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Abstract. Until now, the great majority of research in low-power sys-

tems has assumed a convex power model. However, recently, due to the 
confluence of emerging technological and architectural trends, standard 
convex models have been invalidated for the proper specification of power 
models with different execution speeds. For example, the use of a shut-
down energy minimization strategy to eliminate leakage power in multi-
processor systems results in a non-convex trade-off between power and 
speed. Non-convexity renders the majority of previous power management 
schemes, algorithms, and even basic theorems invalid. For instance, the 
main premise that one has to run continuously using a single speed in order 
to minimize energy consumption for constant computation requirements is 
not valid anymore.  

We study techniques for energy minimization where the power versus 
speed curve has a non-convex shape. We first identify and quantify sources 
of non-convexity. Minimizing energy when the power-speed model is non-
convex is an NP-complete problem, even in the canonical and simple case 
where a task is to execute a specified amount of computation without de-
pendencies, in a given amount of time. We address this problem using a 
non-linear function minimization based approach and demonstrate that on 
average the new solution saves at least 40% more energy on industrial 
processors than techniques that follow the convexity paradigm. Then we 
address common real-time task scenarios where the power-speed model is 
non-convex. Specifically, we introduce a heuristic for scheduling tasks 
onto a multiprocessor system with a non-trivial start-up cost and compare 
its performance to our mixed integer linear programming (MIP) formula-
tion. We experimentally compare our neighbors heuristic with the well-
known average rate algorithm, and find that it results in a 106% improve-
ment while being only 14% worse than the optimal MIP solution.  

1   Introduction 

Traditionally, low power research has focused on a power model where the relation-
ship between power consumption and processor speed is convex. Convexity has a 
number of profound ramifications when energy is minimized using variable voltage 
strategies. For example, running the processor at the lowest speed possible continu-
ously, while still meeting the task deadline, has been the most advantageous strategy. 
Also, it is well known, that convex objective functions are much more amenable to 



both heuristic and provably optimal minimization [4]. All dynamic voltage scaling 
research has essentially been governed by this fact.  

There exist rapidly emerging application and technology scenarios, however, 
where the relationship between power and processor speed is not convex, including 
the following situations: (i) multiprocessor systems with powering-up power cost; (ii) 
scaled down CMOS devices where the increased impact of leakage power dominates 
the power consumption. (Leakage power does not have a convex relationship with 
processor speed [7]); (iii) systems with simultaneously adaptive Vdd and Vt. (Energy 
gains can be made by simultaneously varying Vdd, through dynamic voltage scaling, 
and Vt, through adaptive body biasing, where Vdd is the supply voltage and Vt, is the 
threshold voltage [17]. Lowering the threshold voltage increases the processor speed, 
but at the expense of increasing the leakage power creating a non-convex relationship 
between power and speed.) (iv) Finally, there is an important emerging class of sys-
tems that are subject to non-convex power minimization: subthreshold ultra low 
power circuits. Recent work at MIT, University of Michigan, and Purdue University 
have characterized the power versus speed of execution curve for subthreshold ultra 
low power as non-convex using circuits, CAD, and architectural techniques 
[5][6][14][18][20][23][24][28]. There is a widely held opinion that subthreshold logic 
will dominate several rapidly growing segments of ICs and computer and communi-
cation architectures. 

The optimization process under these new conditions will have numerous and pro-
found consequences and will significantly differ from the current variable voltage 
approaches.  As we mentioned, given a convex power model a single speed properly 
chosen minimizes the energy consumption. In the non-convex case, on the other 
hand, the selection of two or more different speeds minimizes energy consumption. 
Even piecewise convex curves cannot be handled using a single speed, instead, they 
are best handled, as other non-convex curves, using two speeds. Therefore, with 
pending system and technology solutions, non-convex power models will dominate 
the spectrum of power-constrained systems.  

 
TABLE  1.  EXAMPLE  DATA POINTS 

Convex Power Model Non-convex Power Model 
Speed (million  

cycles/sec) 
Power (W) Speed (million 

 cycles/sec) 
Power (W) 

0 0 0 0 
1 1 1 0.5 
2 4 2 2 
3 8 3 2.5 

 
Let us examine the difference between a convex and a non-convex power-speed 

curve with the following example. Assume we are given a task that requires 20 mil-
lion cycles of computation in 10 seconds. With a convex power to processor speed 
curve, as given in Table 1, the optimal speed to run the tasks is 2 million cy-
cles/second for 10 seconds at 4 W. On the other hand, with a non-convex curve, also 



given in Table 1, the optimal schedule would be to run the task at 3 million cy-
cles/second for 5 seconds and at 1 million cycles/second for 5 seconds. The total 
energy cost would be 15 J (= 2.5 J + 12.5 J), which is less than the 20 J consumed if 
we had run at 2 million cycles/sec for the entire interval. This example highlights the 
new paradigm of non-convex power minimization.  

