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4. Stone-Čech compactification
5. Metrization

Chapter VIII. Paracompact spaces
1. Paracompact spaces
2. Partitions of unity

Chapter IX. Function spaces
1. Topologies on function spaces
2. The evaluation map
3. Uniform spaces
4. Ascoli’s theorem

Chapter X. Topological groups
1. Topological groups
2. Topological vector spaces
3. Haar measure
4. Stone-Weierstrass theorem
5. Topological spaces and Banach algebras

Homeworks and exams

Bibliography

NOTE: These notes are being offered without warranty. Bibliography
and references have not been collected. Chapter X does not exist.



1. THE CONCEPT OF TOPOLOGICAL SPACE 1

CHAPTER I

TOPOLOGICAL SPACES

1. The Concept of Topological Space

Definition. A topological space is a pair (X,O) consisting of a set X and a collection O of
subsets of X (called “open sets”), such that the following axioms hold:

(1) Any union of open sets is an open set.
(2) The intersection of any two open sets is open.
(3) Both ø and X are open sets.

One also says that O is the topology of the topological space (X,O), and usually we will drop O
and speak of a topological space X.

Definition. Let X be a topological space.

(1) A subset F of X is called closed if X \ F is open.
(2) A subset N of X is called a neighborhood of x ∈ X if there is an open set U such that

x ∈ U ⊂ N .
(3) Let Y be a subset of X. A point x in X is called an interior, exterior or boundary point of

Y if Y , X \ Y or neither is a neighborhood of X.
(4) The set Y ◦ of the interior points of Y is called the interior of Y .
(5) The set Y − of points of X which are not exterior points of Y is called the closure of Y .

Exercise. The interior (closure) of a set is the largest open set (smallest closed set) contained
in it (which contains it).

The duality open-closed allows us to define a topology in terms of closed sets. The axioms are
obtained from the ones above by means of Morgan’s laws.

Axioms for closed sets. A topological space is a pair (X, C) consisting of a set X and a family
of subsets of X (called “closed sets”) such that

(1) Any intersection of closed sets is closed.
(2) The union of any two closed sets is closed.
(3) The empty set and X are closed sets.

Originally the notion of topology was defined in terms of neighborhoods.

Axioms for Neighborhood. A topological space is a pair (X,N) consisting of a set X and a
family N = {Nx}x∈X of sets Nx of subsets of X (called “neighborhoods”) such that:

(1) Each neighborhood of x contains x, and X is a neighborhood of each of its points.
(2) If N ⊂ X contains a neighborhood of x, then N itself is a neighborhood of x.
(3) The intersection of two neighborhoods of x is a neighborhood of x.
(4) Each neighborhood of x contains a neighborhood of x which is also a neighborhood of each

of its points.
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2 TOPOLOGY

Kuratowski Closure axioms. A topological space is a pair (X,− ) consisting of a set X and a
map − : PX → PX from parts of X into itself such that:

(1) ø− = ø.
(2) A ⊂ A− for all A ⊂ X.
(3) A−− = A−.
(4) (A ∪B)− = A− ∪B−.

Exercise. Formulate what the equivalence of this notions means and prove it.

Exercise. Kuratowski closure axioms can be replaced by only two: (1) ø− = ø and (2) A∪A− ∪
B−− ⊂ (A ∪B)−.

2. Bases and subbases

In several of the examples that we will discuss we see that we define open sets as union of a
smaller collection of open sets. This is an important concept.

Base. Let X be a topological space. A collection B of open sets is called a basis for the topology
if every open set can be written as a union of sets in B.

A related concept is the following.

Subbase. Let X be a topological space. A collection S of open sets is a subbasis for the topology
if every open sets is a union of finite intersections of elements of S.

The collection of all open sets of a topological space is both a base and a subbase. Of course one
is usually interested in smaller families. The importance of this definitions is the following.

Proposition. Let X be a set and let B be a collection of subsets of X whose union is X and
such that for any B, B′ in B and x ∈ B ∩ B′ there is B′′ ∈ B such that x ∈ B′′ ⊂ B ∩ B′. Then
there is exactly one topology O(B) on X for which B is a basis.

Proposition. Let X be a set and let S be an arbitrary collection of subsets of X. Then there is
exactly one topology O(S) on X for which S is a subbasis.

The only property that requires a comment is that ø and X are in O(S). This hold by using the
natural convention that the intersection of an empty family of sets is the whole space, the union of
an empty family of sets is the empty set. One has to read the meaning of x ∈ ∩i∈IBi as x ∈ Bi for
every i ∈ I, and of x ∈ ∪i∈IBi as x ∈ Bi for some i ∈ I.

These theorems are important because we usually want topologies satisfying certain properties,
and we want these topologies to be as smaller as possible. The notion of “ O is smaller than O ′

” refers to the partial relation O ⊂ O′ (the usual name is “coarser”) or O′ is finer that O. There
is a coarsest topology, namely the trivial one, and a finest one, also called discrete. In the typical
situation the desired topology should be as coarse as possible, and contain at least the elements of
S.

Neighborhood base. A neighborhood base at x in the topological space X is a subcollection
Bx of the neighborhood system Nx, having the property that each N ∈ Nx contains some V ∈ Bx.
That is Nx is determined by:

Nx = {N ⊂ X;V ⊂ N for someV ∈ Bx}.

For example, in any topological space the open neighborhoods of x form a neighborhood base at
x. In a metric space, the balls centered at x with rational radius form a neighborhood base at x.
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Definition. A topological space in which every point has a countable neighborhood base is said
to be first countable. It is said to be second countable if it has a countable base for its topology.

A topology can also be described by giving a collection of basic neighborhoods at each point.

Theorem. Let X be a topological space and for each x ∈ X let Bx be a neighborhood base at x.
Then:

(1) if V ∈ Bx, then x ∈ V ,
(2) if U, V ∈ Bx, there exists W ∈ Bx such that W ⊂ U ∩ V ,
(3) if V ∈ Bx, there is some V0 ∈ Bx such that if y ∈ V0, then there is some W ∈ By with

W ⊂ V , and
(4) U ⊂ X is open if and only if it contains a basic neighborhood of each of its points.

Conversely, given a set X and a collection of subsets Bx of X assigned to each of its points so as
to satisfy (1), (2), (3) above, there is a topology on X whose open sets are defined by (4) and which
has Bx as neighborhood base of each of its points.

Rather than giving a proof of this, we describe some examples.

The Moore plane. Let M denote the closed upper half plane (x, y), y ≥ 0. For a point in the
open upper half plane basic neighborhoods would be the usual open discs (taken small enough so
that they lie in M). For a point z in the x-axis the basic neighborhoods would be the sets {z} ∪B,
where B is an open ball in the upper half plane tangent to the x-axis at z.

The slotted plane. At each point x in the plane, the basic nhoods at x are the sets x ∪ B,
where B is an open ball about x with a finite number of straight lines through x removed.

The looped line. At each point x 6= 0 of the real line the basic neighborhoods would be the
open intervals centered at x. Basic neighborhoods of 0 would be the sets

(−∞,−n) ∪ (−ε, ε) ∪ (n,∞)

for all possible choices of ε > 0, and positive integers n.

The scattered line. Define a topology on the real line as follows: a set is open if and only if
it is of the form U ∪ V , where U is a standard open set of the real line, and V is a subset of the
irrationals. Describe an efficient neighborhood base at the irrational numbers and at the rationals.

3. Subspaces, unions, and hyperspaces

Subspaces. Let (X,O) be a topological space and Y a subset of X. The collection

OY = {U ∩ Y ;U ∈ O}

is a topology on Y , called the induced or subspace topology. With this topology, Y is called a
subspace of X. is a topology on Y , called the induced or subspace topology. With this topology, Y
is called a subspace of X.

