
Chapter 3 

 

Key Ideas 
Measures of Center: Mean, Median, Mode 

Skewness 

Measures of Variation: Range, Standard Deviation, Variance 

Chebyshev’s Theorem and The Empirical Rule (a.k.a. 68-95-99.7 Rule)  

Measures of Relative Standing: Z-Score, Quartile, Percentile, Interquartile Range (IQR) 

Exploratory Data Analysis: Outlier, 5-Number Summary, Boxplot, Modified Boxplot 

 

Section 3-1: Overview 

In Chapter 2, we explored different ways to display data sets visually.  However, we now need to come up with a way to describe data 

sets that will allow us to compare various characteristics of different sets.  This can be accomplished by computing values (statistics) 

from the observations that represent some aspect of the data set. 

 

Before discussing measures of center and the formulas for their calculation, here is a quick review of summation notation. 

Sigma (Summation) Notation is a way to concisely represent the summation of many numbers at a time. Here is what all the parts 

stand for: 
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Section 3-2: Measures of Center 
A measure of center is a value representing the center, or middle, of a data set.  There are several different measures that may be used 

depending on the nature of the observations. 

• The mean of the data is the arithmetic mean (or average) of the observations.  Simply add up all of the values and divide by the 

total number of observations.  The symbol for the mean is x .  The formula for the mean is ∑
=

=

n

i

ix
n

x

1

1
, where the n observations 

are given by nxxxx ,...,,, 321 . 

• The median of the data is the middle value of the data set if the observations are arranged in order.  Note that for an odd number 

(n) of observations, there is an exact middle value in the 
2

1+n
 position.  However, for an even number (n) of observations, there 

are two middle values in the 
2

n
and 1

2
+

n
 positions.  The convention is to average those two values to get the median.  Sometimes, 

the median is denoted x~ . 

• The mode of the data is the most common value of the observations.  If 2 values tie for the largest frequency, the data is called 

bimodal.  If more than 2 values tie, it is called multimodal.  Finally, if no values repeat (i.e. all values are tied for largest), then the 

data set is said to have no mode. 

Ending Value 

Indicates that we 

are summing 

Index letter 

Starting Value 

Some function 

of the index 



• The midrange is the average of the minimum and maximum values in the dataset.  We won’t use this value at all. 

 

Examples 

Data set #1:  

1, 1, 3, 5, 6 
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Data set #2:  

2, 3, 4, 5, 9, 12 
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Note: Suppose a data set is represented as a frequency distribution using intervals as the groups, but you want to calculate the mean.  

Since you do not know the exact observation values, it is customary to treat all observations in an interval as being the midpoint of the 

interval.  For example, if the interval 20-30 has a frequency of 10, you should pretend that there are 10 observations with a value of 25 

for the purposes of computing the mean. 

 

Since there are 3 different measures of centers, it seems reasonable to ask which is best to use.  There are advantages and 

disadvantages to each of them, depending on the nature of the data set.  These are listed below. 

 

Measure Advantages Disadvantages 

Mean Easy to Compute 

Sample Means tend to Vary Less 

Good properties as sample size increases 

(more to come on that later) 

Sensitive to extreme values (outliers) 

Median Resistant to outlying values 

Good for skewed data (see below) 

Harder to calculate 

Less useful than the mean for inference 

(more to come on that later) 

Mode Easy to compute 

Good for qualitative (categorical) data 

Not very useful for quantitative data 

 

Skewness 

Using the mean, median, and mode together can help to describe the skewness of a data set.  A data set is considered skewed if the 

values extend more to one side of the distribution than the other. 

 

 

 

 

 

 



Section 3-3: Measures of Variation 

Now that we can measure the center of a data set, it may be useful to be able to measure how much the values differ from each other.  

In other words, we would like to distinguish between the following data sets, all of which have 3mode~
=== xx : 

 

 3 3 3 3 3 0 3 3 3 6 -58 2 3 3 65 0 3 3 4 5 

 

While the centers of the data sets are the same, the variation is clearly different.  The first data set always gives the same values (no 

variation), whereas the third data set has observations that vary wildly in positive and negative directions.  To distinguish between 

these sets, we use measures of variation. 

 

• Range is the simplest measure of variation.  It is the difference between the maximum and minimum values.   

The formula is: Range = Maximum – Minimum.  There is one shortcoming of range, though.  We still cannot distinguish between  

data sets like 0 5 5 5 5 5 5 5 5 5 10 and 0 1 2 3 4 5 6 7 8 9 10 (clearly, the data set on the right seems to vary more).  Both have a  

range of 10 however. 