(1) We can no longer run the tasks at their slowest possible speed.  
(2) We cannot assume that a single speed will be used by the optimal solution. 
Our goal is to develop techniques that under the general non-convex power model 

address scheduling onto a multiprocessor system with a startup cost for each proces-
sor. First, we solve the problem of scheduling single tasks onto a multiprocessor 
system. Then we solve the more complex problem of scheduling multiple tasks, with 
arrival times, deadlines, and cycles of computation, onto a multiprocessor system 
with startups costs, using the solution of the first problem as the enabling procedure. 
The major contributions of this paper are the following. We introduce and discuss the 
new paradigm where there is a non-convex power relation between power and proc-
essor speed. We solve the fundamental problem of scheduling a single task on to a 
multiprocessor system, by formulating the problem as non-linear function minimiza-
tion. We introduce the neighbors heuristic for scheduling tasks onto a multiprocessor 
system with a significant startup cost. We also formulate a mixed integer program-
ming (MIP) formulation to solve the problem. Finally, we demonstrate the significant 
improvement possible by experimentally comparing the neighbors heuristic, the MIP 
approach, and the average rate algorithm. 

2   Power Model and Related Work 

We consider the case where a startup cost is incurred for transitioning a processor 
from the sleep state to the on state. We use the startup cost calculated by Jejurikar et 
al [13] that estimates the cost of changing the state of the processor to be 483µJ, 
based on several assumptions including ones about the cache state. This cost domi-
nates, if it is incurred. Aside from the startup cost, we incur a cost for keeping a proc-
essor on. We use the following formula. fPE onon /=  where Pon is taken to be 
0.1Watts, similar to [13], and f is the frequency, which we take to be 300MHz, the 
minimum frequency of the Transmeta Crusoe processor. Our power model is based 
on real processors, specifically, the Transmeta Crusoe processor Model TM5500 [22] 
and AMD-K6-IIIE+500 ANZ processor [1]. Although we use actual processor values 
for our experimentation and for our problem abstraction, we do make a few simplify-
ing assumptions. We assume that the cost of transitioning between different voltage 
values was zero. We also assume that the transition time is negligible. These assump-
tions are common in the recent literature [11][13][15][26]. 

Energy minimization techniques can be classified in two broad groups. The first, 
called dynamic power management (DPM), aims to shutdown processors when they 
are idle. The second, dynamic voltage scaling (DVS), dynamically varies the voltage 



supplied to the processor, to provide just in time execution of tasks. Benini et al pro-
vide a survey in [2][3]. Irani et al combine the two methods, DPM and DVS, for 
systems with DVS and multiple power modes [11].  

A large portion of the research in power scheduling algorithms has focused on uni-
processors. The scheduling and assignment of tasks onto multiprocessors generally 
has been solved utilizing heuristics that have a two-phase approach. They assign jobs 
to the resources, then they allocate the voltages for the processors, assuming the job 
assignment determined in the first phase [29][30]. Yu and Prasanna [27] examine the 
two problems of assignment of jobs to resources and the determining of the voltage 
levels in a joint manner. They formulate the problem as an integer linear program 
(ILP), and they utilize a linear relaxation heuristic (LP-relaxation) to solve the prob-
lem.  

The majority of the related work in DVS follows a convex power model 
[11][15][21][26][27]. In general, they assume a quadratic relationship between power 
and processor speed. Jejurikar et al [13] consider the effect of leakage power, but they 
do not address the problem of scheduling in the non-convex region of the power 
curve.  

3   Fundamental Problem 

Let us consider a constrained yet fundamental case of the scheduling problem to 
gain intuition and to create a powerful procedure for the final steps of the energy 
optimization in more complex scenarios. The problem is the following. Given a single 
required average speed at which to run the processor for a period of time, determine 
the speeds at which to run each segment of the time interval in such a way that the 
total energy is minimized given a non-convex power-speed relationship. The problem 
is NP-complete. We prove the claim using reduction from the well-known knapsack 
problem [8]. The knapsack problem is reduced in polynomial time to the fundamental 
problem by mapping the weight of the objects to the energy of a chosen speed for a 
given period of time and by mapping the value of the objects to the speed chosen. 
The resulting problem is a discretized instance of the fundamental problem, given 
below. 

Instance: Finite set P, for each p∈P an energy e(p)∈Z+ and a speed s(p)∈Z+, and 
positive integers C and E. 

