
Chapter 6 
 
Key Ideas 
Density Curve – Uniform Distribution, Standard Normal Distribution, Z-Score, Z-table (finding areas above and below values using 
them), Sampling Distributions (of the mean, of a proportion), The Central Limit Theorem 
 
Section 6-1: Overview 
In Chapter 5, we considered discrete probability distributions.  We paid special attention to a particularly useful distribution called the 
Binomial Distribution.  Now, we will turn our attention on continuous probability distributions.  Here, the possible outcomes fall in a 
range of values without gaps (note that this means there are an infinite number of values the random variable could take). 
 
Section 6-2: The Standard Normal Distribution 
Before we explore the more complicated Standard Normal Distribution, we must examine how the concept of a probability 
distribution changes when the random variable is continuous. 
 
Recall that in Chapter 5, a probability distribution gave a value P(x) = P(X = x) to each possible outcome x.  For the values to make a 
probability distribution, we needed two things to happen: 

1. 
x

P(x) 1=∑  

2. 0 ≤ P(x) ≤ 1 
 
For a continuous random variable, a probability distribution must be what is called a density curve.  This means: 

1. The area under the curve is 1. 
2. 0 ≤ P(x) ≤ 1 for all outcomes x. 

 
Notice that the first condition is similar to the first condition for discrete distributions.  The second condition, however, does not 
require probabilities to be less than 1 anymore. 
 
Note: Whether we use < or ≤ makes no difference in the case of a continuous random variable.  This is because the probability that X 
is exactly a certain value (i.e. exactly 7, and not 7.00001, 6.999998, etc.) is infinitesimally small.  In other words, the probability that 
X is exactly a certain value is always 0. 
 
Normal Distributions 
Another example of a continuous random variable (and the most commonly used in statistics) is called a normal random variable.  A 
variable with a normal distribution displays what we call a bell-shaped distribution.  It is called “normal” because it is a good model 
for random error (i.e. “noise”) around a particular value.  For instance, a person’s height will not be exactly equal to the average height 
for all people in the world.  However, we would expect a lot of people to be fairly close to the average, and less people to be much 
taller or shorter.  Additionally, we might expect that there will be as many people below average as there are people above average.  
For this reason, we might use a bell-shaped distribution to signify more people in the middle and fewer in the extremes. 
 
A normal distribution has two parameters.  The mean (average) is called µ, and the standard deviation is σ. 

The formula for the density curve of the normal distribution is: 
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While the formula is too complicated for the scope of this class, by observation you can see that the formula is entirely determined 
given values of µ and σ.  For this reason, the mean and standard deviation completely define a normal distribution.  Here is a plot of 
normal distributions with different values of µ and σ: 
 
 
 Note: It may not be  
 immediately obvious,  
 but the area under each 
 curve is actually 1. 
 Therefore, these are all 
 density curves. 
 
 
 
 
 
 
 



Example:  Consider a normal distribution with mean 70 and standard deviation 2.  What is P(X < 68)?  We may be able to draw the 
area that needs to be found, but how can we compute it? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Standard Normal Distribution 
Fortunately, there is a way to easily compute areas under any normal density curve.  To do this, we first examine a special type of 
normal distribution. 
 
Definition: The standard normal distribution is the normal distribution with mean 0 and standard deviation 1.  It is often denoted Z 
to differentiate it from a regular random variable X or Y. 
 
To find areas under this special distribution, statisticians used numerical integration methods to find areas below certain values of Z, 
(these are called z-scores).  These areas have been compiled into a table (Table A-2, back cover of the book).  The organization of the 
table is as follows: 

• The left column gives a value z to one decimal place. 
• The top row gives the 2nd decimal place for z. 
• The numbers in the body of the table give the area below the z-score given by the corresponding numbers in the row/column. 

i.e. the numbers in the body of the table are P(Z < z), where Z is the standard normal random variable. 
Note that the table only gives the area below particular z-values, but not the area above or between values.  To find these areas, you 
must use the fact that the area under the entire curve is 1. 
 
