From: Holland ILL [ill@mail.wsu.edu]
Sent: Tuesday, September 25, 2007 8:18 AM
To: Libraries.HSL.Vetariel
Subject: Interlibrary Loan request to process 261616

TN: 261616
Title: Neuroreport.
Imprint: Oxford, UK: Rapid Communications of Oxford Ltd., [1990-
Volume: 6
IssueNumber: 3
IssueDate: February 1995
ISSN: 0959-4965
Affiliation: AMIGOS
AgingDate: 20070925
BillTo: same
Borrower: CNO
CopyrightCompliance: CCL
Email: Interlibrary.loan@csun.edu
Fax: 310.334.3922
ID: 34853922
Lenders: AZS,*NTE
MaxCost: FREE
NeedBeforeDate: 20071024
OCLCNumber: 22982547
Pages: 501-505
Patron: Veprinsky, Anna
ProtocolType: OCLC
RequestDate: 20070924
ShipTo: University Library - Interlibrary Loan 18111 Nordhoff Street Northridge, California 91330-8327
ShipVia: Your Rate
Source: ILLiad
Status: PENDING
Verified: <TN:66304> OCLC

RECEIVED HLTH
SEP 25 2007
WASHINGTON STATE UNIVERSITY
A positron emission tomography
\[^{18}\text{F}\]deoxyglucose study of
developmental stuttering

Joseph C. Wu,a Gerald Maguire,
Glyndon Riley,1 James Fallon,
Lori LaCasse, Sam Chin, Eric Klein,
Cheuk Tang, Stephanie Cadwell
and Stephen Lottenberg

University of California, Irvine Brain Imaging
Center, Department of Psychiatry, Room 163
Irvine Hall, Irvine, CA 92717; 1California State
University, Fullerton Communicative Disorders
Program Fullerton, CA, USA

a Corresponding Author

Introduction

Stuttering is a speech disorder characterized by fre-
quent repetition or prolongations of sounds or syl-
lables. Other features include silent blockings,
circumlocutions to avoid feared words, and excessive
physical tension. This disorder, by definition, is dis-
abling, affecting one's academic or occupational
achievement or social communication.1 The extent
of the disturbance varies and is often more severe when
there is special pressure to communicate. The preva-
ence of stuttering is approximately 1% with the vast
majority of individuals (98%) affected before 10 years
of age and a male to female ratio of 3:1.1 Previous
research related to stuttering neurophysiology has
failed to identify a specific abnormal circuit of brain
activity, although specific brain structures seem to be
involved. Ludlow investigated 10 subjects who sus-
tained penetrating brain lesions and developed
acquired stuttering2 (a much less common form of stut-
tering than the childhood onset, developmental form).
All 10 subjects were found to have lesions in either the
pyramidal or extrapyramidal motor systems, with
80% showing lesions in the caudate and lentiform
nucleus, and 50% showing injury to the cerebellum.
Andy and Bhatnagar3 reported the reduction of
acquired stuttering symptoms in four patients using
mesothalamic stimulation. Wood \textit{et al.}4 utilizing
SPECT (single photon emission computed tomogra-
phy), studied two young adult stutterers, one with
acquired stuttering (secondary to a head injury at age
13), and one with developmental stuttering (with
reported onset before age 4). Both subjects exhibited
increased cortical blood flow in the anterior regions of
the right hemisphere compared with homologous areas
of the left hemisphere during stuttering. Under a fluent
condition (utilizing haloperidol), the subjects showed
greater blood flow in the left than the right hemisphere
anterior regions. Pool,5 in a more recent SPECT study,
found absolute blood flow to be globally reduced by
approximately 20% in individuals who stutter com-
pared with controls. The greatest asymmetry between
stutterers and controls was found in the anterior cingu-
late and in the superior and middle temporal gyri. The
authors consider their findings consistent with prior
reports of speech motor initiation localized in the left
cingulate or supplementary motor area.

