
Bridging Classroom Heterogeneity: A Software
Engineering Course and Projects
Ani Nahapetian

In this paper, the process of bridging classroom heterogeneity in a Software
Engineering course is discussed, using a real course as a framework for analysis.
Specifically, this paper addresses issues when disparities exist in the same
classroom, 1) between graduate and undergraduate students, 2) among students with
a variety of programming skills and programming language familiarities, and 3) among
student experience levels in software development. Additionally, the struggles of
aiming for substance, while dealing with the perils of group work, are addressed.

This paper presents real and practical solutions to these challenges, including
addressing issues with course content presentation, textbook selection, course
projects, and graduate research opportunities.

Keywords
Software Engineering, Computer Science Pedagogy.

1. Introduction

Software Engineering courses exhibit a large degree of heterogeneity in terms of student
abilities, skills, and motivation. This is especially true in the following situations:

1) the undergraduate course is co-located with a graduate version of the course;

2) some students have years of industry experience while others have learned to program
only recently and have no programming experience outside of the classroom;

3) students approach the course with different expectations about what they will learn and
the work they will do for the class;

4) students have different familiarities with programming languages and programming
environments.

In this paper, I discuss the various approaches used to develop a Software Engineering
course co-located with a graduate level advanced Software Engineering course.

Various conflicting interests presented themselves in developing the curriculum, and
specifically the projects for these two courses. First, of course there was an issue with having
a graduate level course and an undergraduate level course co-located. Secondly, I felt that a
group project was a critical component to the course, but I wanted to avoid the hurdles faced
when students worked in dysfunctional teams. The “I did all the work” syndrome could have a

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

significant effect on students’ impressions of the course material. Thirdly, the students
needed to be exposed to the basic concepts of Software Engineering, so they would
appreciate that software development is much more than just writing code in a programming
language.

In the rest of this paper, I present the challenges faced when preparing the course curriculum
and syllabus for a diverse group of Software Engineering students in a single classroom. I
present a survey of Software Engineering course syllabi and their use of textbooks and other
reading material. I then present the various new and interesting approaches I employed in
my classroom to address these issues.

2. Inherent Hurdles

2.1 Co-location of Graduate and Undergraduate Classes

For the first time in my department, a co-located Graduate Advanced Software Engineering
course was offered at the same time and location as the undergraduate course. Though the
undergraduate course had been offered previously the graduate course was entirely new,
along with the brand new Masters degree program.

As would be expected this arrangement presented several hurdles. The first of which was the
fact that the graduate students were expected to have previously taken an undergraduate
Software Engineering course.

2.2 Variety of Programming Skills

There were a variety of programming skills in the classroom. My university carries out its
introductory programming course mostly in Java. Though, one elective course on
Programming in C in the UNIX environment is also offered. Additionally, there is a course
that acts as a preparatory course to the undergraduate curriculum. This course has been
taught in several languages including Visual Basic, Matlab, and Alice.

Despite this emphasis on Java, there are large numbers of transfer students who have
studied C++ at their original college or university. Additionally, there are students who have a
great deal of industry experience, who are most familiar with the programming skills acquired
at their workplace. For example, in a classroom it is possible to find students well versed in
SQL, but weary of their background in Java.

This presented several distinct options for the projects:

1) allow students to work in any platform they are comfortable, and then deal with
compliance issues within groups as they arise;

2) impose one programming language on all the students;

3) offer a small set of popular programming languages, and compose the groups accordingly;
Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

4) use a less known or proprietary programming language to level the playing field.

2.3 Dealing with Not Having Been in the Trenches

Software Engineering unlike other Computer Science fields is based on a large volume of
empirical knowledge. Also to those with experience, critical issues and their solutions
sometimes seem obvious. Students generally enroll in the course, once they complete their
introductory programming series, and so they may take the course as early as their
sophomore year.

In my Software Engineering course, there were students who had been working in industry
for many years and were able to gleam quite a bit of benefit from discussions regarding
practical aspects of Software Engineering, as compared with the students who had followed
a direct path from high school to this course offering.

This presented a challenging dichotomy in the class. Some students, especially those with
years of government industry experience, were very well versed in the techniques presented
in the class, while others, including some of the graduate students, had no experience
outside of the classroom and hence were learning the material from scratch.

Dealing with this issue was the most challenging hurdle faced in the course, as it spanned all
the other disparities, including class rank and programming skills.

