Limit of a function at a point

$\varepsilon-\delta$ language
Motivation:

Studying functions when they are not defined
The following functions are undefined at $x = 1$:

\[f(x) = \frac{x^2 + 1}{x - 1} \]

\[f(x) = \frac{x^2 - 1}{x - 1} \]
The following functions are undefined at $x = 1$:

$$f(x) = \frac{x^2 + 1}{x - 1}$$

$$f(x) = \frac{x^2 - 1}{x - 1}$$

The difference can be big!
Want to distinguish the following situation:
Want to distinguish the following situation:

As x is near 1, value of $f(x) = \frac{x^2 - 1}{x - 1}$ is near 2.
HOW EXACTLY NEAR?
HOW EXACTLY NEAR?

This near?

0.9 1 1.1
HOW EXACTLY NEAR?

This near?

This near?
HOW EXACTLY NEAR?

This near?

This near?

Or, this near?
!!...!!!!...!!

INFINITELY NEAR!
INFINITELY NEAR?
??...????...??

INFINITELY NEAR?
\(\varepsilon - \delta \) language.

Definition of Limit

Working out the infinity
Definition of Limit

DEFINITION. The number L is the limit of function $f(x)$ as x approaches c if and only if for any positive number ε there exists a positive number δ (depending on ε) such that as long as x is not equal to c but differs from c by less than δ, it implies that $f(x)$ differs from L by less than ε.
Limit in math symbols.

DEFINITION.

\[L = \lim_{x \to c} f(x) \iff \forall \varepsilon > 0 \ \exists \delta > 0 \ / \ 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon \]

Legend: \(\forall \) — for any, \(\varepsilon \) — “epsilon”, \(\exists \) — exists, \(\delta \) — “delta”, \(/ \) — such that, \(\Rightarrow \) — implies, \(\iff \) — if and only if, \(\to \) — approaches.
\[L = \lim_{x \to c} f(x) \quad \iff \quad \forall \varepsilon > 0 \; \exists \delta > 0 \; / \; 0 < |x - c| < \delta \implies |f(x) - L| < \varepsilon \]

The inequality in red requires that

\[-\delta < x - c < \delta, \quad x - c \neq 0\]

or,

\[c - \delta < x < c + \delta, \quad x \neq c\]
\[
L = \lim_{x \to c} f(x) \iff \forall \varepsilon > 0 \exists \delta > 0 / 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon
\]

The inequality in green requires that

\[
-L + \varepsilon < f(x) < L - \varepsilon,
\]

or,

\[
-L - \varepsilon < f(x) < L + \varepsilon,
\]
\[
L = \lim_{x \to c} f(x) \iff \\
\forall \varepsilon > 0 \exists \delta > 0 \ / \ 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon
\]

As \(x \) is in \(\delta \)-corridor, \(f(x) \) is in \(\varepsilon \)-corridor:

(A narrower \(\delta \)-corridor guarantees it better)
\[L = \lim_{x \to c} f(x) \iff \forall \varepsilon > 0 \exists \delta > 0 / 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon \]

For every choice of \(\varepsilon \) there must exist \(\delta \):

(it is highly desirable to have a formula for computing \(\delta \) from \(\varepsilon \))
\[L = \lim_{x \to c} f(x) \iff \forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon \]

No limit situations:
EXAMPLES
\[L = \lim_{x \to c} f(x) \quad \iff \quad \forall \varepsilon > 0 \ \exists \delta > 0 \ / \ 0 < |x - c| < \delta \implies |f(x) - L| < \varepsilon \]

EXAMPLE 1. Prove by \(\varepsilon-\delta \) argument

\[\lim_{x \to 2} (7x + 1) = 15 \quad \iff \]
\[
L = \lim_{x \to c} f(x) \iff \\
\forall \varepsilon > 0 \exists \delta > 0 \ / \ 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon
\]

EXAMPLE 1. Prove by \(\varepsilon-\delta\) argument

\[
\lim_{x \to 2} (7x + 1) = 15 \iff \\
\forall \varepsilon > 0 \exists \delta > 0 \ / \ 0 < |x - 2| < \delta \Rightarrow |(7x + 1) - 15| < \varepsilon
\]
\[L = \lim_{x \to c} f(x) \iff \]

\[
\forall \varepsilon > 0 \ \exists \delta > 0 \ / \ 0 < |x - c| < \delta \ \Rightarrow \ |f(x) - L| < \varepsilon
\]

EXAMPLE 1. Prove by \(\varepsilon-\delta\) argument

\[
\lim_{x \to 2}(7x + 1) = 15 \iff
\]

\[
\forall \varepsilon > 0 \ \exists \delta > 0 \ / \ 0 < |x - 2| < \delta \ \Rightarrow \ |(7x+1) - 15| < \varepsilon
\]