The purpose of this study was to investigate the cer-
bral neurophysiology of stuttering in depth utilizing
PET (positron emission tomography), a technique
with greater resolution than that of the previous
SPECT research. One goal of the study was to identify
state-dependent changes in the brains of individuals
who stutter by scanning the same individuals twice,
one during a stuttering condition (reading alone) and
once during a fluent condition (choral reading.) Indivi-
duals who stutter may be induced to be fluent while
performing various tasks including choral reading.6
A second goal of the study was to investigate the possi-
bility of non-reversible trait differences in the cerebral
neurophysiology of individuals who stutter compared
with normal controls.

Subjects and Methods

\textit{Subjects}: Four adult stutterers and four normal con-
trols were studied utilizing \[^{18}\text{F}\]deoxyglucose positron
emission tomography (FDG PET). All subjects were
right-hand, right-eye and right-foot dominant. All subjects had a screening physical examination and medical history taken, and all provided written, informed consent regarding the study in accordance with the Human Subjects Research Committee of UC Irvine. The stuttering subjects all had developmental stuttering with the onset of symptoms before 9 years of age. The speech of the subjects who stutter was measured objectively at least three times over a 6 week period to obtain an accurate assessment of stuttering severity. The stuttering subjects had an SSI-3 score mean of 33.5 (range 29–40), with a mean of 16% stuttered syllables (range 12–21) while solo reading (reading aloud by themselves) and < 0.5% stuttered syllables during choral reading (reading aloud the same words at the same time with another individual). Subjects were excluded from participating if they had a history of a major psychiatric disorder (major depression, schizophrenia, bipolar disorder, or obsessive-compulsive disorder), or history of a life-threatening neoplasm within the last 5 years. The stuttering subjects were composed of three men and one woman with mean age of 41.5 years (range 20–54). The controls also comprised three men and one woman with a mean age of 29.5 years (range 22–41.)

Procedures: Two PET scans were performed using a method previously described with a reading task. FDG was chosen as a marker because it would allow for an integrated view of the regional metabolic processes that underlie the speech process during the stuttering or the fluent state. Ten minutes before the FDG injection, the subjects received instruction in solo or choral reading; 3 min before injection, the reading task was started in order that the initial novelty of the task should not be FDG labeled. Nine slices at 10 mm intervals were obtained beginning at about 85% of head height (vertex to CM line.) The subjects who stuttered had two separate PET scans, one during a stuttering condition (reading aloud by themselves to another person) and one during a fluent condition (choral reading, i.e. reading aloud in unison with another person) for 30 min in an acoustically attenuated testing room. The same readings were used for each condition. (The readings were non-emotionally laden articles from news magazines.) The stuttering and fluent scans were counterbalanced. The duration of the scan was 90 min. The total duration between beginning of reading and end of brain imaging was 2 h. At least 24 h separated the two scans. The normal controls had one scan following solo reading. The controls read aloud the same readings in the same room as the stuttering subjects.

Data analysis: PET images were reconstructed using standard methods. PET images were anatomically normalized using the coordinate system of the Talairach atlas. One-tailed t-tests were performed comparing pixels from normal controls with corresponding pixels from subjects who stutter. One-tailed t-tests were chosen since a review of the literature had generated a priori hypotheses regarding the structural lesions postulated for stuttering (e.g. caudate, cerebellum, thalamus, cingulate, superior and middle temporal gyri; see Introduction). Paired t-tests were performed for stuttering subjects comparing their non-stuttering condition with their stuttering condition. Localization of areas of increased or decreased metabolism was performed using an overlay of Brodmann defined regions from MRIs. Images were thresholded so that only regions significant with t-values > 3.2 were displayed.