• The Standard Deviation is a better way to measure variation.  First, we look at the difference between each data value and the 

mean: xxi − .  Then, to make sure all the distances are positive, we square that difference:
2)( xxi − .  Next, we add up these 

differences for all of the observations: ∑
=

−
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2
)( .  Finally, we divide by (n –1) and take the square root to in some way undo 

the squaring from before.  This gives the formula: ∑
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1
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1
.. .  Standard Deviation is denoted s, and it is in 

the same units as the observations in the data set. 

• The Variance is the square of the standard deviation, s
2
.  Since its units are in squared units of the original observations, its value 

is harder to interpret than standard deviation.  As a result, it is not used as much. 

 

Example 

Consider the data set 1 2 3 4 5.  We see that 3~
== xx .  Let’s find the range, standard deviation, and variance. 

Range = Maximum – Minimum = 5 – 1 = 4. 

To find standard deviation, we can use a table to calculate each part separately. 

 

 xi xxi −  2)( xxi −  
 We see that 10)(
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 1 1 – 3 = -2 4 

 2 2 – 3 = -1 1 

 3 3 – 3 = 0 0 

 4 4 – 3 = 1 1 

 5 5 – 3 = 2 4 

Sum --- --- 10 

 

Finally, the variance is 5.22
=s . 

 

Now, consider the data set 1 1 3 5 5.  We see that 3~
== xx again.  Let’s find the range, standard deviation, and variance. 

Range = Maximum – Minimum = 5 – 1 = 4. 

To find standard deviation, we can use a table to calculate each part separately. 

 

 xi xxi −  2)( xxi −  
 We see that 16)(
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 1 1 – 3 = -2 4 

 2 1 – 3 = -2 4 

 3 3 – 3 = 0 0 

 4 5 – 3 = 2 4 

 5 5 – 3 = 2 4 

Sum --- --- 16 

 

In this data set, the variance is 42
=s .  So we see that the second data set has more variation than the first one, which makes sense.  

The observations are spread further away from the mean than in the first set of data. 

 

 

 

 



Some Notation 

In a sample, the standard deviation is denoted s and the variance s
2
. 

In a population, we call the standard deviation σ (sigma) and the variance σ
2
 (sigma squared). 

 

A quick note about the standard deviation formula: Often, people wonder why we divide by n – 1 in the formula instead of n, which is 

the number of observations.  The reason is because of something called degrees of freedom.  We already need to know the mean x for 

the standard deviation formula.  Therefore, if we know only n – 1 of the observations, we could figure out the last one, since the mean 

tells you the sum of the observations.  As a result, it turns out that dividing by n – 1 will make the standard deviation an unbiased 

estimator, meaning that as the sample size increases, s will not consistently overestimate or underestimate the true population standard 

deviation.  (see page 103 in the book for more discussion). 

 

Also, for discussion on why we square the differences instead of taking absolute value, see page 102. 

 

Comparing Variation Among Data Sets 

Sometimes, we may want to compare the variation in two data sets, but the units are not the same.  For instance, consider the ACT and 

the SAT college entrance exams.  Since the ACT scores range 0-36, but SAT scores range 0-1600, we will always have a larger mean 

and standard deviation for SAT scores because the numbers are larger.  However, we may want to compare the variation in scores on 

the exams relative to their observation sizes.  To do this, we use the coefficient of variation, which is denoted %100⋅=
x

s
CV .  This 

calculates the percent of variation relative to the mean, and essentially puts the variation in any data set on the same scale. 

 

Applications of Standard Deviation 

There are a couple of useful theorems relating to standard deviation that result in some “rules of thumb” that are especially useful for 

people who want a good idea of what is going on in a data set without rigorous calculation. 

 

The Empirical Rule (also called the 68-95-99.7 Rule): If a data set has a bell-shaped (normal) distribution, then: 

(i) About 68% of the observations fall within one standard deviation of the mean (between sx − and sx + ) 

(ii) About 95% of the observations fall within two standard deviations of the mean (between sx 2− and sx 2+ ) 

(iii) About 99.7% of the observations fall within three standard deviations of the mean (between sx 3− and sx 3+ ) 

(iv) Furthermore, since a normal distribution is symmetric, we get the other percentages shown below (all approximate) 

A note: This rule is an approximation based on percentiles of the normal distribution, which we will discuss later in the course. 