2.4 Avoiding Perils of Group Work while Learning to Work in a Team

There is research regarding the perils of group work [Waite04]. Invariably, when a large
disparity between programming ability within a group exists, less experienced students defer
an uneven amount of work to their more advanced programming classmates. Though
opportunities to learn from each other are presented in these situations, students are not
always the most adept at apportioning the work and aiding each other. As a result, learning
opportunities are unevenly divided among the students, which can also lead to resentment.

On the other hand, working in a team is critical for a Software Engineering course. Industry
demands teamwork and Software Engineering curriculum specifically addresses issues
related to group software development. Students, during the job hiring process, are
evaluated on their ability to work in or lead large and small teams. This is especially
highlighted by our university’s close proximity to large aerospace corporations. Note that
software products in the aerospace industry are highly regulated and as a result use
Software Engineering practices to a greater extent.

The key challenge here becomes creating opportunities for group work, while still
overcoming the programming experience disparities among students.

2.5 Aiming for Substance

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

Software Engineering is often condescendingly considered a “pseudoscience,” and Software
Engineering courses have a reputation for being the least technical of the Computer Science
department’s offerings. E. W. Dijkstra is famous for saying “The required techniques of
effective reasoning are pretty formal, but as long as programming is done by people that
don't master them, the software crisis will remain with us and will be considered an incurable
disease. And you know what incurable diseases do: they invite the quacks and charlatans in,
who in this case take the form of Software Engineering gurus.” [Dijkstra]

The field of Software Engineering has advanced significantly since the time when this
statement was made. Corporate hiring managers and university industry advisors strongly
encourage and even demand that students complete Software Engineering courses at the
undergraduate level.

Thus a key challenge for the course is to make clear to students that the seemingly basic
topics that are the basis of a solid Software Engineering practice are truly valuable and have
been developed at a great cost. Student resistance to such basic concepts as documentation
and configuration management is prevalent and considerable. A key challenge is presenting
the material so that students do not view them as unnecessary and time-consuming
prescriptions.

2.6 Learning to Present Technical Material

Both industry and academia demand that students have strong presentation skills, including
clarity, ease, and effectiveness. Software engineers are expected to engage in public
speaking to handle code reviews, design reviews, requirement reviews, demonstrations, and
more. Thus incorporating presentation opportunities became an important consideration in
my Software Engineering course development.

3. Textbooks

3.1 Not for Inexperienced Software Developers

Software Engineering literature is often written for engineers with industry and large scale
software development experience. For a large majority of the undergraduate and even
graduate students in my class, this is not a correct assumption. Students often take Software
Engineering right along with their Computer Architecture and Computer Networking courses.
There is no large time gap between the students’ initial introduction to programming and their
discussion of Software Engineering. Additionally, Software Engineering curriculum has a
focus on managerial duties that may be new to even experienced programmers.

The search for a textbook or other reference material is a challenge that needs to consider
student experience levels, while still aiming for the best and the latest empirical approaches
that Software Engineering has to offer.

3.2 Survey of Online Courses
Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

Software Engineering courses are more likely to not follow a single text, than any other core
undergraduate Computer Science course. Table 1 summarizes the textbook information
found in six syllabi found on the web after some reasonable amount of web searching. 2 out
of 6 online course syllabi did not have a course textbook. None of the online course syllabi
used a single textbook. Additionally, 3 out of 6 used published and web articles as part of
their curriculum.

 Table 1. Software Engineering Textbooks for Various Universities

Reference University Offering Text Type
Text(s) Used

[CSUN] CSUN Fall 2007 Multiple texts
1. Ian Sommerville, Software Engineering, 8th Edition, Addison-

Wesley Longman Publishing Co., Inc (2007).
2. Dan Pilone and Neil Pitman. UML 2.0 in a Nutshell, 2nd Edition,

O'Reilly Media, Inc., (2005).
[CalPoly] Caly Poly San Luis

Obispo
Spring 2007 Articles

1. Supplemental reading
[Pomona] Pomona College Fall 2007 Single text,

supplemented
with articles

1. Steve McConnell, Code Complete, Second Edition, Microsoft
Press (2004).

2. Supplemental reading
[UCLA] UCLA Winter 2008 Multiple texts

1. Steve McConnell, Code Complete, Second Edition, Microsoft
Press (2004).

2. Roger S. Pressman, Software Engineering: A Practitioner's
Approach, 6th edition, McGraw Hill (2005).

[Washington] University of
Washington

Spring 2007 Multiple texts

1. Steve McConnell, Software Project Survival Guide. Microsoft
Press (1997).

2. Andrew Hunt and David Thomas, The Pragmatic Programmer:
From Journeyman to Master, Addison-Wesley Professional (1999).