One should not confuse “open set in Y ” with “open and in Y”, since the first need not to be open
(in X). There are situation in which they are.

Exercise. If U is open in Y and Y is open in X, then U is open in X.

Notation. It will be convenient to have an extra piece of notation for dealing with subsets of
several spaces. So we will write, whenever there is danger of confusion, ClXA for the closure of A
in X. Analogously, IntXA denotes the interior of A in the space X.
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Exercise. Let Y be a subset of the space X.

(1) F ⊂ Y is closed in Y ⇔ F = G ∩ Y , where G is closed in X.
(2) If A ⊂ Y , then ClYA = Y ∩ ClXA.
(3) If B is a base for X, then {B ∩ Y ;B ∈ B} is a base for Y .
(4) If x ∈ Y and Nx is a neighborhood base at x in X, then {N ∩Y ;N ∈ Nx} is a neighborhood

base for x in Y .
(5) For A ⊂ Y , A ∩ IntXA ⊂ IntYA, and the containment may be strict.

Disjoint union. Let X, Y be topological spaces. Their disjoint union X + Y is the set X ×
{0} ∪ Y × {1} with the topology whose open sets are those sets of the form U + V with U open in
X and V open in Y .

Note that if A is a subset of X
∐
Y , then A = (A ∩ X) + (A ∩ Y ), so that a set is open if and

only if its intersection with X and with Y are open sets in X and in Y , respectively.
This can be done for an arbitrary family {Xα}α∈A of topological spaces. Their disjoint union∑
AXα is the set ∪AXα × {α} and whose open sets are those whose intersection with each Xα is

open. This is the standard topology in the disjoint union.
There is another topology which agrees with the previous one in case of a finite family. The open

sets are those subsets U of X such that Uα is open in Xα for every α and Uα = Xα for almost very
α. If the family is infinite, this topology is coarser that the previous one.

Hyperspaces. Let X be a topological space and denote by 2X the collection of all nonempty
closed subsets of X. If X is a metric space, then 2X is metrizable via the Hausdorff metric. This
topology is independent of the metric. Here is the definition: for an open subset U of X, let
Γ(U) = {A ∈ 2X ;A ⊂ U}, and Λ(U) = {A;A ∩ U 6= ø}. If U1, · · ·Un are open subsets of X, let

〈U1 · · ·Un〉 = {A; A ⊂ ∪
n
i=1Un, A ∩ Ui 6= ø, i = 1, · · · , n}.

Then

B = {〈U1 · · ·Un〉;Ui open in X}

is a base for a topology on X, and

S = {Γ(U),Λ(U);U open in X}

is a subbase. If X is a compact metric space this topology coincides with the one given by the
Hausdorff metric.

Products. Let X and Y be topological spaces. A subset W of the cartesian product X × Y is
called open in the product topology if for each point (x, y) in W there are neighborhoods U of x in
X and V of y in Y such that U × V ⊂ X × Y .

Subsets of the form U ×V are called boxes, so that this topology is often called the box topology.
Note that not every open subset of X × Y is an open box.

Quotients. Let X be a topological space and “∼” be an equivalence relation on X. Let X/ ∼ be
the set of equivalence classes and denote by π : X → X/ ∼ the quotient map. We define a topology
on X/ ∼ by declaring a set U to be open if π−1(U) is open in X.

Examples. On the line R define a relation x ∼ y if x− y is an integer. The quotient space is a
circle.

Let X, Y be two copies of the real line. On the disjoint union X+Y define an equivalence relation
(x, 0) ∼ (x, 1) if and only if x 6= 0. The quotient space is the line with two origins.
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4. Pseudometric and metric spaces

Definition. A pseudometric on a set X is a function d on X × X with values in the set of
nonnegative real numbers such that for all points x, y and z in X

(1) d(x, y) = d(y, x).
(2) d(x, y) ≤ d(x, z) + d(z, y),
(3) d(x, y) = 0 if x = y.

If furthermore d satisfies

(4) d(x, y) = 0 if and only if x = y

then (X, d) is called a metric space.
The r-ball centered at x is the set B(x, r) = {y ∈ X; d(x, y) < r}. A subset U of X is called open

if for every x in U there exists an rx > 0 such that B(x, rx) ⊂ U .

Exercise. Let (X, d) be a pesudometric space. Let O(d) be the collection of open subsets of X.
Prove that (X,O(d)) is a topological space.

The metrization problem. Let (X,O) be a topological space. Does there exist a metric d on
X for which O = O(d)?

Clearly the answer is no in general. In a metric space two distinct points have disjoint neighbor-
hoods, so that a topological space not having this property cannot be metrizable. But it is possible
to have Hausdorff spaces which are not metrizable. The following example is a famous one, called
the Sorgenfrey line. The underlying set X is the real line. The collection B of all half-open intervals

[a, b) = {x; a ≤ x < b}

is a basis for a topology on X. One notes that basis elements are both open and closed. The space
X is connected. It is separable but has no countable basis. Every subspace of X is separable.

Now consider the product Y = X ×X with the product topology. Then Y is separable, but the
subspace formed by the points in the line y = 1− x is not.

5. The Order Topology

Let (X,<) be a linearly ordered set. For x, y in X with x ≤ y we consider the following subsets of
X, called intervals determined by x and y: (x, y) = {x ∈ X;x < z < y}, (x, y] = {x ∈ X;x < z ≤ y},
[x, y) = {x ∈ X;x ≤ z < y}, [x, y] = {x ∈ X;x ≤ z ≤ y}.

Definition. Let X be a linearly ordered set. Let B denote the collection of all subsets of the
following types:

(1) All open intervals (x, y) in X.
(2) All intervals of the form [s, y), where s is the smallest element of X (if any).
(3) All intervals of the form (x,m], where m is the maximal element of X (if any).

The collection B is the basis for a topology of X, called the order topology.

Exercise. Define open rays and show that they define a subbasis for the order topology. The
open rays are the sets of the form {x;x < a} or {x; a < x} for some a ∈ X.

Exercise. Let X be linearly ordered by <.

(1) The order topology is the coarsest topology for which the order is continuous in the following
sense: if a < b then there are neighborhoods U of a and V of b such that if x ∈ U and y ∈ V
then x < y.

(2) If Y is a subset of X, then Y is also a linearly ordered set. But the order topology of Y may
not be the same as the subspace topology. Find an example of this situation.
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Dictionary order. If (X,<) and (Y,<) are linearly ordered we can define an order relation on
the cartesian product X ×Y , called the dictionary order, by declaring (x1, y1) < (x2, y2) if and only
if either x1 < x2 or x1 = x2 and y1 < y2.

6. More examples

Hjalmar Ekdal topology. Let X be the set of positive integers with the topology whose open
sets are those subsets of X which contain the successor of every odd integer in them. Thus a set F
is closed in X if for each even n in F , n− 1 ∈ F .

Nested interval topology. Here X = (0, 1) and the open sets are Un = (0, 1 − 1/n), n =
1, 2, · · · , together with ø and X.

Long line. This is a very popular example. We need to recall a few facts from well-ordered sets.
Let X be an uncountable set and well-order X into a well ordered set X = {x1, x2, · · · , xα, · · · }.
Then either every element of X is preceded by at most a countable number of elements, or some
element has an uncountable number of elements. If the first case occurs, let A = X. If the second
case occurs, then, by the well-ordering property, the set of all those elements with an uncountable
number of predecessors has a first element, say ω. Then let A denote the set of all predecessors of
ω. In either case, A is a well-ordered set with the property that every element has countably many
predecessors, but A is itself uncountable. Now consider L = A× [0, 1) with the order topology given
by the dictionary order (the interval [0, 1) has the standard order). This space L is called the long
line (although it looks more like a long ray because it has a first element).

Cofinite topology. Let X be a set. The nonempty subsets of X are those U ⊂ X with X \ U
finite.