Examples (Finding areas given Z-scores) 
Let Z be a standard normal random variable, and find the following probabilities. 
1. Probability that Z is less than 0.63. 
2. Probability that Z is less than –1.5. 
3. Probability that Z is greater than 1.34. 
4. Probability that Z is greater than –0.78. 
5. Probability that Z is between 0.1 and 0.5. 
6. Probability that Z is between –0.84 and 0.93. 
 
Solutions 
1. To find P(Z < 0.63), we note that z = 0.63.  So we look down the left column to find 0.6, then along the top row to find 0.03.  The 

number in the body of the table will be the area below z = 0.63.  According to the table, then, P(Z < 0.63) = 0.7357. 
 
2. To find P(Z < -1.5), we use the same technique.  Now, in the left column we find –1.5.  In the top row, we find 0.00.  Then the 

number in the body of the table is the area below z = -1.50, which gives us P(Z < -1.5) = 0.0668. 
 
3. Now we want P(Z > 1.34).  Looking for 1.3 in the left column and 0.04 in the top row tells us the area below 1.34 is 0.9099.  

However, this is not the area we want.  We want the area above 1.34.  Since the total area under the curve is 1, this means the area 
below and the area above must add to 1.  In other words, P(Z > 1.34) = 1 – 0.9099 = 0.0901. 

 
4. Using the same technique as in #3, we find that the area below –0.78 is 0.2177.  Therefore, P(Z > -0.78) = 1 – 0.2177 = 0.7823. 
 
5. To do these last 2 problems, look at the following picture: 



 
 
 
 
 
 
 
 
 
 
 
Finding the area between 0.1 and 0.5 is the same as taking the area below 0.5 and subtracting away the area below 0.1.  Thus, we 
can look up P(Z < 0.5) and P(Z < 0.1) in the table and find the difference to get the answer.  From the table, we see that: 
P(Z < 0.5) = 0.6915 
P(Z < 0.1) = 0.5398 
Therefore, P(0.1 < Z < 0.5) = P(Z < 0.5) – P(Z < 0.1) = 0.6915 – 0.5398 = 0.1517. 
 

6. P(-0.84 < Z < 0.93) = P(Z < 0.93) – P(Z < -0.84) = 0.8238 – 0.2005 = 0.6233. 
 

Examples (Finding Z-scores given areas) 
Let Z be a standard normal random variable. 
1. Find the value z for which P(Z < z) = 0.3594. 
2. Find the value z for which P(Z < z) = 0.65. 
3. Find the value z for which P(Z > z) = 0.0139. 
4. Find the value z for which P(Z > z) = 0.10. 
5. Find the 70th percentile of Z. 
 
Solutions 
1. Now, we know the area below z, and we want to find z.  To do this, we look through the table to find the desired area 0.3594 in 

the body of the table (where areas are located).  It appears in the bottom right corner on the left page.  Now, we find out which z-
score this area corresponds to.  The value on the left column in this row is –0.3.  The value at the top of this column is 0.06.  This 
means the z-score with an area of 0.3594 below is z = –0.36. 

 
2. Again, we are given the area below z: it is 0.65.  This time, however, when we look at the z-table, there is no z-score with exactly 

0.65 as the area below.  The closest ones are 0.6480 (z = 0.38) and 0.6517 (z = 0.39).  A good rule of thumb when trying to 
approximate z is to choose the z-score with the area closer to the target value.  If both areas are roughly an equal distance away 
(as in this case), the convention is to take the average of the two.  So here, we would use z = 0.385.   
Note: For the purposes of this class, 0.38, 0.39, or 0.385 would have all been acceptable answers. 

 
3. We now want the z-score where the area above is 0.0139.  However, values in the table only give the area below particular z-

scores.  Therefore, we have to find the area below the desired value.  If the area above z is 0.0139, that means the area below z is 
1 – 0.0139 = 0.9861.  Now we can look in the table for 0.9861 (as in #1) and find z = 2.20. 