Results

Several brain structures showed decreased glucose uptake during the stuttering state in the individuals who stuttered compared with themselves while fluent, and in the stutterers compared with normal controls (p < 0.05). These areas of overlap fell into four basic

<table>
<thead>
<tr>
<th>Table 1. PET study of stuttering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain region</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>A. Trait-related, state dependent brain regional changes</td>
</tr>
<tr>
<td>1. superior frontal</td>
</tr>
<tr>
<td>2. Wernicke's area</td>
</tr>
<tr>
<td>3. Broca's area</td>
</tr>
<tr>
<td>4. posterior cingulate</td>
</tr>
<tr>
<td>5. prefrontal cortex</td>
</tr>
<tr>
<td>6. deep frontal orbital</td>
</tr>
<tr>
<td>7. medial cerebellum</td>
</tr>
<tr>
<td>B. Non-trait related, state dependent, brain regional metabolic change in fluency</td>
</tr>
<tr>
<td>1. substantia nigra</td>
</tr>
<tr>
<td>2. caudate</td>
</tr>
</tbody>
</table>

(all Brodmann area designations are approximate). Stereotaxic coordinates refer to medial-lateral position (x) relative to midline (positive = left), anterior-posterior position (y) relative to the anterior commissure (positive = anterior), and height (superior-inferior). The presence of significant focal changes was evaluated by thresholding the image (p < 0.05). A priori hypothesis was established for regions based upon a review of the neuropsychological literature for stuttering. Designation of Brodmann areas is approximate. |
FIG. 1. Averaged PET images were created for the stutterers during their stuttering condition and during their non-stuttering condition. Averaged matched t-test subtraction images were created comparing the stuttering subject’s individual PET slice for both conditions. The subtraction images were thresholded to display only regions significant at $p < 0.05$. The significant displayed pixels were then color coded to signify relative magnitude of change in percentage.

FIG. 2. A similar process was used to generate average PET images for the normal controls. A subtraction image was generated comparing the normal controls with the stutterers during their reading aloud by themselves to another person condition. Regions which overlapped between the first subtractions and the second subtractions are outlined in Table 1.
FIG. 1. Averaged PET images were created for the stutterers during their stuttering condition and during their non-stuttering condition. Averaged matched t-test subtraction images were created comparing the stuttering subject's individual PET slice for both conditions. The subtraction images were thresholded to display only regions significant at $p < 0.05$. The significant displayed pixels were then color coded to signify relative magnitude of change in percentage.

FIG. 2. A similar process was used to generate average PET images for the normal controls. A subtraction image was generated comparing the normal controls with the stutterers during their reading aloud by themselves to another person condition. Regions which overlapped between the first subtractions and the second subtractions are outlined in Table 1.
categories: (A) left language areas: left Broca’s area (Brodman Area [BA] 45), left Wernicke’s area (BA 39, 40); (B) higher order association areas: left superior frontal lobe (BA 10), right superior frontal lobe (BA 9); (C) right cerebellum; (D) limbic areas: left deep frontal orbital (BA 11) and bilateral posterior cingulate cortex (BA 23) (see Table 1A and Figs 1 and 2). Overall, no regions showed greater activity during the stuttering state than during either the choral reading state or the reading state of the normal controls.

Overall, the choral reading scans of the individuals who stuttered resembled those of the normal controls with two notable differences. In addition to the brain areas of overlap described above, the brains of individuals who stuttered showed that the left caudate has the largest difference between stutterers and controls with 2 regions of decreased glucose uptake during the solo reading task compared with the brains of normal controls performing the same solo reading task (Table 1B and Fig. 1). The caudate failed to show any normalizing increase during the non-stuttering condition. During the induced fluent state, the substantia nigra showed supranormal levels of activation in stutterers [Table 1C and Fig. 1].

Discussion

The findings described above suggest that stuttering may arise from a functional neuroanatomical circuit defect of five components (Fig. 3).

The first component is permanent left caudate hypoactivity which is a possible trait marker for stuttering. During the stuttering state, the left caudate appears to be approximately 50% less active in stutterers than in normal controls. Even during fluency induced by choral reading the individuals who stuttered still had significantly lower left caudate metabolism compared with controls. These observations imply that individuals who stutter have significantly lower caudate metabolism whether they are fluent or dysfluent compared with controls.

The second is reversible metabolic hypometabolism in the left language circuit (Broca’s area and Wernicke’s area), and higher order association areas (superior frontal cortex). These regions may represent a state dependent circuit that can be increased to normal functioning during induced fluent states in individuals who stutter. The third component is an increase to supranormal levels of substantia nigra/ventral tegmental area neuronal firing in the midbrain during the induced fluent state.