Zariski topology. Let X be either Rn or Cn. A set F ⊂ X is closed if and only if there is a
polynomial P (x1, · · · , xn) such that P (x) = 0 if and only if x ∈ F . This is the cofinite topology if
n = 1, but not if n > 1.

Cocompact topology. Let X be the set of real numbers. A subset U ⊂ X is open if either
U = ø or X \ U is a compact subset of R (with the usual topology).

Thomas’ Corkscrew. Let X = ∪∞i=1Li be the union of segments in the plane where L0 =
{(x, 0); 0 < x < 1} and Li = {(x, 1/i); 0 ≤ x < 1} for i ≥ 1. If i ≥ 1, each point of Li \ {(0, 1/i)} is
open. A neighborhood base of (0.1/i) is formed by the subsets of Li with finite complement. The
sets Ni(x, 0) = {(x, 0)} ∪ {(x, 1/n);n > i} for a neighborhood base at each point (x, 0) of L0.
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CHAPTER II

CONTINUOUS MAPS

1. Continuous maps

Definition. (Continuous map) Let X, Y be topological spaces and let f : X → Y . The f is
continuous at x ∈ X if for each neighborhood V of f(x) there is a neighborhood U of x in X such
that F (U) ⊂ V . We say that f is continuous if it is continuous at each point of X.

The definition is not altered if nhood is replace by basic nhood.

Proposition. The following are equivalent for a map f : X → Y between topological spaces:

(1) the map f is continuous
(2) if V is open in Y , then f−1(V ) is open in X
(3) if F is closed in Y , then f−1(F ) is closed in X
(4) for each E ⊂ X, f(E−) ⊂ f(E)−

Proof. (1)⇒ (2) If V is open in Y , then for each x ∈ f−1V , V is a neighborhood of f(x). By
continuity of f , there is a neighborhood U of x such that fU ⊂ V . That is, U ⊂ f−1V . Thus f−1V
contains a neighborhood of each of its points.

(2)⇒ (3) For any subset B of Y we have f−1(Y \B) = X \ f−1(B).
(3) ⇒ (4) Let K be closed in Y containing fE. By (3), f−1K is closed in X and contains E.

Hence, E− ⊂ f−1K, so f(E−) ⊂ K. This is true for any closed set K containing fE, thus (4).
(4)⇒ (1) Let x in X and V an open neighborhood of fx. Let E = X \f−1V , U = X \E−. Since

f(E−) ⊂ f(E)−, we have x ∈ U . Also f(U) ⊂ V . Hence f is continuous.

(4) ⇒ (3). Let K be closed in Y and let E = f−1(K). Then f(E) ⊂ K, so f(E)− ⊂ K. If
x ∈ E−, f(x) ∈ f(E−) ⊂ f(E)−, so f(x) ∈ K, i.e., x ∈ f−1(K) = E. Thus E = E− is closed

Exercise. We collect several properties of continuous maps. They are easy to prove, but impor-
tant.

(1) The constant function is continuous.
(2) The identity map idX : X → X is continuous.
(3) Composition of continuous maps is continuous.
(4) If f : X → Y is continuous and X0 is a subspace of X, then f |X0

is continuous.
(5) f : X + Y → Z is continuous if and only if f |X and f |Y are continuous.
(6) f : Z → X×Y is continuous if and only if the composition with the projections is continuous.
(7) The quotient map π : X → X/ ∼ is continuous.
(8) If Y ⊂ Z and f : X → Y , then f is continuous as a map from X to Y if and only if it is

continuous as a map from X to Z.

Exercise. The properties stated in (5), (6) and (7) characterize the corresponding topologies.
More precisely, the product and sum topologies are the coarsest making the canonical maps contin-
uous, the quotient is the finest.

Pasting continuous maps. The following is useful to put together continuous maps:
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Proposition. If X = A ∪ B, where A and B are both open (or both closed), and if f : X → Y
is a function such that both f |A and f |B are continuous, then f is continuous.

Proof. Suppose A and B are open. IfH is open in Y , then f−1(H) = (f |A)−1(H)∪(f |B)−1(H),
and each of the later is open in a subspace of X and so open on X.

The following is an extension of this proposition:

Proposition. A family of subsets of a topological space is called locally finite if and only if each
point of the space has a neighborhood meeting only finitely many members of the family.

(1) The union of any sub family from a locally finite family of closed sets id closed.
(2) If Ai is a locally finite collection of closed sets of X whose union is X, a function on X is

continuous if and only if its restriction to each Ai is continuous.
(3) If Bi is a collection of open sets whose union is X, a function on X is continuous if and

only if its restriction to each Bi is continuous.

Homeomorphism. A bijection f : X → Y between topological spaces is called a homeomor-
phism when both maps f and f−1 are continuous. That is, U is open in X if and only if f(U) is
open in Y .

A map f : X → Y is an embedding if it induces a homeomorphism f : X → f(X), where f(X)
has the relative topology. A map which is continuous and injective is not necessarily an embedding:
Let f : [0, 2π)→ R2 be f(t) = (cos t, sin t). It is one-one and continuous, but the image of the open
set [0, 1/2) is not open in f([0, 1)).

Suppose that some topological property (i.e., one that can be formulated in terms of open sets)
holds for X or some subset A ⊂ X. Then, if f is a homeomorphism, the same property must hold for
Y or the subset f(A). Some examples of topological properties of a space X are: X has countably
many open sets, X has a countable dense subset, X is metrizable, X has a countable base. Being a
subset of the reals, having a topology generated by the metric d, are not topological properties.

2. Continuity and convergence

The reader will notice the we do not state the usual characterization of continuity in terms of
sequence as we did in the theory of metric spaces. The reason is that in general the topology of a
space cannot be characterized in terms of limits of sequences. Say that a sequence (xn) = (x1, x2, · · · )
in X converges to x if any neighborhood of x contains all but a finite number of terms of the sequence
(xn). Then we have:

Proposition. Let A be a subset of the topological space X. If there is a sequence of points of A
converging to x, then x ∈ A−. The converse holds if X is metrizable.

Proof. The first part follows because x ∈ A− if every neighborhood of x meets A. The second
part is from metric spaces.

It is easy to show that if f is continuous at x and xn → x, then f(xn) → f(x). Indeed, if V is
a neighborhood of f(x), then there is a neighborhood U of x such that f(U) ⊂ V . So almost all
terms of the sequence f(xn) are in V because almost all xn are in U .

Example. Let Rω be the space of sequences of real numbers. The box topology for Rω has for
open sets those of the form

∏
Un where Un is open in R. Let A be the set of sequences (xn) ∈ Rω all

whose terms xn > 0. In this topology the point 0 (the constant sequence 0) belongs to A−, because
if U =

∏
n(an, bn) is a basic open set containing 0, then (bn/2) ∈ A ∪ U . On the other hand, if

xk = (xn,k) is a sequence of points in A, the neighborhood U of 0 defined by U =
∏

n(−xn,n, xn,n)
contains no element of the sequence.
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Example. Let X be an uncountable set with the cocountable topology. Then xn → x if and only
if xn = x eventually. One implication is obvious. If xn → x but it is false that xn = x eventually,
let F = {xn;xn 6= x}. This is a countable set and so X \ F is a neighborhood of x, but xn is not
eventually in X \ F . On the other hand, X is not discrete: the one point sets {x} are not open
because X \ {x} is uncountable.
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CHAPTER III

PRODUCT AND QUOTIENT SPACES

1. The Product topology

Product space. Let {Xα}α∈A be a family of sets. Their product is the set of choice functions:

∏

α∈A

Xα = {x : A→ ∪α∈AXα; x(α) ∈ Xα for every α ∈ A}

By the Axiom of Choice,
∏

AXα 6= ø if all Xα 6= ø.