 
4. Again, an area above z of 0.10 translates into an area below of 0.90.  Looking in the table for 0.90, we find two areas that are 

close: 0.8997 (z = 1.28) and 0.9015 (z = 1.29).  Since 0.8997 is a lot closer, we just use z = 1.28. 
Note: 1.28, 1.29, or 1.285 would have all been acceptable for the purposes of this class. 

 
5. The 70th percentile of Z is the z-score for which the area below is 0.70.  Looking in the table for 0.70, we find two areas that are 

close: 0.6985 (z = 0.52) and 0.7019 (z = 0.53).  These are roughly the same distance away, so we go with the average: z = 0.525. 
 Note: 0.52, 0.53, or 0.525 would have all been acceptable for the purposes of this class. 
 
Section 6-3: Applications of Normal Distributions 
In  application, many processes around the world follow normal distributions.  However, the mean and standard deviation are almost 
always not 0 and 1, as is the case with the standard normal distribution.  How can we find probabilities involving these general normal 
distributions?  The answer is surprisingly simple. 
 
In Section 3-4, we discussed how to find a z-score to obtain standardized values to be used in comparing relative standing. 

Recall: The z-score of an observation x is 
σ
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z , where µ and σ are the mean and standard deviation of the population. 



It turns out that if X is a normal random variable with mean µ and standard deviation σ, then 
σ

µ−
=

X
Z is a standard normal 

distribution!  Furthermore, any area under the curve for X is the same as the corresponding area under Z. 
 
This means that in order to find areas under a general normal curve, we just compute the z-score for the cutoff value and find the area 
using the tables as in 6-2. 
 
Examples (Finding the probabilities given X) 
Suppose X is the cost per gallon of gas at a pump anywhere in the U.S., and X is normally distributed with mean 2.25 and standard 
deviation 0.2.  If you fill up at a random gas pump, what is: 
1. The probability that the gas is less than $2.36? 
2. The probability that the gas is less than $1.90? 
3. The probability that the gas is more than $2.00? 
4. The probability that the gas is more than $1.75? 
5. The probability that the gas is between $2.00 and $2.50? 
Solutions 
1. We want P(X < 2.36), but we only have a table for the standard normal random variable Z.  Thus we have to compute the z-score 

for 2.36, then find the area below that value.  55.0
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z .  Now we look up z = 0.55 in the table and find that 

the area below is 0.7088.  Thus, P(X < 2.36) = 0.7088. 
 

2. Again, we compute the z-score.  This time, x = 1.90.  Using the conversion formula, we find 75.1
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The area below z = -1.75 is 0.0401 from the table, so P(X < 1.90) = 0.0401. 
 
3. Now we want P(X > 2).  As in #1 and #2, we compute the z-score.  This time, x = 2.00, which gives a z-score of –1.25.  Now, 

however, we want the area above this value.  From the table, the area below z = -1.25 is 0.1056. 
Therefore, P(X > 2) = 1 – 0.1056 = 0.8944. 

 
4. This is just like #3, only now x = 1.75.  The associated z-score is –2.5.  The area below z = -2.5 is 0.0062, which means the area 

above is 1 – 0.0062 = 0.9938, which is therefore P(X > 1.75). 
 
5. To find P(2.00 < X < 2.50), we have to find the z-score for x = 2.00 and x = 2.50.  These values are z = -1.25 and z = 1.25, 

respectively.  Thus, P(2.00 < X < 2.50) = P(-1.25 < Z < 1.25).  Using the same technique as in 6-2, we say that: 
P(2.00 < X < 2.50) = P(-1.25 < Z < 1.25) = P(Z < 1.25) – P(Z < -1.25) = 0.8944 – 0.1056 = 0.7888. 