 

Chebyshev’s Theorem: In any data set (even skewed ones), the proportion of values lying within k standard deviations of the mean is 

always greater than or equal to 
2

1
1

k
− , where k > 1.  In particular, this means: 

(i) More than 75% of the observations fall within two standard deviations of the mean (between sx 2− and sx 2+ ) 

(ii) More than 89% of the observations fall within three standard deviations of the mean (between sx 3− and sx 3+ ) 

 

 

 

 



Section 3-4: Measures of Relative Standing 

It is certainly useful having measures of center and variation for data sets, but what if you wanted to compare two data sets with 

different units to each other?  For instance, what if you wanted to compare test grades for two students from two different classes, 

where one class took the SAT and the other took the ACT?  The mean and standard deviation for the SAT class would definitely be 

higher, but that is only because the SAT is 1600 points total as opposed to 36 for the ACT.  In order to compare these students’ scores, 

we need a measure of relative standing. 

 

Z-Scores 

To compare two groups, then, what can be done?  First of all, we could subtract the group mean from each observation in each class.  

This would put the center of each data set at 0.  Next, we can divide each observation by the group standard deviation, which scales 

everything down to a standard deviation of 1.  Since both data sets now have a mean 0 and standard deviation 1, observations can be 

compared.  Subtracting the mean and dividing by the standard deviation for an observation is called finding the z-score. 

Z-Score (for a sample): 
s

xx
z

−
=  

Here, x is the observation, x is the sample mean, and s is the sample standard deviation 

Z-Score (for a population): 
σ

µ−
=

x
z  

Here, x is the observation, µ is the population mean, and σ is the population standard deviation. 

 

A z-score tells you how many standard deviations above (or below) the mean an observation is located. 

For example, z = -1.45 means the observation is located 1.45 standard deviations below the mean. 

To compare two observations, simply compare the z-scores for each observation.  Whichever observation has a larger z-score has a 

higher relative standing (i.e. it is higher compared to other observations in its data set). 

 

Example: Carol and Meredith, two sisters, are arguing about who has to do more homework compared to their classmates.  Carol is in 

college, and does about 7 hours of homework a week.  Meredith is in high school and does 4.5 hours of homework a week.  For the 

purposes of this example, let’s suppose college students’ study hours have a mean of 5 hours and a standard deviation of 1, while high 

school students have a mean of 3 hours and a standard deviation of 0.5.  Who studies more relative to their peers? 

Carol’s z-score is: 2
1

57
=

−
=

−
=

σ

µx
z , so Carol’s hours are 2 standard deviations above the mean for college students. 

Meredith’s z-score is: 3
5.0

35.4
=

−
=

−
=

σ

µx
z , so Meredith’s hours are 3 standard deviations above the mean for high school students. 

So we see that while Meredith studies fewer hours a week, she still studies more relative to her classmates. 

 

Interpreting Z-Scores 

From Chebyshev’s Theorem, we know that more than 75% of observations will always fall within 2 standard deviations of the mean.  

Furthermore, for bell-shaped distributions, 95% of observations fall within 2 standard deviations of the mean. 

For this reason, we say that observations with z-scores between –2 and 2 (within 2 s.d. of the mean) are Ordinary Values. 

Observations with z < -2 or z > 2 (further than 2 s.d. from the mean) are called Unusual Values. 

 

Quartiles 

One of our measures of center was the median, which was the middle observation of the data set.  This is the unique point where 50% 

of the data set lies above and below that value.  It addition to the median, there are other special values called quartiles, which mark 

each 25% of the data set.  They are marked with a Q and a number denoting which quarter of the data they represent. 

Q1: First Quartile – 25% of the observations are below this point, and 75% above. 

Q2: Second Quartile – 50% of the observations are below this point, and 50% above (this is the median). 

Q3: Third Quartile – 75% of the observations are below this point, and 25% above. 

 

Percentiles 

A more general form of quartiles splits the data set at any percent, instead of just 25%, 50%, or 75%.  For example, the 90
th

 percentile 

is the observation where 90% of the data lies below that value, and 10% above.  What follows is a general method for finding 

percentiles (including quartiles). 

1. Decide what percent of the data you want below the value.  Call this k (e.g. for Q1, you would let k = 0.25, for the 25
th

 percentile). 

2. Sort the data. 

3. Multiply k by the total number of observations n.  Let knL = . 

(note: in the book, they let k be the percent number – i.e. 25 instead of 0.25 – and the method is a little different) 

4. If L is a whole number, average the observations in the L
th

 and (L+1)
st
 positions in the data set to get the percentile. 