The maps

πβ :
∏

A

Xα → Xβ

defined by πβ(x) = x(β) are called the projection maps.

If Yα is a subset of Xα, then
∏

A Yα ⊂
∏

AXα. If Xα = X for all α ∈ A, the we write XA instead
of

∏
AXα.

Product topology. The product topology on
∏

AXα has as basis of open sets those subsets of
the form

∏
A Uα, where

(1) Uα is open in Xα for every α ∈ A, and
(2) Uα = Xα for almost all α.

Note that if
∏
Uα is such that Uα = Xα for α 6= α1, · · · , αn, then

∏
Uα = π−1α1

Uα1
∩ · · · ∩ π−1αn

Uαn

so that the family of sets of the form π−1α Uα, with Uα open in Xα is a subbase for the product
topology.

Exercise. The closure operation for the product topology can be described as follows. A point
x ∈

∏
Xα is in A− if and only if for any finite partition A = A1 ∪ · · · ∪An there exists Ak such that

πα(x) is in the closure of πα(Ak) for every α.

There is another topology on
∏
Xα which may seem more natural than the product topology. It

is called the box topology, and its open sets are those satisfying only condition (1) above. It is finer
than the product topology. They agree if the index set A is finite. We choose the product topology
because it will allow us to prove theorems of the form: Every Xα has property P if and only if

∏
Xα

has property P .

Not every property will do here. For instance, it is false that the product is discrete if all Xα are.

Typeset by AMS-TEX
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Example. Let A = R and Xα = R. The product space RR is the space of maps R → R. A basic
neighborhood of f : R → R is obtained by choosing x1, · · · , xn ∈ R, positive real numbers ε1, · · · , εn,
and setting

U(f, x1, · · · , xn; ε1, · · · , εn) = {g; |g(xi)− f(xi)| < εi, i = 1, · · · , n}

The sets

U(f, F, ε) = {g; |f(x)− g(x)| < ε},

where F is a finite subset of R and ε > 0 define the same topology.

Exercise. The product topology on RR is the topology of pointwise convergence. Compare the
box topology with uniform convergence. Consider also the product space RI, where I is the closed
unit interval.

Proposition. The projection maps πβ :
∏
Xα → Xβ are continuous and open. In general they

are not closed.

Proof. π−1β Uα is a subbasic element.

Proposition. A map f : Y →
∏
Xα is continuous if and only if πα ◦ f is continuous for every

α.

Here is a useful characterization of the product topology.

Proposition. The product topology is the coarsest topology on
∏
Xα making all projection maps

continuous.

Proof. If O is a topology making every map πβ continuous and Uα is open in Xα, then π−1β Uβ
is open in O. Thus all elements of a subbasis of the product topology are in O.

The characterization of the product topology just given suggests the following useful definition

Definition. Let X be a set and fα : X → Xα, α ∈ A be a collection of maps into topological
spaces. The weak topology induced by the family of maps {fα} is the coarsest topology on X for
which all the maps fα are continuous. It has a subbase consisting of the sets of the form f−1α Uα,
where Uα is open in Xα.

It follows that the product topology on
∏
Xα is the weak topology induced by the projection

maps πα.

Exercise. Let X have the weak topology induced by the maps fα : X → Xα. Then g : Y → X
is continuous if and only if all the compositions fα ◦ g are continuous.

Exercise. Let f : X → Xα, α ∈ A, be a family of maps. The evaluation map

e : X →
∏

Xα

is defined by [e(x)](α) = fα(x). Show that if all fα are continuous, then e is continuous.

2. Quotient topology

Dual to the notion of weak topology induced by a family of maps we have the notion of strong
topology induced on Y by a collection of maps gα : Yα → Y . This is the finest topology on Y making
all the gα’s continuous. In the particular case when there is only one map g : X → Y , the resulting
topology on Y is called the quotient topology on Y induced by g.
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Quotient topology. Let g : X → Y from a topological space X onto a set Y . The collection
Og of subsets of Y defined by

Og = {V ⊂ Y ; g−1V is open in X}

is a topology on Y , called the quotient topology induced on Y by g. We also say that Y is a quotient
space of X and g is the quotient map.

In general we can say very little about the quotient topology. Say that a map f : X → Y is open
(closed) if the image of every open (closed) set is open (closed). There is no relation between open
closed and continuous. The projection of the plane onto one of the axis is open and continuous, but
not closed. Let X = {(x, y);xy = 0} as a subset of the plane and Y the real line. The projection
p : (x, y) 7→ y. The image of a small interval around (1, 0) maps to the point 0, which is not open.
So p is not open, but it is closed. The restriction p : X \ {(0, 0)} → Y is neither open nor closed
(the image of the closed set {(x, y); y 6= 0} is not closed).

Proposition. Let f : X → Y be a continuous onto map between topological spaces. If f is open
(or closed) then Y has the quotient topology Of .

Proof. Let OY denote the topology on Y . Then O ⊂ Of , because f is continuous and Of is
the finest topology which makes f continuous. Suppose that f is open. If V is in Of , then f−1V is
open in X, so f(f−1V ) = V (f is onto) is in O.

Proposition. Let f : X → Y be onto and suppose that Y has the quotient topology. Then a
map g : Y → Z is continuous if and only if g ◦ f is continuous.

Proof. If W is open in Z and g ◦ f is continuous, then (g ◦ f)−1W = (f−1 ◦ g−1)W is open in
X, so g−1W is open in Y by definition of the quotient topology.

Decompositions. The quotient topology and open and closed maps have little to do with the
range space. Indeed, we can avoid it as follows. Suppose that f : X → Y is a surjective continuous
map and that Y has the quotient topology. We can reconstruct Y from X and f as follows. Let
D be the collection of all subsets of X of the form f−1(y), y ∈ Y . Let p : X → D be the map
p : x 7→ f−1(f(x)). There is a map h : Y → D which takes y ∈ Y to f−1(y). This map is a bijection
and we have h ◦ f = p and h−1 ◦ p = f . If we give D the quotient topology, then the previous
proposition proves that h and h−1 are continuous (because h ◦ f = p and h−1 ◦ p = f are).

A collection D of disjoint nonempty subsets of X whose union is X is called a decomposition
of X. An equivalent way of describing a partition of X is by means of equivalence relations. The
elements of the partition are the equivalence classes of the relation.

If ∼ is an equivalence relation on X and x ∈ X we denote by [x] the subset of X consisting of all
those y ∈ X such that y ∼ x. Similarly, if A ⊂ X, we denote by

[A] = {x ∈ X; x ∼ y for some y ∈ A} = ∪x∈A[x].

The quotient space is denoted by X/ ∼, with the quotient topology and projection map p : X →
X/ ∼, p(x) = [x].

If B ⊂ X/ ∼, then p−1B = ∪{A;A ⊂ B}. Thus B is open (closed) if and only if ∪{A;A ⊂ B} is
open (closed).

Proposition. Let p : X → X/ ∼ be as above. The following are equivalent.

(1) The map p is open.
(2) If U is open in X, then [U ] is open.
(3) If A is closed in X, then the union of all elements of X/ ∼ contained in A is closed.
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The statements obtained by interchanging “open” and “closed” are also equivalent.

Proof. (1) ⇔ (2) For A ⊂ X, [A] = p−1pA. If p is open and A is open then [A] is open in X
because p is continuous. If p−1pA is open then so is pA by definition of quotient topology, so p is
open.

(2)⇔ (3) The union of all elements of X/ ∼ contained in A is X \ [X \A]. This set is closed for
each closed set A if and only if [X \A] is open for each open set X \A.

3. Cutting and pasting

Let X be a set. On the cartesian product X ×X we have two operations. One is an involution
defined by (x, y)−1 = (y, x), and the other is a partially defined product: (w, z) ◦ (x, y) is defined if
and only if y = w, and in this case it is equal to (x, z).