Question: Is there a subset P’ P such that ⊆ ∑
∈

≤⋅
Pp

Epspe )()( and such 

that .   ∑
∈

≥⋅
Pp

Cpspe )()(

To solve the fundamental problem for multiple processors, we start with multiple 
energy versus speed curves that correspond to using a different number of processors, 
and we juxtapose the curves to obtain a new energy versus speed curve. Then given 
an average speed and a time interval, nonlinear function minimization is used to de-
termine the most energy efficient selection of the number of processors and their 



execution speeds. To create the new function, we examine k possible energy versus 
processor speed mappings, where k is the number of processors. The k curves are then 
combined, and the minimal assignment and schedule is found. 
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Figure 1. Energy vs. Speed Curves for 3 Types of Multiprocessor Systems 

 
Figure 1 graphs three different curves, where each curve represents the energy con-

sumption (divided by the effective capacitance) for running at the given speed. Each 
of the curves assumes a certain number of processors available for use. The first 
curve graphs the energy versus speed curves for the simple case, where there is a 
single processor, using the data values from the slides associated with [13]. The sec-
ond curve graphs the case where there are two processors, each running at the same 
speed. The speed is two times that of the uniprocessor case, because there are two 
processors. The energy is equal two times the energy required if a single processor 
were running at half the speed, basically the speed of each of the two processors. This 
analysis is carried out for k processors or in the case of Figure 1 for three processors. 
To obtain the solution for the fundamental problem, a nonlinear equation minimiza-
tion function can be used to determine the number of processors and their speeds that 
consume the minimum amount of energy.  The NLP has been omitted due to space 
limitations. 

As illustration, we ran a nonlinear minimizer, specifically the Powell, or Direction 
Set, Method in Multidimensions [19] on a four processor system. The results are 
shown in Figure 2. Figure 2 shows that NLP solution is able to consistently improve 
by on average 45.8% on the solution obtained with traditional convex scheduling 
techniques. Note that we assumed the processors exhibit no cost in starting up and/or 
changing their voltage values. The results are obtained using a 1000 random restarts 
for the Powell method. The results may somewhat improve with a larger number of 
restarts. Once we have the solution to the fundamental problem, we can use it to sim-
plify our overall problem. As long as we can determine the total number of cycles that 
are needed to be executed in an interval, then the solution given in this section can be 



applied  to the determine the most energy efficient execution of the cycles.  
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Figure 2. Energy Consumption using NLP Solution 

4   Scheduling for Non-convex Power Model 

In this section, we highlight a provably optimal ILP-based approach for power 
minimization in systems subject to non-convex power-speed relationship, as well as a 
new heuristic approach for the same problem. Before addressing energy minimization 
with non-convex power-speed models, we formally define the addressed problem of 
minimizing energy for a set of tasks with known computational requirements and 
arrival and deadline times. 

Let us consider the problem of scheduling tasks onto multiprocessors with a startup 
cost. The problem requires determining the number of processors to use and speed at 
which to execute the cycles at any given time, such that the energy consumption is 
minimized. More formally, we are given as input a set of n tasks. Each task is charac-
terized by the following: ai – arrival time before which task i cannot be executed, di – 
deadline by which time task i must be completed, ci – cycles of computation associ-
ated with task i.  

We assume a hard real-time scenario where tasks are periodic, and where the dead-
line for each period is equal to its worst-case execution time (WCET), as is common 
among the literature [11][13][15][16]. We are also given a set of homogenous proces-
sors, whose applied voltages can be varied dynamically. We assume homogenous 
processors for the sake of clarity, but the algorithms and software tools can easily be 
extended to handle heterogeneous processors as well. We consider processors that 
can be transitioned into sleep mode to save energy, if they are idle, and we assume 
that the processors have a start-up cost associated with them. 

We formulate the problem as a mixed integer programming (MIP) problem and 



solve it optimally using an MIP solver such as CPLEX [10]. Although MIP in the 
worst case can take an exponential amount of time, this MIP formulation is often fast 
for instances of practical interest. For D total time units and N tasks, there are D·N 
continuous variables and 2N integer variables. There are six types of constraints, with 
a total of 3N + 3D constraints. There is on average 3D/N + (N+5)/D variables per 
constraint.  The MIP formulation has been omitted due to space limitations 

For the problem formulated in section 4, we have also developed the neighbors 
heuristic. Unlike the MIP, the heuristic does not always produce the optimal solution; 
however, it is useful for large problem instances where the MIP may be prohibitive. 
Also, it allows the addition of nonlinear constraints to the problem, such as allowing 
the processors to go to sleep at any time instance.  