 
Examples (Finding Xs given areas) 
In the same situation as the previous examples, let X = price per gallon of gas at a random pump.  Mean = 2.25, SD = 0.20. 
1. Find the value x where P(X < x) = 0.2483. 
2. Find the gas price where 58.71% of gas prices fall below the value. 
3. Find the gas price where 80% of gas prices fall below the value. 
4. Find the gas price where 17.88% of gas prices fall above the value. 
5. Find the cutoff price for the top 10% of gas prices. 
6. Find the 45th percentile of the gas prices. 
 
Solutions 
1. Now, we are given an area.  Since the only given areas are in the Z-table, we can use that table to find the z-score associated with 

this area.  The value is z = –0.68.  Now, we need to convert the z into an x:  
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 Therefore, the value we want is x = 2.114 (roughly $2.11/gallon) 
 
2. As in #1, we are given an area (this time in percent form).  The probability below x needs to be 0.5871.  Looking in the table, the 

associated z-score is z = 0.22.  As in #1, we convert this z into an x: 

294.225.2044.0
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So the price with 58.72% gas prices below it is roughly $2.29. 
 



3. As in #1 and #2, we want an area below of 0.80.  This value does not fall exactly in the table, but the two closest values are 
0.7995 (z = 0.84) and 0.8023 (z = 0.85).  The first one is a lot closer, so we use z = 0.84.  Doing the same conversion from z to x, 
we find that x = 2.418.  So the desired value is roughly $2.42. 

 
4. Now, we want 17.88% of prices above the value, which means P(X > x) = P(Z > z) = 0.1788.  Unfortunately, the table only has 

areas below values, so we look for an area below of 1 – 0.1788 = 0.8212.  The associated z-score is 0.92.  Converting from z to x 
as in the first 3 examples gives x = 2.434.  Thus the desired value is approximately $2.43. 

 
5. The cutoff price for the top 10% of gas prices means that 90% of prices are below it.  Thus the area below is 0.90.  Looking in the 

table, the closest values are 0.8997 (z = 1.28) and 0.9015 (z = 1.29).  We use z = 1.28 since it is closer.  Converting from z to x 
yields a cutoff of x = 2.506, or roughly $2.51 per gallon. 

 
6. The 45th percentile has an area below of 0.45.  In the table, the closest two areas are 0.4483 (z = -0.13) and 0.4522 (z = -0.12).  

Since they are roughly the same distance away, we use the average: z = -0.125.  Converting z to x using the formula, we obtain 
the value x = 2.225.  Thus, the 45th percentile is about $2.23. 

 
Section 6-4: Sampling Distributions and Estimators 
Suppose that you were trying to estimate the average number of children (people less than age 12) in a U.S. home.  It is impossible to 
calculate this number directly, so you would need to take a representative sample of the population and find the mean of the sample.  
Generally speaking, the mean should be close to what the true population average is if the sample minimized bias.  If you repeated this 
procedure over and over (i.e. draw a new sample and calculate the mean), would you get the exact same mean every time?  Most 
likely not.  Each time, the mean should be close to the true population average, but the means themselves will be varying from sample 
to sample.   
 
In this section, we will explore estimators (like the mean) as random variables.  In the example above, the mean is a random variable 
because it changes from sample to sample.  We can even ask questions about the values it takes on.  For instance, around what values 
will the mean usually be?  How often will it be bigger than 10?  How often will it be 0?  Certainly, values like 10 and 0 can occur if 
you select an “unlucky” sample, but it will not happen as often as a mean around 2 or 3.  Thus, at least for the mean, we can guess that 
most samples will give means very close to the true population average, and less of them will be further out. (sort of like a normal 
distribution, perhaps?) 
 
First, we look at a few definitions: 
Definition: The sampling distribution of a statistic is the distribution of all values of the statistic when all possible samples of size n 
are taken from the population.  It is usually displayed as a table, probability histogram, or formula.  Here, a statistic is the sample 
mean, proportion, median, standard deviation, etc. (anything calculated from the collected data). 
 