(By a smart choice of \(\delta\) guarantee that

\[
|(7x + 1) - 15| < \varepsilon
\]
The desired inequality

\[|(7x + 1) - 15|\]
The desired inequality

\[|(7x + 1) - 15| = |7x - 14| = |7(x - 2)| \]

\[= |7||x - 2| = 7|x - 2| < \varepsilon \quad \text{(desirable)} \]
The desired inequality

\[|(7x + 1) - 15| = |7x - 14| = |7(x - 2)| \]

\[= |7||x - 2| = 7|x - 2| < \varepsilon \quad \text{(desirable)} \]

follows from the assumption

\[|x - 2| < \delta \]

if \(\delta \leq \varepsilon / 7 \).
The desired inequality

\[
|(7x + 1) - 15| = |7x - 14| = |7(x - 2)|
\]

\[
= |7||x - 2| = 7|x - 2| < \varepsilon \quad \text{(desirable)}
\]

follows from the assumption

\[
|x - 2| < \delta
\]

if

\[
\delta \leq \varepsilon/7.
\]

In particular, one can pick

\[
\delta = \varepsilon/7. \quad \text{(answer)}
\]
\[L = \lim_{x \to c} f(x) \iff \forall \varepsilon > 0 \ \exists \delta > 0 \ / \ 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon \]
\[L = \lim_{x \to c} f(x) \quad \iff \quad \forall \varepsilon > 0 \, \exists \delta > 0 \, / \, 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon \]

EXAMPLE 2. Prove by \(\varepsilon-\delta \) argument

\[
\lim_{x \to 5} \left(\frac{x^2 - 25}{x - 5} \right) = 10 \quad \iff
\]
\[
L = \lim_{x \to c} f(x) \implies \\
\forall \varepsilon > 0 \ \exists \delta > 0 / \ 0 < |x - c| < \delta \implies |f(x) - L| < \varepsilon
\]

EXAMPLE 2. Prove by \(\varepsilon-\delta\) argument

\[
\lim_{x \to 5} \left(\frac{x^2 - 25}{x - 5} \right) = 10 \implies \\
\forall \varepsilon > 0 \ \exists \delta > 0 / \ 0 < |x - 5| < \delta \implies \left| \frac{x^2 - 25}{x - 5} - 10 \right| < \varepsilon
\]

(By a smart choice of \(\delta\) guarantee that

\[
\left| \frac{x^2 - 25}{x - 5} - 10 \right| < \varepsilon
\])
The desired inequality

$$\left|\frac{x^2 - 25}{x - 5} - 10\right|$$
The desired inequality

\[
\left| \frac{x^2 - 25}{x - 5} - 10 \right| = \left| \frac{(x + 5)(x - 5)}{x - 5} - 10 \right|
\]

\[
= |x - 5| < \varepsilon \quad \text{(desirable)}
\]

follows from the assumption

\[
|x - 5| < \delta
\]

if

\[
\delta \leq \varepsilon.
\]

In particular, one can pick

\[
\delta = \varepsilon. \quad \text{(answer)}
\]
\[L = \lim_{x \to c} f(x) \quad \iff \quad \forall \varepsilon > 0 \ \exists \delta > 0 \ / \ 0 < |x - c| < \delta \implies |f(x) - L| < \varepsilon \]

EXAMPLE 3. Prove by \(\varepsilon - \delta \) argument

\[\lim_{x \to 3} x^2 = 9 \quad \iff \]
\[
L = \lim_{x \to c} f(x) \iff \\
\forall \varepsilon > 0 \ \exists \delta > 0 / \ 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon
\]

EXAMPLE 3. Prove by \(\varepsilon-\delta \) argument

\[
\lim_{x \to 3} x^2 = 9 \iff \\
\forall \varepsilon > 0 \ \exists \delta > 0 / \ 0 < |x - 3| < \delta \Rightarrow |x^2 - 9| < \varepsilon
\]

(By a smart choice of \(\delta \) guarantee that

\[
|x^2 - 9| < \varepsilon
\])
The desired inequality

$$|x^2 - 9|$$
The desired inequality

\[|x^2 - 9| = |(x - 3)(x + 3)| \]

\[= |x - 3||x + 3| < \varepsilon \quad \text{(desirable)} \]
The desired inequality

\[|x^2 - 9| = |(x - 3)(x + 3)| \]

\[= |x - 3||x + 3| < \varepsilon \quad \text{(desirable)} \]
requires controlling both \(|x - 3| \) and \(|x + 3| \).

Note that \(\delta \) controls \(|x - 3| \) through

\[|x - 3| < \delta \]

Does \(\delta \) controls \(|x + 3| \) as well?
Does δ controls $|x + 3|$ as well?

Assume $\delta < 1$:
Does δ controls $|x + 3|$ as well?

Assume $\delta < 1$:

$$|x - 3| < 1 \iff 2 < x < 4$$
Does δ controls $|x + 3|$ as well?

Assume $\delta < 1$:

$$|x - 3| < 1 \iff 2 < x < 4$$

Notice that if $2 < x < 4$, then

$$5 < |x + 3| < 7 \quad (\delta \text{ controls } |x + 3|!)$$
Does \(\delta \) controls \(|x + 3|\) as well?

Assume \(\delta < 1 \):

\[
|x - 3| < 1 \iff 2 < x < 4
\]

Notice that if \(2 < x < 4 \), then

\[
5 < |x + 3| < 7 \quad (\delta \text{ controls } |x + 3|!)
\]

Finally, \(|x^2 - 9| = |x - 3||x + 3| < |x - 3|7 < \varepsilon \) if \(\delta < 1 \) and \(\delta \leq \varepsilon/7 \).

Answer: \(\delta = \min\{1, \varepsilon/7\} \)