[Cornell] Cornell Spring 2008 None
1. None, only recommended texts

[Berkeley] UC Berkeley Spring 2008 Articles
1. None, only recommended texts

4. Project Framework

After considering the course challenges presented in the earlier sections, I chose to address
them with the following approaches.

4.1 Course Content Presentation

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

In an effort to bridge the disparities that existed among the students, I took several different
approaches to course content presentation. The various forms of imparting information not
only reinforced concepts, but also enlarged the group that was able to follow the material.

Specifically, I employed a comprehensive Software Engineering text [Sommerville07] and
also incorporated articles, some from a classic Software Engineering book [Brooks95].
Additionally, I used palatable, but also very powerful, articles on various important coding
topics. I emphasized a project development atmosphere in the course, so students would
have the opportunities to flex their software development muscles. Finally, I incorporated
student presentations into the mix, so that students would be able learn from each others
experiences and activities, as well as from the text and me.

Another essential component became classroom discussion. I found that students, even
despite their inexperience, still had some basis on which to make valuable comments and
well posed arguments. Additionally, the more experience students were able to provide an
invaluable perspective about the field and the practice of Software Engineering, that all the
students found beneficial. For example, the class was able to hear about how several
different local companies’ approach the code review process, with experienced students
taking on a role similar to that of a guest industry speaker.

4.2 Split Project Nature

I divided the course project into four segments: requirements, design, code, and testing. The
first two segments, requirements and design, were carried out as a team of three or four
students. The students developed a software project idea and prepared a requirements
document for their project.

The next segment of the project was to develop a design for the project. As a group, a high
level component based design was developed, where each team member eventually worked
to develop a component of the design.

The novelty of my course syllabus lies in the splitting the team for the code development
segment. To address the heterogeneity challenges presented in the earlier sections,
students wrote their own code without being able to rely on their partners for help. Individual
code development with the aim of combining the code components into a larger project is
common in industry. It also clarifies the need for practices such as documentation, proper
interfacing, component testing, integration, and more. It also addresses the inherent
differences between student programming skills which lead to the perils of group work
discussed earlier.

In an effort to give students a technical software development project which they would work
on individually, I considered the following options before settling on the split project idea. I
considered having students 1) edit legacy code, 2) develop a small pieces of open source
software, and 3) complete each others code.

4.3 Requirements, Design, and Code Reviews

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

In an effort to provide technical presentation practice, the first three segments of the project
culminated with presentations, namely requirements review, design review, and code review.
Students presented as a group, or individually in the case of the code review, according to
the format of industry review meetings. All members of the class were expected to comment
during the review, and students had to implement the instructor’s comments in the next
phase of the project.

The reviews provide a forum for students to learn technical presentation skills, to engage in
the common practice of software reviews, and to learn to handle questions and comments on
their work. Additionally, it is an opportunity for students to learn their role as a member of a
review committee.

4.4 Reading Research Material

To encourage students to approach Software Engineering not only as a topic to learn, but
also as an accessible field about which to do research, I decided to expose graduate and
undergraduate students to Software Engineering research literature. The topics in Software
Engineering literature tend to be more palatable to wider audiences than other Computer
Science fields. Additionally, contributions from software engineers in the field are both
practical and informative.

Students read and analyzed several articles throughout the semester. The first article was
used as part of a take home midterm, to ensure that students read the article fully and were
given an opportunity to express their ideas on the material. The article was a publication on
code reviews, thoughtfully written by an industry software developer in very plain language
[Wiegers98]. It was the first Computer Science research article that many students had ever
read, and since the material presented in the article was relevant to the students’ lives and
also easy to understand, I believe that it helped form a positive impression of Computer
Science research and became a feasible entry point into the world of research. This exercise
was the best received assignment during the semester.

Throughout the course, students were asked to read selected Software Engineering excerpts
from F.P. Brooks’ famous text The Mythical Man Month [Brooks02]. Though the text is a
classic and an essential part of Software Engineering, it did not give the students a sense of
the current interests in the field, the way the research articles did.

4.5 Graduate Research Project

The standard approach for handling graduate course work, in a largely undergraduate class
is to give extra work to the graduate students. However, I had reservations about that
approach, since I felt that the graduate students might get bored, that it was the not be the
best use of their time, and that in turn might detract from the undergraduate learning
experience.