Definition: The sampling distribution of the proportion is the distribution of all values of the sample proportions when all possible 
samples of size n are taken from the population. 
Definition: The sampling distribution of the mean is the distribution of all values of the sample mean when all possible samples of 
size n are taken from the population. 
 
Example (Sampling Distribution of the Proportion) 
Suppose you are trying to estimate the % of marbles in a jar that are yellow.  For simplicity, let’s suppose there are only 5 marbles in 
the jar (1 yellow, 1 red, 1 orange, 1 green and 1 blue) and you are estimating this proportion using a sample of size 3.  There are 10 
different samples of size 3 that could be picked, and they give the following sample proportions (note that the true proportion is 0.2): 
 

Sample Sample Proportion 

YRO 0.333 

YRG 0.333 

YRB 0.333 

YOG 0.333 

YOB 0.333 

YGB 0.333 

ROG 0 

ROB 0 

RGB 0 

OGB 0 

 
 
 

The probability histogram for p: 
 



Example 
Now suppose there are 200 marbles in the jar, and we take samples of size 15.  There are 1.46 x 1022 possible samples that could be 
taken.  Suppose again that 20% of the marbles are yellow (40 of them).  The following plot is a frequency histogram of the sample 
proportions for 1000 different randomly chosen samples. 
 
 
 
  We see that most sample proportions are close to the true  
  proportion of 0.2, and they trail off as they get further from the  
  true value.  Still, it appears that a few times we got a sample  
  that had as many as half the marbles being yellow, even  
  though only 20% of the total population was yellow. 
 
 
 
 
 
 
 
 
 
 
 
If we increase the sample size to 100 and rerun the 1000 samples, the histogram changes a lot: 
 
 
 
 
 
 
  Now, the variation in proportions is much smaller, due to the  
  fact that the sample is so large.  Also, you may notice that the  
  shape of this distribution is familiar: it is close to a normal  
  distribution.  This illustrates an important fact: under certain  
  circumstances, the sampling distribution of a proportion can  
  be approximated by a normal distribution. 
 
 
 
 
 
 
 
 
 
Another Example (Sampling Distribution of the Mean) 
Now suppose you have a group of 6 people whose heights (in inches) are 62, 64, 69, 72, 79, and 80.  The true population height, then, 
is the average of these numbers: 71 inches.  Suppose you wanted to estimate this value using a sample of size 4.  There are 15 possible 
samples you could take, and the histogram of these means is to the right: 
 

Sample Sample Mean 

62, 64, 69, 72 66.75 

62, 64, 69, 79 68.5 

62, 64, 69, 80 68.75 

62, 64, 72, 79 69.25 

62, 64, 72, 80 69.5 

62, 64, 79, 80 71.25 

62, 69, 72, 79 70.5 

62, 69, 72, 80 70.75 

62, 69, 79, 80 72.5 

62, 72, 79, 80 73.25 

64, 69, 72, 79 71 



64, 69, 72, 80 71.25 

64, 69, 79, 80 73 

64, 72, 79, 80 73.75 

69, 72, 79, 80 75 

 
We see again that most means are close to the true mean of 71, while larger/smaller values are less common. 
 
To illustrate this in a large sample case, suppose that the population of the entire U.S. has an average height of 71 inches, with a 
standard deviation of 5 inches.  1000 simulated samples are taken from this population, and the results shown in a histogram.  The 
three figures show histograms for the means of these 1000 samples when the sample size is 10, 100, and 1000. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Again, we see the normal shape, and the variation goes down as the sample size increases. 
 
Which Estimators Target the Population Parameter? 
For a discussion of this topic, see p. 276 in the book.  It turns out that only some of the sample statistics target the true value.   
The two most common are: 
1. The sample mean targets the population mean. 
2. The sample variance targets the population variance. 
 
It turns out, however, that: 
1. The sample median does not target the population median. 
2. The sample standard deviation does not target the population standard deviation. 
3. The sample range does not target the population range. 
 