The fourth component of the circuit is the right cerebellum as timing element/comparator corrector. Activity in the cerebellum was lower in the stutterers while they were stuttering than when they were fluent and compared with controls. However, the activity of the right cerebellum normalized to that of the normal controls during the choral reading task.

The fifth component of the stuttering circuit is the limbic system (i.e. posterior cingulate), which acts as
categories: (A) left language areas: left Broca’s area (Brodmann Area [BA] 45), left Wernicke’s area (BA 39, 40); (B) higher order association areas: left superior frontal lobe (BA 10), right superior frontal lobe (BA 9); (C) right cerebellum; (D) limbic areas: left deep frontal orbital (BA 11) and bilateral posterior cingulate cortex (BA 23) (see Table 1A and Figs 1 and 2). Overall, no regions showed greater activity during the stuttering state than during either the choral reading state or the reading state of the normal controls.

Overall, the choral reading scans of the individuals who stuttered resembled those of the normal controls with two notable differences. In addition to the brain areas of overlap described above, the brains of individuals who stuttered showed that the left caudate has the largest difference between stutterers and controls with 2 regions of decreased glucose uptake during the solo reading task compared with the brains of normal controls performing the same solo reading task (Table 1B and Fig. 1). The caudate failed to show any normalizing increase during the non-stuttering condition. During the induced fluent state, the substantia nigra showed supranormal levels of activation in stutterers [Table 1C and Fig. 1].

Discussion

The findings described above suggest that stuttering may arise from a functional neuroanatomical circuit defect of five components (Fig. 3).

The first component is permanent left caudate hypometabolism which is a possible trait marker for stuttering. During the stuttering state, the left caudate appears to be approximately 50% less active in stutterers than in normal controls. Even during fluency induced by choral reading the individuals who stuttered still had significantly lower left caudate metabolism compared with controls. These observations imply that individuals who stutter have significantly lower caudate metabolism whether they are fluent or dysfluent compared with controls.

The second is reversible metabolic hypoactivity in the left language circuit (Broca’s area and Wernicke’s area), and higher order association areas (superior frontal cortex). These regions may represent a state dependent circuit that can be increased to normal functioning during induced fluent states in individuals who stutter. The third component is an increase to supranormal levels of substantia nigra/ventral tegmental area neuronal firing in the midbrain during the induced fluent state.

The fourth component of the circuit is the right cerebellum as timing element/comparator corrector. Activity in the cerebellum was lower in the stutterers while they were stuttering than when they were fluent and compared with controls. However, the activity of the right cerebellum normalized to that of the normal controls during the choral reading task.

The fifth component of the stuttering circuit is the limbic system (i.e. posterior cingulate), which acts as
the emotional modulator. Anxiety, which is centered in the limbic system, makes stuttering worse. The activity of the limbic system is increased in the individuals who stutter when they are fluent.

Comparisons between groups (e.g. stutterers vs normals) will have less similar anatomical comparability than comparisons within groups (e.g. stutterers fluent when choral vs stutterers dysfluent during solo reading). The within-group comparison has the advantage of using subjects as their own anatomical control. Nevertheless, comparisons using normalized data between groups have been utilized by numerous investigators (e.g. Roy John et al17) to study PET differences between different populations.

Conclusion

Stuttering is associated with specific cerebral regions of decreased activity in Broca’s area, Wernicke’s area, frontal pole, cingulate cortex and cerebellum. Many of these regions are activated when individuals who stutter are induced to be fluent. A persistent defect is found in the left caudate whether stutterers are stuttering or fluent. Substantia nigra regions show supranormal activity during temporary fluency. Limitations of this study however, include the small number of subjects studied, and the 12-year age difference between normal controls and subjects. Future PET research will include the study of more subjects and better age-matched controls.

References

ACKNOWLEDGEMENTS: We are grateful to Dr Sui-wa Tang and Dr William E. Bunney for their support.

Received 17 October 1994; accepted 17 December 1994