In the end, I gave the graduate students a semester long research project assignment in
place of the final exam. The graduate students participated in all other parts of the course,
including the projects and the midterm. Outside of the classroom on an individual basis, the
graduate students and I discussed the research project, and the work was presented to the

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

entire class at the end of the semester. The work carried out for the research project involved
choosing a research idea in Software Engineering and working towards and preparing a
conference level research article on the idea.

4.6 Scheduling Graduate Work

I grappled with the idea of ending the undergraduate class session early to introduce and
engage in discussions about graduate concepts. Though, this presents an opportunity to
present graduate level work, it does cut the undergraduate lecture time short. Having a small
number of graduate students in the course permitted some of the graduate needs to be
addressed outside the classroom. In the end, I decided to hold combined undergraduate and
graduate lecture sessions, but to have additional weekly meetings with the graduate
students.

Through the process of preparing a graduate research paper, a great deal of interaction
occurred between the graduate students and me. I believe this greatly enhanced their course
experience. As the graduate program becomes more popular, this may become more difficult
to do.

I had one request from a graduate student to do the course software development project
individually. I did not agree to this, as the graduate students need opportunities to be
involved in a software development group, both for their benefit and that of the
undergraduates.

4.7 Final Opt-Out

Due to the split project nature of the course, students do not necessarily need to consolidate
their components into the final software project as they envisioned. However, since they
should each have a working component of the system, the option to integrate the
components is presented to the students. As a reward, the students are allowed to opt out of
the final, upon successful completion of their original project proposal.

Some students were highly motivated to take this option, as it provides the satisfaction of
completing a large software engineering project. Additionally, it allows the motivated groups
to obtain a deeper perspective about the software development process.

Though making the integration part of the project mandatory is enticing, it presents a problem
when some group members do not fully accomplish their component requirements. This puts
the other group member in a difficult situation. I find that the optional, final opt-out approach
is able to handle this situation more fairly, by giving dysfunctional teams a break by taking
the final exam instead.

5. Conclusion

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

Proceedings of the ACM-IFIP IEEIII 2008
Informatics Education Europe III Conference
Venice, Italy, December 4-5, 2008

In this paper, the process of bridging classroom heterogeneity in a Software Engineering
course is discussed. A real course is used as the framework for addressing classroom
disparities, in terms of class ranks, programming skills, and industry experience levels.
Additionally, approaches to avoid the perils of group work are presented, given this level of
classroom heterogeneity.

6. Acknowledgements

I would like to thank Professor Miodrag Potkonjak of UCLA for an interesting discussion
regarding Software Engineering textbooks, which greatly contributed to development of my
ideas on the subject. Also, I would like to thank Theodor Soneriu for collecting some of the
data used in Table 1.

References
[Berkeley] Berkeley Software Engineering Course Website.

http://inst.eecs.berkeley.edu/~cs169/sp08/doku.php?id=info
[Brooks95] Brooks, F. P. The Mythical Man-Month (Anniversary Ed.). Addison-Wesley Longman

Publishing Co., Inc (1995).
[CalPoly] Cal Poly Software Engineering Course Website.

http://www.csc.calpoly.edu/~djanzen/courses/307S07/
[CSUDH] California State University, Dominguez Hills Software Engineering Course Website.

http://www.csc.csudh.edu/ani/courses/2007Fall/csc481-581/csc481-581.html
[CSUN] CSUN Software Engineering Course Website. http://www.csun.edu/~twang/380/
 [Cornell] Cornel Software Engineering Course Website.

http://www.cs.cornell.edu/courses/cs501/2008sp/
[Dijkstra] EWD 1305: Answers to questions from students of Software Engineering.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1305.html.
[Pomona] Pomona College Software Engineering Course Website.

http://www.cs.pomona.edu/classes/cs121/
[Sommerville07] Sommerville, I.. Software Engineering, 8th Edition, Addison-Wesley Longman

Publishing Co., Inc (2007).
[UCLA] UCLA Software Engineering Course Website.

http://www.cs.ucla.edu/classes/winter06/cs130/syllabus.html
[Washington] University of Washington Software Engineering Course Website.

http://www.cs.washington.edu/education/courses/403/07sp/syllabus403.html
[Waite04] Waite, W. M., Jackson, M. H., Diwan, A., and Leonardi, P. M. Student culture vs group work

in computer science. SIGCSE Bull. 36, 1 (Mar. 2004), 12-16.
[Wiegers98] Wiegers, K. 1998. The seven deadly sins of software reviews. Softw. Dev. 6, 3 (Mar.

1998), 44-47.