5. Otherwise, round L up to the next whole number, and use the observation in the L
th

 position as the percentile. 

6. Often, the percentile is denoted Pk, where the number in the subscript is either the percent or the decimal version of the percent. 

 



Example: Consider the following dataset – 4, 5, 2, 6, 8, 10, 2, 4, 0, 34, 11, 3.  There are n = 12 observations. 

Let’s find all 3 quartiles and the 80
th

 percentile.  First, we sort the data: 0, 2, 2, 3, 4, 4, 5, 6, 8, 10, 11, 34 

Finding Q1: k = 0.25, and L = kn = 0.25(12) = 3.  Since L is a whole number, we average the 3
rd

 and 4
th

 observations to get Q1 = 2.5. 

Finding Q2: k = 0.5, and L = kn = 0.5(12) = 6.  Since L is a whole number, we average the 6
th

 and 7
th

 observations to get Q2 = 4.5. 

Finding Q3: k = 0.75, and L = kn = 0.75(12) = 9.  Since L is a whole number, we average the 9
th

 and 10
th

 observations to get Q2 = 9. 

Finding P80: k = 0.80, and L = kn = 0.80(12) = 9.6.  Now we round L up to get 10, and use the 10
th

 observation.  So P80 = 10. 

 

Another Measure of Variation 

As we learned before, the mean and standard deviation are heavily influenced by extremely high or low values, and in those situations 

the median should be used as a measure of center.  However, what should we use to measure variation?  One measure that is often 

used with the median is called the interquartile range (IQR).   

It is defined by: IQR = Q3 – Q1. 

 

Section 3-5: Exploratory Data Analysis (EDA) 

Exploratory Data Analysis is the way that many scientists discover trends in data sets that are not immediately obvious.  This is done 

through the use of graphs and basic statistics (i.e. mean, median, mode, standard deviation, quartiles, IQR, etc.).  Other than the graphs 

and statistics we have already discussed, there are a few more ways scientists can do this. 

 

Outliers 

One important feature of a data set  is something called an outlier.  This is an observation that is much higher or lower than most of 

the other observations in the data set.  Often, outliers represent some sort of error (i.e. the measurement device malfunctioned, 

someone wrote the number down wrong, etc.).  However, other outliers represent some sort of anomaly that may provide insight into 

the process being examined in the data set.  These values also have a big effect on the mean and standard deviation, and are therefore 

important to identify. 

 

The Outlier Rule: If an observation is 1.5 times the IQR above Q3 or below Q1, then it is an outlier.  This means if an observation falls 

outside the interval (Q1 – 1.5·IQR, Q3 + 1.5·IQR), then it is an outlier. 

 

If an outlier is determined to be valid (not a malfunction or mistake), statisticians will often examine graphs and statistics for data sets 

excluding the outlier in order to see what effect it has on the interpretation of the data set. 

 

Boxplots 

A boxplot is a very useful plot that divides a data set into its quartiles.  While not as useful as a histogram for a single data set, it is 

incredibly useful in comparing data sets to each other.  Before we discuss how to create a boxplot, though, we need to first define a 5-

Number Summary. 

 

A 5-Number Summary is a collection of five numbers in a data set: the minimum value, Q1, Q2, Q3, and the maximum value.  

Usually, it is written in the following form: (min, Q1, Q2, Q3, max). 

 

A boxplot (also called a box-and-whisker diagram) is formed by a box from Q1 to Q3, two lines running from min to Q1 and Q3 to 

max, and vertical lines at each of the 5 numbers in the 5-number summary (see below). 

The thing to remember with boxplots is that 25% of the observations fall between each pair of vertical lines (25% in the two 

“whiskers”, 25% in each half of the box).  Thus, a smaller distance between vertical lines means observations are densely packed in 

that area (this would translate into higher bars on a histogram).  A wider area between lines means the data values are more spread out. 

 

A modified boxplot uses the same design, except all outliers are displayed by a symbol (usually a *), and the whiskers only extend to 

the highest and lowest observations that are not outliers (here, outliers are determined by the outlier rule above). 

 

 

 

 

 

 



Examples 

Here are some side-by-side histograms and boxplots for various data sets: 

 

Data Set #1 

Data Set #2 

Data Set #3 

 

 

 

 

 

 



Data Set #4 

Data Set #5 

 

 

 

 

 

 

 

 

 

 

 