An equivalence relation ∼ on X can be represented by a subset R of X ×X such that:

(1) R contains the diagonal ∆ = {(x, x);x ∈ X}.
(2) R−1 = R.
(3) R ◦R ⊂ R.

Exercise. Make sure this definition is equivalent to the one you know.

Let [x] denote the equivalence class of a point x in X. If π1, π2 : X ×X → X are the projections
onto the first and second factor, respectively, then you see that [x] = π2(π

−1
1 (x) ∩R.

Let X be a set and ∼ an equivalence relation on it. Then ∼ induces a decomposition of X whose
elements are the equivalence classes of ∼.

Conversely, if D is a collections of nonempty mutually disjoint subsets of X whose union is X, we
can define an equivalence relation whose equivalence classes are precisely the elements of D. Simply
set x ∼ y if and only if there exists D ∈ D such that x, y ∈ D.

Let X be a topological space and A be a nonempty subset of X. Then we can define a decom-
position of X whose elements are: {x} if x /∈ A, and A. Let ∼ be the corresponding equivalence
relation. The space X/ ∼ with the quotient topology is denoted by X/A, and is said to be obtained
from X by collapsing A to a point.

Exercise. Generalize this construction to an arbitrary collection {Ai}i∈I of nonempty disjoint
subsets of X.

Exercise. Let Dn = {x ∈ Rn; |x| ≤ 1}, Sn = {x ∈ Rn+1; |x| = 1}. Then Dn/Sn−1 = Sn.

Note that you could have started with any collection D of mutually disjoint subsets of X, not
necessarily nonempty. Then you can define an equivalence relation as above, but the equivalence
classes do not give you back D, only those nonempty elements of D.

Exercise. What would be X/ø?

Cone over a space. Let X be a space. The cone over X is

CX = X × [0, 1]/X × {1}.

Suspension. For a topological space X, the space

SX = X × [0, 1]/X × 0, X × 1

is called the suspension of X.

Exercise. SX is also called the double cone, because CX/X × 0 ∼= SX.
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Projective spaces. The (real) projective space Pn is the quotient Sn/ ∼, where ∼ is the equiv-
alence relation which identifies diametrically opposite points in Sn. In other words, Pn is the space
of lines in Rn+1. A neighborhood of a line l would consist of those lines with slope close to that of l.

There are also complex projective spaces, defined as follows. In Cn+1 \ 0 define the equivalence
relation

(z0, · · · , zn) ∼ (w0, · · · , wn)⇔ there exists λ ∈ C \ 0 such that λxk = wk, k = 0, · · · , n

Then PnC = (Cn+1 \ 0)/ ∼. You can think of it as the space of complex lines in Cn+1.

Exercise. The space P1C is a familiar one.

Gluing spaces. Let X and Y be topological spaces, A ⊂ X, and ϕ : A→ Y a continuous map.
On the disjoint union X + Y consider the equivalence relation whose equivalence classes are:

(1) {x} for x ∈ X \A.
(2) {y} for y ∈ Y \ ϕA, and
(3) {y} ∪ ϕ−1({y}) for y ∈ ϕ(A).

The quotient space X + Y/ ∼ is denoted by X ∪ϕ Y , and said to be obtained by gluing X to Y
along ϕ.

Exercise. Suppose that A is closed, and let p : X + Y → X ∪ϕ Y be the canonical projection.
Then

(1) p|Y is a homeomorphism and p(Y ) is closed in X ∪ϕ Y .
(2) p|(X \A) is a homeomorphism and p(X \A) is open in X ∪ϕ Y .

Exercise. Let Y = {∗} be a one-point space. Then X ∪ϕ {∗} = X/A, where ϕ : A → Y is the
obvious map.

Exercise. Let ϕ : X → X be a homeomorphism. On X × [0, 1] identify the points (x, 0) and
(ϕ(x), 1). The resulting quotient space is called the suspension of ϕ.

If X = [0, 1] and ϕ is the identity, you obtain a cylinder. But if ϕ(x) = 1 − x then you get a
Mobius band.

If X is a circle and ϕ(x) = −x is the antipodal map, you get a Klein bottle. If ϕ is the identity
you get a torus.

Exercise. Show that you can get the Klein bottle by gluing two copies of a Mobius band along
their boundary.

Exercise. Let A be the middle circle of the moebius band M . What is the space M/A?
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CHAPTER IV

CONNECTED AND PATH-CONNECTED SPACES

1. Connected spaces

Definition. A topological space X is connected if it is not the union of two disjoint nonempty
open subsets. A subset Y of X is connected if Y is connected as a topological space with the induced
topology.

We say that A|B is a partition of X if A and B are nonempty, open, disjoint and X = A ∪ B.
Thus a space is disconnected space if and only if it has a partition.

Examples. The empty set is connected. A trivial topological space is connected. Intervals in
the real line are connected.

Example. The real line is connected. Let A be an open and closed subset of R. Suppose that A
and R \A are nonempty. Let x ∈ R \A. Then one of the sets A ∩ [x,∞), A ∩ (−∞, x] is nonempty.
Suppose B = A ∩ [x,∞) 6= ø. Then B is closed and bounded below, so its has a smallest element,
say b. But B = A ∩ (x,∞) is also open, so there is an interval (b − ε, b + ε) ⊂ B, and this means
that b cannot be the smallest element of B.

Connected subsets of the real line. They are the intervals, possibly degenerate. That open
intervals are connected follows because they are homeomorphic to the line. For the others the the
proof is like the one above.

Example. This example shows that one has to be very careful when dealing with relative
topologies. Let X be the set of integers with the cofinite topology. Then X is connected. Let
Y = {0, 1} ⊂ X. Then Y is not connected.

Here is a useful version of connectedness

Proposition. A space X is connected if an only if every continuous map f : X → 2 is constant.
Here 2 = {0, 1} with the discrete topology.

Proof. If f : X → 2 is continuous and nonconstant, then f−1(0)|f−1(1) is a partition of X. If
A|B is a partition of X, the quotient map f : X → {A,B} is continuous and nonconstant.

It has two easy consequences:

Proposition. Continuous maps take connected sets to connected sets

Proposition. The closure of a connected set is connected.

Proof. Let Y ⊂ X be a connected subset of Y . Let f : Y − → 2 be continuous. Since the
restriction f |Y is continuous, it is constant. Also, by continuity, f(Y −) ⊂ f(Y )−, so f must be
constant.

Typeset by AMS-TEX
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Mean value theorems. The following facts are standard applications of connectedness.

(1) Let X be a connected topological space, f : X → R a continuous function, and a, b points
of X. Then f(X) takes on every value between f(a) and f(b).

(2) Every continuous map f : I → I has a fixed point.
(3) Every real polynomial of odd degree has a root.

Definition. We can rephrase the definition of connected subspace without passing to the relative
topology. Say that two subsets A, B of X are mutually separated in X if:

A ∩B− = A− ∩B = ø.

Proposition. A subspace Y of X is connected if and only if there are no nonempty mutually
separated sets A and B of X such that Y = A ∪B.

Proof. If Y is disconnected by A and B, then

A ∩ ClXB = A ∩ Y ∩ ClXB = A ∩ ClYB = ø.

Conversely, if A and B are mutually separated in X and Y = A ∪B, then

ClYA = Y ∩ ClXA = (A ∪B) ∩ ClXA = (A ∩ ClXA) ∪ (B ∩ ClXA) = A

so A is closed in Y .

Corollary. If A, B are mutually separated subsets of X and Y ⊂ A∪B, then Y ⊂ A or Y ⊂ B.

Proof. A ∩ Y and B ∩ Y are also mutually separated because

(A ∩ Y )− ∩B ∩ Y ⊂ A− ∩B = ø.