Intuitively, the heuristic evens out the load on neighboring intervals, by reducing 
the instances of change in the number of processors used. It also attempts to run the 
active processors with the voltage values that were determined to be advantageous by 
the solution of the fundamental problem. The psuedocode for the heuristic is given 
below. 

The heuristic initially assigns tasks to execute based on their average rate, given by 

the equation Average ratei

ii

i

ad
c
−

= . The solution is iteratively improved by evening 

out the load on neighboring intervals, by reallocating the cycles of overlapping tasks. 
We iteratively choose the two intervals that have the largest density difference that 
share a common task. If there are multiple tasks to choose from, we move the task 
that is less likely to be redistributed in a following iteration. Finally, we optimize each 
interval using the solution for the fundamental problem. 

The intuition behind the neighbors heuristic is based on the fact that the less 
change there is in the required average speed, the better the speed assignments can be. 
Although, the neighbors heuristic will not be useful for all speed energy tradeoff, it is 
very useful for the common case in multiprocessor systems where, roughly, the larger 
the computation requirement the less efficient the speed energy tradeoff is, especially 
if we are dealing with a piecewise convex model. 

 
Neighbors Heuristic(tasks) 
for all tasks 

Assign the tasks to their execution intervals at their average rate 
for a certain number of iterations 

for each interval i and its neighboring interval j 
Choose the task belonging to both intervals that has the earliest deadline 
Move the cycles of execution of the chosen task from the more dense inter-
val to the less dense interval until the intervals are even or until all of the 
common task has been moved 

for each interval 
Optimize the voltage settings using the fundamental problem’s solution 



5   Experimental Results 

We evaluated the effectiveness of the neighbors heuristic experimentally against 
randomly generated task sets, which are standard among the related work 
[13][15][21][27]. The tasks’ values were based on the work of Kwon et al [15], by 
choosing arrival times and deadlines to be in the range of 1 to 20 seconds and cycles 
of execution from the range of 1 to 400 million cycles. For comparison purposes, we 
also implemented the following heuristics. (1) The average rate algorithm [26] as-
signs tasks to their execution intervals to be executed at their average rate. The num-
ber of processors is based on the number of cycles to be executed at that time in-
stance. (2) The contention-based algorithm is an enhancement to the average rate 
algorithm. It moves tasks from high contention intervals to low contention intervals, 
where an interval with low contention is characterized as having a small number of 
live tasks during the interval. The contention-based heuristic chooses the interval with 
the least contention to which to move task cycles. Among the tasks that are live in 
that interval, the task with the largest density is moved to the interval. (3) The flatten-
ing heuristic aims to flatten the scheduled execution of cycles by eliminating peaks 
and valleys in the schedule to decrease the number of startups. As in the contention-
based and neighbors heuristic, the tasks are initially scheduled according to the aver-
age rate algorithm. Then, the solution is iteratively improved, by choosing two inter-
vals that have the largest density difference that share a common task. The common 
task is redistributed so that the intervals are even in terms of density. Of course, we 
are limited by the number of cycles belonging to the chosen task, and thus cannot 
move more cycles than the task requires. As the process of flattening is done itera-
tively, the schedule will eventually flatten out, if intervals have multiple tasks in 
common. If there are multiple tasks that lie in both of the intervals, then the task with 
the greatest density is chosen for redistribution. 
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Figure 3. Energy vs. Number of Tasks for Various Approaches 

 
Figure 3 present the results obtained from our experimentation. The bar chart dis-



plays the energy consumption normalized to the optimal value for 10 different task 
sets of varying sizes for each of the four heuristics: the average rate heuristic, the 
contention-based heuristic, the flattening heuristic, and the neighbors heuristic. The 
neighbors heuristic dramatically out-performs all of the other heuristics. The heuristic 
is on average 106% better than the well-known average rate heuristic and 84% better 
than the flattening heuristic, yet is it only 14% worse than the optimal solution. For 
the task sets with 70, 80, 90, and 100 tasks the results are equal to the optimal values. 

6   Conclusion 

In this paper, we addressed energy minimization for non-convex power-speed 
models, which are poised to dominate future applications and technologies. We first 
addressed the fundamental problem of scheduling onto a multiprocessor system a 
computation requirement for a given interval. We, then, addressed the more compli-
cated problem of scheduling tasks for systems with a large startup cost. First, we 
formulated the problem as a mixed integer-programming problem and showed how it 
could be solved very efficiently. Secondly, we introduced the neighbors heuristic, 
which evens out the density of neighboring intervals initially produced by the average 
rate schedule. We carried out extensive experimentation to quantify the quality of our 
approaches. 
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