Section 6-5: The Central Limit Theorem 
All of the examples in the previous section form the basis for an intuitive understanding of one of the most important results in 
statistics: the Central Limit Theorem.  First, let's summarize what we saw in the previous section. 
 
1. Sample statistics vary from sample to sample, and thus are random variables which have probability distributions. 
2. The bigger the sample size, the more on target the sample mean seems to be (there is less variability). 
3. The bigger the sample size, the more bell-shaped (normal) the distribution of the sample mean seems to be. 
 
The theorem itself is as follows. 
 

The Central Limit Theorem: 
Given these conditions – 
 
• The random variable X has a distribution with a mean of µ and standard deviation of σ. 
• All samples taken are of size n. 
 
We can conclude – 
• If X was normally distributed, and n > 0, then: 

  The distribution of the sample mean X will be exactly normal with mean µ and standard deviation 
n

σ
. 

• If X was not normally distributed, and n is large*, then: 



  The distribution of the sample mean X will be approximately normal with mean µ and standard deviation 
n

σ
. 

• If X was not normally distributed, and n is small*, then: 

  No conclusions can be drawn about the distribution of X . 
 

*For convention, “n is large” usually means n ≥ 30, and “n is small” means n < 30. 

 
This theorem is incredibly useful, because it helps us estimate the distribution of the sample mean when the distribution of X is 
unknown, as well as when it is not normal. 
 
Example (X is normal) 
Let X represent the height of a U.S. resident.  X is normally distributed, with a population mean of 71 inches and standard deviation of 
5 inches.  Suppose we take a sample of size n = 64. 
1. Find the probability that the sample mean will be larger than 72. 
2. Find the 90th percentile for means. 
 
Solutions 

From the CLT, the distribution of the sample mean is exactly normal, with mean µ = 71 and standard deviation 625.0
8
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Now, we can use the techniques from Section 6-3 to answer the questions. 

1. The z-score for 72 is 60.1
625.0
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(Note that the form of the z-score is the same, but we use the mean and standard deviation of the mean, not X) 
Using the table, the area above z = 1.60 is 1 – 0.9452 = 0.0548. 

 
2. Since we are given an area, we first go to the table to find the associated z-score.  In this case, we get z = 1.28 (see previous 

examples in 6-3).  So we use the formula in reverse to get 8.71718.0
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Thus the 90th percentile is 71.8 inches. 
 
Example (X is not normal) 
In an assembly line, the chance of an item being defective is 0.05.  Suppose we take a sample of size 100. 
1. What is the probability that the average number of defective items in the sample is less than 5.5? 
2. What is the probability that the average number of defective items in the sample is more than 4.8? 
3. Find the 90th percentile for the average number of defective items in the sample. 
 
Solutions 
Now, you may recognize X as being binomial, with n = 100 and p = 0.05.  From the previous chapter, we saw that: 
µ = np = 100(0.05) = 5 
σ

2 = np(1-p) = 100(0.05)(0.95) = 4.75, which means σ = 2.18. 

Therefore, since n > 30, the mean will be approximately normal with mean 5 and standard deviation 218.0
10
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At this point, the solutions become the same as the previous example, only with different numbers. 
 
1. The z-score for a mean of 5.5 will be z = 2.29.  From the table, the area below this value is 0.9890. 
2. The z-score for 4.8 is z = -0.92.  From the table, the area above this value is 1 – 0.1788 = 0.8212. 
3. The z-score for the 90th percentile is z = 1.28, which gives a mean of 5.2790. 
 
A Technical Note: 

The standard deviation 
n

x

σ
σ = assumes an infinite population size.  Often, it may be useful to consider a finite population 

correction factor when the sample size n is more than 5% of the population size N.   

In this case, 
1−

−
⋅=

N

nN

n
x

σ
σ is used for the standard deviation of the mean. 

We will always assume the sample is less than 5% of the population size, and therefore will not be using this correction in class. 
 