Proposition. Let X be a topological space. Then X is connected if it satisfies one of the following
conditions:

(1) X = ∪αXα with each Xα connected and ∩Xα 6= ø.
(2) Every pair x, y in X lies in a connected set Cxy.
(3) X = ∪∞n=1Xn, each Xn is connected and Xn ∩Xn+1 6= ø.

Proof. (1) Let f : X → 2 be a continuous map. Then f |Xα is continuous, hence constant. This
constant must be the same for all α as the Xα have nonempty intersection.

(2) Fix x ∈ X. Then X = ∪y∈XCxy satisfies (1).
(3) Let Yn = X1 ∪ · · · ∪ Xn. Then Y1 is connected and if Yn is connected so is Yn+1. We have

∩nYn = Y1 and X = ∪nYn.

Proposition. A nonempty product space
∏
Xα is connected if and only if each factor Xα is

connected.

Proof. If the product is connected then each factor is because the projections are continuous
and onto.

For the converse it is easier to consider first the case of the product of two connected spaces X
and Y . Let (a, b) be a point in X × Y . Then X × {b} is homeomorphic to X, so it is connected.
The union X × {b} ∪ {a} × Y is also connected as the two pieces have nonempty intersection. Now

X × Y = ∪x∈X(X × {b} ∪ {x} × Y )
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is connected because it is the union of connected sets all having the point (a, b) in common.
The proof also works for any finite product of connected spaces by iteration.
Now consider an arbitrary product

∏
Xα. Let p = (p(α)) be a point in the product. For each

finite subset F of the index set A, let YF denote the subset of points (x(α)) ∈
∏
Xα such that

x(α) = p(α) for α ∈ A \ F . The space YF is homeomorphic to the finite product
∏

α∈F Xα, so it is
connected.

Therefore the union Y = ∪FYF over all finite subsets F ⊂ A is connected because all contain the
point p. The difference with the finite case is that this union is not the whole product space.

We show that it is dense. Let
∏
Uα be a basis element. Then Uα = Xα except for indices α

in a finite subset F of A. Let (x(α)) be a point in U . Then the point y(α) = x(α) if α ∈ F and
y(α) = p(α) if α ∈ A \ F is in U ∩ Y .

Connected components. If x ∈ X, the largest connected subset C(x) of X containing x is
called the connected component of x. The components of points of X form a partition of X into
maximal connected subsets. Indeed, if x 6= y in X, then either C(x) = C(y) or C(x)∩C(y) = ø, for
otherwise C(x) ∪C(y) would be a connected set containing x and Y and larger than C(x) or C(y).

Proposition. The components are closed sets.

Proof. We have seen that the closure of a connected set is connected. Thus if C is a connected
component then C− ⊂ C.

Example. The components need not be open. For instance, the components of the space Q of
rational numbers are the points.

Applications. Connectedness provides a crude method of distinguishing between topological
spaces. For instance, you should be able to show that R and Rn (n > 1) are not homeomorphic, nor
[0,∞) and R, nor [0, 1] and S1, nor S1 and Sn (n > 1).

The typical argument involving connectedness runs as follows. If X is a connected space and
f : X → Y is a locally constant map, then it is locally constant. Usually Y is a ‘yes-no’ space. For
instance, let P be a property that points of X may or may not have, and suppose that we want to
prove that all points of X have property P . Then it is enough to prove the following three assertions:

(1) There is at least one point with property P .
(2) If x has property P , the same applies to all points in a sufficiently small neighborhood.
(3) If x does not have property P then the same is true for points near x.

2. Path-connected spaces

Definition. A space X is path-connected if every two points x, y ∈ X can be joined by a path,
that is a continuous map c : I → X such that c(0) = x and c(1) = y.

Clearly, a path connected space is connected. The converse is not true. The typical example is
the ‘topologist’s sine curve’. This is the subset of the plane given by

V = {(x, sin(1/x));x > 0} ∪ {(0, y);−1 ≤ y ≤ 1}.

This example also shows that path-connectedness of a space does not imply that of its closure. The
subspace {(x, sin(1/x)} is path connected, but not its closure.

The following proposition describes the behavior of path-connectedness under different operations.

Proposition. (1) Continuous images of path-connected spaces are path connected.
(2) Non-disjoint unions of path-connected spaces are path connected.
(3) Products of path-connected spaces are path connected.
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3. Local connectedness and path-connectedness

Definition. A space X is locally connected if each x ∈ X has a neighborhood base consisting of
connected sets.

Similarly, we say that X is locally path-connected if each point has a neighborhood base consisting
of path-wise connected sets.

Examples. The topologist’s sine curve is not locally path-connected. The space X in the plane
consisting of the vertical lines x = 0 and x = 1 together with the segments {(x, 1/n); 0 ≤ x ≤ 1}
for n = ±1,±2, · · · and the unit interval on the x-axis is connected and path-connected, but neither
locally connected nor locally path-connected. The Sorgenfrey line is not locally connected. The
space [0, 1) ∪ (1, 2] is locally connected but not connected.

Note also that local properties are not transfered by continuous maps, because continuous images
of neighborhoods need not be neighborhoods. An example is the Warsaw circle as image of [0,∞).

Proposition. A connected, locally path-connected space X is path-connected.

Proof. Let x ∈ X, and let A be the set of all points of X that can be joined by a path to x.
The set A is non-empty because x ∈ A. If we prove that it is both open and closed, then it must be
all of X.

The set A is open. If y ∈ A and U is a neighborhood of y which is path-connected, then we can
join any point of U to y, and then y to x.

On the other hand, if y ∈ A−, then any path-connected neighborhood U of y meets A, say
z ∈ A ∩ U . We can join z to y and then y to x.

Proposition. A space is locally connected if and only if each component of each open set is open.

Proof. Suppose that X is locally connected and x ∈ C, where C is a component of the open set
U ⊂ X. By local connectedness, there is a connected neighborhood V of x with V ⊂ U . But then
V ⊂ C, so C is open.

Conversely, assume that each component of each open set is open. If U is any open neighborhood
of x in X, then the component of U containing x is an open connected neighborhood of x contained
in U . Thus X is locally connected.

Corollary. The components of a locally connected space are open and closed.

Similar arguments provide proofs of the following:

Proposition. A space is locally path connected if and only if each path component of each open
set is open.

The path-components of a space lie in the components. If the space is locally path-connected, then
the components and the path-components are the same.

Proof. If P is the path component of a point, and C its component, then P ⊂ C because P is
connected. Suppose that the space is locally path-connected but P 6= C. Let Q denote the union of
all path-components different from P which meet C. Each is contained in C, and so C = P ∪ Q.
Since C is connected, we must have Q = ø, because the path-components of a locally path-connected
space are open.

To conclude we mention the standard way in which local properties transfer to product spaces.

Proposition. A nonempty product space is locally path-connected if and only if each factor is
locally connected and almost all of them are connected.

Proof. One way is easy because projection maps are continuous, onto and open. For the other
way, let x ∈

∏
Xα, and let U =

∏
Uα be a neighborhood of x, where each Uα is open in Xα and
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Uα = Xα for almost all α, say α ∈ A \ F . Enlarge F to a finite set so that it contains all indices α
for which Xα is not connected. We can find connected neighborhoods Vα of xα contained in Uα for
α ∈ F . Then

∏
α∈F ×

∏
α/∈F Xα is a connected neighborhood of x contained in U .
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CHAPTER V

CONVERGENCE

1. Hausdorff spaces

Definition. A topological space is called hausdorff if any two different points have disjoint neigh-
borhoods.

Examples. The typical example of hausdorff space is a metric space. Non-hausdorff spaces may
seem rather weird, but their naturally appear in mathematics. The best-known example is the
Zariski topology in algebraic geometry. Let a subset F of Cn be closed if there is a polynomial
P (z1, · · · , zn) whose set of roots is precisely F , i.e., P (x) = 0 if and only if x ∈ F . This is the
cofinite topology if n = 1, but it is different if n > 1.

