chosen for redistribution.

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90 100
Number of Tasks

En
er

gy
 N

or
m

al
iz

ed
 to

 O
pt

im
al

Neighbors (40 iterations)
Flattening Energy
Contention-Based Energy
Average Rate Energy

Figure 3. Energy vs. Number of Tasks for Various Approaches

Figure 3 present the results obtained from our experimentation. The bar chart dis-

plays the energy consumption normalized to the optimal value for 10 different task
sets of varying sizes for each of the four heuristics: the average rate heuristic, the
contention-based heuristic, the flattening heuristic, and the neighbors heuristic. The
neighbors heuristic dramatically out-performs all of the other heuristics. The heuristic
is on average 106% better than the well-known average rate heuristic and 84% better
than the flattening heuristic, yet is it only 14% worse than the optimal solution. For
the task sets with 70, 80, 90, and 100 tasks the results are equal to the optimal values.

6 Conclusion

In this paper, we addressed energy minimization for non-convex power-speed
models, which are poised to dominate future applications and technologies. We first
addressed the fundamental problem of scheduling onto a multiprocessor system a
computation requirement for a given interval. We, then, addressed the more compli-
cated problem of scheduling tasks for systems with a large startup cost. First, we
formulated the problem as a mixed integer-programming problem and showed how it
could be solved very efficiently. Secondly, we introduced the neighbors heuristic,
which evens out the density of neighboring intervals initially produced by the average
rate schedule. We carried out extensive experimentation to quantify the quality of our
approaches.

References

[1] 1. AMD PowerNow! Technology Platform Design Guide for Embedded Processors. AMD
Document number 24267a, December 2000.

[2] L. Benini and G. DeMicheli. System-Level Power: Optimization and Tools. International
Symposium Low Power Embedded Design (ISLPED), 1999.

[3] L. Benini, A. Bogliolo and G. DeMicheli. A Survey of Design Techniques for System-
Level Dynamic Power Management. IEEE Transactions on VLSI Systems, vol. 8, No. 3.,
June 2000.

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cam-
bridge, 2004.

[5] B.H. Calhoun, A.P. Chandrakasan. Characterizing and Modeling Minimum Energy Op-
eration for Subthreshold Circuits. International Symposium Low Power Embedded Design
(ISLPED), 2004

[6] B.H. Calhoun, A. Wang, A.P. Chandrakasan. Device sizing for minimum energy opera-
tion in subthreshold circuits. Custom Integrated Circuits Conference (CICC), 2004

[7] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen. Low- Power CMOS digital design.
IEEE Journal of Solid-State Circuits, vol. 27, No. 4, pp.473-484, 1992.

[8] M.R. Garey and D.S. Johnson. Computers and Intractability, A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York, 1979.

[9] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, M. B. Srivastava. Power optimization of
variable-voltage core-based systems. Design Automation Conference (DAC), 1998

[10] ILOG CPLEX http://www.ilog.com/products/cplex/

[11] S. Irani and R. Gupta. Algorithms for Power Savings.
Symposium on Discrete Algorithms, 2003

[12] T. Ishihara and H. Yasuura. Voltage Scheduling Problem for Dynamically Variable Volt-
age Processors. International Symposium Low Power Embedded Design (ISLPED), 1998

[13] R. Jejurikar, C. Pereira, and R. Gupta. Leakage Aware Dynamic Voltage Scaling for Real-
Time Embedded Systems. Design Automation Conference (DAC), 2004.

[14] J. Kao, S. Narendra, A. Chandrakasan. Subthreshold leakage modeling and reduction
techniques. International Conference on Computer Aided Design (ICCAD), 2002.

[15] W. C. Kwon and T. Kim. Optimal Voltage Allocation Techniques for Dynamically Vari-
able Voltage Processors. Design Automation Conference (DAC), 2003.

[16] C. L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming in Hard Real-
Time Environment. Journal of ACM, v.20, No.1, pp.46-61, 1973.

[17] S. M. Mastin, K. Flautner, T. Mudge, and D. Blaauw. Combined Dynamic Voltage Scal-
ing and Adaptive Body Biasing for Lower Power Microprocessors under Dynamic Work-
loads. International Conference on Computer Aided Design (ICCAD), 2002.

[18] L. Nazhandali, B. Zhai, J. Olson, A. Reeves, M. Minuth. Energy Optimization of Sub-
threshold-Voltage Sensor Network Processors. International Symposium on Computer Ar-
chitecture (ISCA), 2005.

[19] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipies
in C: The Art of Scientific Computing. Cambridge University Press, New York, NY,
1994.

[20] H. Soeleman, K. Roy, B.C. Paul. Robust subthreshold logic for ultra-low power operation.
IEEE Transactions on VLSI Systems, Vol. 9, No. 1, 2001.

[21] Y. Shin and K. Choi. Power Consious Fixed Priority Scheduling for Hard Real-Time
Systems. Design Automation Conference (DAC), 1999.

[22] Transmeta Crusoe Data Sheet. https://www.transmeta.com
[23] A. Wang, A.P. Chandrakasan. A 180mV FFT processor using subthreshold circuit tech-

niques.Solid-State Circuits Conference, 2004. Digest of Technical
[24] A. Wang, A.P. Chandrakasan, S.V. Kosonocky. Optimal supply and threshold scaling for

subthreshold CMOS circuits. International Symosium on VLSI (ISVLSI), 2002.
[25] W. Wolf and M. Potkonjak. A Methodology and Algorithms for the Design of Hard Real-

Time Multi-Tasking ASICs. ACM Transaction on Design Automation of Electronic Sys-
tems (TOADES), v.4, No.4, pp. 430-459, 1999

[26] F. Yao, A. Demers and S. Shenker. Scheduling for Reduced CPU Energy. IEEE Annual
Foundations of Computer Science (FOCS), 1995.

[27] Y. Yu and V. Prasanna. Resource Allocation for Independent Real-Time Tasks in Hetero-
geneous Systems for Energy Minimization. International Conference on Computer Aided
Design (ICCAD), 2001.

[28] B. Zhai, D. Blaauw, D. Sylvester, K. Flautner. Theoretical and practical limits of dynamic
voltage scaling. Design Automation Conference (DAC), 2004.Y. Zhang, X. Hu, and D. Z.
Chen. Task Scheduling and Voltage Selection for Energy Minimization. Design Automa-
tion Conference, 2002.

[29] D. Zhu, R. Melhem, and B. Childeres. Scheduling with Dynamic Voltage/Speed Adjust-
ment using Slack Reclamation in Multi-processor Real-Time Systems. IEEE Real-Time
Systems Symposium, 2001.

[30] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, M. B. Srivastava. Power optimization of
variable-voltage core-based systems. Design Automation Conference (DAC), 1998.