Exercise. Subspaces, unions, disjoint unions and products of hausdorff spaces are hausdorff.

Example. Quotients of hausdorff spaces are not necessarily hausdorff. Neither continuous im-
ages.

The continuous and open image of a hausdorff space need not be hausdorff. For example the line
with two origins as quotient of R× {0, 1} by the equivalence relation (x, 0) ∼ (x, 1)⇔ x 6= 0.

Exercise. A space X is hausdorff if and only if the diagonal ∆ = {(x, x);x ∈ X} is closed in
X ×X.

Indeed, if x 6= y, the (x, y) /∈ ∆, so there is a basic open set U × V containing (x, y) and disjoint
from ∆. The converse is similar.

Some nice properties of hausdorff spaces are collected in the following propositions

Proposition. In a hausdorff space a sequence can have at most one limit point.

Proposition. (1) If f : X → Y is continuous and Y is hausdorff, then

∆(f) = {(x1, x2); f(x1) = f(x2)}

is a closed subset of X ×X.
(2) If f is an open map of X onto Y and ∆(f) is closed in X ×X, then Y is hausdorff.
(3) If f is a continuous open map of X onto Y , then Y is hausdorff if and only if ∆(f) is closed.

Proof. (1) If (x1, x2) /∈ ∆(f), then there are disjoint neighborhoods U , V of f(x1), f(x2),
respectively. Then f−1U × f−1V is a neighborhood of (x1, x2) which does not meet ∆(f).

(2) Suppose f(x1) and f(x2) are distinct points of Y . Then (x1, x2) is not in ∆(f), so there
are neighborhoods U , V of x1, x2 such that U × V ∩ ∆(f) = ø. Then fU and fV are disjoint
neighborhoods of f(x1), f(x2)

(3) By (1) and (2).
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2. Countability axioms

We have seen that sequences are adequate to describe the topology of a metric space, but they are
not good enough in general. The reason for this is the nature of neighborhood bases of the points
of a space. Here is the abstraction:

First countable. A space X is first-countable if each of its points has a countable neighborhood
base.

Examples. Pseudometric spaces are first-countable. The Sorgenfrey line is first-countable: a
neighborhood base at x consists of [x, q) with q rational. An uncountable space with the cocountable
topology is not. Neither it is the product space RR.

Proposition. Suppose that X is first-countable and A ⊂ X. Then x ∈ A− if and only if there
is a sequence (xn) in A with xn → x.

Proof. The proof is like the one in metric spaces. If Vn, n = 1, 2, · · · are the elements of a
countable neighborhood base at x, take Un = ∩ni=1Vn. These Un form a nested neighborhood base
at x. Since Un∩A 6= ø for each n, we can find xn ∈ Un∩A. This is a sequence in A which converges
to x.

If (xn) is a sequence in A which converges to x, the sequence lies eventually in every neighborhood
of x, so every neighborhood of x meets A.

Example. Let X = RR. Let A be the set of functions f : R → R such that f(x) = 0 or 1, and
f(x) = 0 for only finitely many x.

Let g be the constant function g = 0. A neighborhood Ug of g is determined by a finite set F
and ε > 0, in the form

Ug = {h; |g(x)− h(x)| < ε ifx ∈ F}.

Every neighborhood of g meets A, simply take a function which is 0 on F and 1 everywhere else.
On the other hand, if (fn) is a sequence in A, with fn = 0 on the finite set Fn, any limit of fn

can be 0 at most on the countable set ∪Fn.

3. Filters

Definition. Let X be a set. A filter on X is a collection F of nonempty subsets of X satisfying
the following conditions:

(1) if A, B are in F , so is A ∩B, and
(2) if A ⊂ B and A ∈ F , then B ∈ F

Note. It almost passes unnoticed, but it is very important to realize that for any sets A, B in a
filter A ∩B 6= ø.

A filter base on X is a collection B of nonempty subsets of X which satisfies the following
condition: if A,B ∈ B then there exists C ∈ B such that C ⊂ A ∩ B. We also say that B is a base
for the filter F if each F ∈ F contains some F ′ ∈ B.

Thus a filter is always a filter base, but not conversely. If B is a filterbase, then the collection of
all subsets of X which contain an element of B is a filter which has B as a base. We call it the filter
generated by B.

Examples. If A ⊂ X is a nonempty subset, then {F ⊂ X;A ⊂ F} is a filter on X. A filter base
is {A}.

If X is a topological space and x ∈ X, then Nx, the collection of all neighborhoods of x, is a filter
on X. A neighborhood base at x is a base for Nx.

The collection of cofinite subsets of N forms a filter on N. The sets Sn = {n, n + 1, · · · } form a
base for this filter.

Let Y ⊂ X, a ∈ Y −. Then {Y ∩ U ;U ∈ Na} is a filter.
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Exercise. On a hausdorff space a filter converges at most to a point.

Convergence of filters. A filter F on a space X converges to a point x if Nx ⊂ F . We write
this as F → x.

We say that x ∈ X is a cluster point of the filter F if each neighborhood of x and each element
of F have nonempty intersection.

These definitions extend in the obvious way to filterbases: a filterbase B converges to x if the
filter generated by B converges to x.

Exercise. Let A be a nonempty subset of the space X. The cluster points of the filter F = {F ⊂
X;A ⊂ F} contain each point of A−. Add conditions to A or X so that F converges to some point.

Let F be the filter on R generated by the filterbase {(0, t); t > 0}. Then F → 0, although not
every element of F contains 0.

If (xn) is a sequence in X, the collection of subsets of X where the sequence eventually lies is a
filter. This filter converges to x if and only if xn → x.

The relation between cluster point and limit point is the following:

Proposition. A filter F has x as a cluster point if and only if there is a filter G ⊃ F such that
G → x.

Proof. If F has x as cluster point, then B = {U ∩F ;U ∈ Nx} is a filter base for a filter G which
contains F and converges to x.

If F ⊂ G → x, then each F ∈ F and each neighborhod U of x belong to G, so they have nonempty
intersection. Thus F clusters at x.

The next result shows that filter convergence is adequate to describe the topology.

Proposition. If A ⊂ X, then x ∈ A− if and only if there is a filter F such that A ∈ F and
F → x.

Proof. If x ∈ A−, then {U ∩ A;U ∈ Nx} is a filterbase. The filter it generates contains A and
converges to x.

If F → x and A ∈ F , then x is a cluster point of F , thus x ∈ A−.

Filters and continuous maps. If f : X → Y is continuous and F is a filter on X, we denote
by f(F) the filter on Y generated by the sets f(F ), F ∈ F .

Proposition. A map f : X → Y is continuous at x ∈ X if whenever a filter F → x, then
f(F)→ f(x).

Proof. Suppose f is continuous at x and F → x. If V is a neighborhood of f(x). Then there
is a neighborhood U of x with f(U) ⊂ V . But then V ∈ f(F) because U ∈ F .

For the converse, take F = Nx. Then F → x, so f(F)→ f(x). Each neighborhood V of f(x) is
in f(F), so there is a neighborhood U of x such that f(U) ⊂ V .

Proposition. (1) If f, g : X → Y are continuous and Y is hausdorff, then {x; f(x) = g(x)} is
closed in X.

(2) If f , g agree on a dense subset of X, then f = g.

4. Ultrafilters

Definition. A filter which is not properly contained in another filter is called an ultrafilter.

Examples. Let A be a nonempty subset of X. Is the filter F = {F ⊂ X;A ⊂ X} an ultrafilter?
Let N be the positive integers. Then F = {U ⊂ N;N \ U finite } is a filter, but not an ultrafilter.

Can you construct an ultrafilter containing F?



4. ULTRAFILTERS 23

As a consequence of Zorn’s lemma we have:

Proposition. Every filter is contained in a unique ultrafilter.

Here is a remarkable property of ultrafilters

Proposition. Let F be an ultrafilter on X and A be a subset of X. Then exactly one of the sets
A and X \A belongs to F .

Proof. Both sets cannot be in F as their intersection is empty. Furthermore, one of the two
sets has to intersect all the sets in the filter, otherwise by taking one filter set outside A and one
outside X \ A we contradict the definition of filter as their intersection would be empty. Suppose
that A is the set that meets all elements of F . Then the collection of all subsets G of X such that
G contains some set of the form F ∩A, with F ∈ F , is a filter which contains both F and {A}. By
maximality, A must be in F .

Exercise. If f : X → Y is continuous and onto, and F is an ultrafilter on X, then f(F) is an
ultrafilter.
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CHAPTER VI

COMPACT SPACES

1. Compact spaces

Definition. A cover of a space X is a collection U of subsets of X whose union is X. It is called
an open cover if every element of U is an open subset of X. A subcover of a cover U is a subfamily
V ⊂ U which still covers X.

Compact space. A space X is said to be compact if every open cover admits a finite subcover.
A subset Y of X is compact if it is a compact space with the induced topology.

Exercise. To check whether a space is compact it is enough to consider covers consisting of
elements of a base.

Alexander subbase theorem. While the last exercise is straightforward, one may wonder if it
is possible to replace base by subbase. It can be done, but it is not as easy. This result is referred
to as Alexander’s subbase theorem.

Proposition. Let S be a subbase for the topology of a space X such that every cover of X by
elements of S has a finite subcover. Then X is compact.

Proof. Let L be the collection of all open covers of X which have no finite subcover. If X is
not compact, then L is nonempty. Order L by containment. If C is a chain in L, then {U ⊂ X;U ∈
U ,U ∈ C} is an upper bound for C which belongs to L. Thus we can apply Zorn’s lemma to L to
obtain a maximal element M.

The key is the following property that M has: if U ∈ M and V1, · · ·Vn are open subsets of X
such that V1 ∩ · · · ∩Vn ⊂ U , then Vk ∈M for some k. Indeed, if this was not the case, then for each
k there would be subsets Uk1

, · · · , Uknk
in M such that together with Vk cover X, for otherwise M

would not be maximal. But this implies that

X ⊂ (∩nk=1Vk) ∪ (∪k,lUkl
) ⊂ U ∪ (∪k,lUkl

)

so that M admits a finite subcover, contradicting the fact that M∈ L.
Let U ∈ M, and let x ∈ U . Since S is a subbasis, x ∈ B1 ∩ · · · ∩ Bn ⊂ U for some elements

Bi ∈ S. By the key property ofM, some Bk ∈M. This implies that S∩M is an open cover of X.
But this is a contradiction: on one handM admits no finite subcovers, on the other, every cover by
elements of S does.

Example. To show the usefulness of this result we prove that the interval [0, 1] is compact. Its
topology has a subbase consisting of the intervals [0, a) and (b, 1], with a > 0, b < 1. Any cover of
[0, 1] by elements of this subbase has a subcover consisting of exactly two elements.

Finite intersection property. An useful reformulation of compactness is the following. Say
that a collection E of subsets of X has the finite intersection property if each finite collection of
elements of E has nonempty intersection.

Typeset by AMS-TEX
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Proposition. A space X is compact if and only if every family of closed subsets of X with finite
intersection property has nonempty intersection.

Proof. If E = {Fa} has the finite intersection property, but ∩aFa = ø, then {X \ Fa}a is an
open cover of X without finite subcover.

Compactness and filters. We know that a metric space is compact if and only if every sequence
has a convergent subsequence. In general spaces this can be formulated in terms of convergence of
filters.

Proposition. A topological space X is compact if and only if every ultrafilter on X converges.

Proof. Suppose that X is compact. Suppose that there is an ultrafilter F which converges to
no point of X. Then for every x ∈ X we can find an open neighborhood Ux of x such that Ux /∈ F ,
for if all open neighborhoods of x belong to F , so would all neighborhoods, and the filter would
converge to x. The cover {Ux}x∈X of X has a finite subcover {U1, · · · , Un}. Since the sets Uk do
not belong to F , their complements must. But the intersection of the complements is empty, which
contradicts one of the filter axioms.

For the reverse implication, suppose that there is an open cover {Ua}a∈A of X which has no finite
subcover. That is, for every finite subset I ⊂ A the set X \ ∪a∈IUa is nonempty. Let F be the
ultrafilter containing these sets. By hypothesis, the filter F converges to a point x of X. Hence x
belongs to some Ux of the cover. Thus Ux ∈ F by definition of convergence. On the other hand
X \ Ux ∈ F by the construction of F . This cannot happen in an ultrafilter.

Proposition. A space is compact if and only if each filter on it has a cluster point.

Proof. If F is a filter on X, then {F−;F ∈ F} has the finite intersection property. If X is
compact, there exists x ∈ ∩FF−, which means that x is a cluster point of F .

Conversely, suppose that every filter on X has a cluster point. Let F be an ultrafilter. That F
has a cluster point x means that there is a filter G ⊃ F , such that G → x. But F is an ultrafilter,
so G = F .

Closed and compact subsets. It is here that we see some differences with the behaviour of
compact subsets of a metric space.

Proposition. (1) If X is compact and A ⊂ X is closed, then A is compact.
(2) If A is a compact subset of a hausdorff space X, then A is closed in X.

Proof. (1) Let {Va} be an open cover of A. Then each Va = Ua ∩A, with Ua open in X. Thus
{X \ A} ∪ {Ua} is an open cover of X. A finite subcover of it provides us with a finite subcover of
the initial cover of A.

(2) We proof that X \A is open. Let p ∈ X \A. For each x ∈ A we can find disjoint neighborhoods
Ux of p and Vx of x. Note that Ux does not meet A ∩ Vx (although it could meet A). Since A is
compact, the cover {Vx ∩ A}x∈A has a finite subcover. That is, there exist x1, · · · , xn such that
(Vx1

∩A) ∪ · · · ∪ (Vxn
∩A) = A. Hence Ux1

∩ · · · ∩ Uxn
is a neighborhood of p which does not meet

A.

Example. To see how (2) fails if X is not assumed to be hausdorff, take X to be the quotient
of R × {0, 1} ({0, 1} dircrete) by the equivalence relation (x, 0) ∼ (x, 1) if x 6= 0. The image of
[−1, 1]× {0} in the quotient space is compact, but not closed.

Exercise. The intersection of two compact subsets of X need not be compact.

Exercise. The union of finitely many compact sets is compact. The intersection of closed com-
pact sets is closed and compact. (Proof: one of them is compact, and the intersection is then closed
in a compact set).



26 TOPOLOGY

Exercise. Let C be a nonempty family of nonempty compact connected subsets of a hausdorff
space. Suppose that whenever C,C ′ ∈ C, there exists C ′′ ∈ C such that C ′′ ⊂ C ∩ C ′. Then the
intersection of all sets in C is nonempty, compact, and connected.

Separation properties. Compact hausdorff spaces enjoy certain separation properties. The
technique of proof is essentially the same as in the proposition above.

Proposition. In a compact hausdorff space X any pair of disjoint closed sets can be separated
by disjoint open sets.

Proof. Suppose that H and K are closed in X. For each x ∈ H and each y ∈ K we can
find disjoint open sets Ux and Vy which are neighborhoods of x and y, respectively. The collection
{Vy}y∈K is an open cover of the compact set K, so finitely many of them are enough to do it, say
K ⊂ V1 ∪ · · · ∪ Vn = V ′

x. Then U ′
x = U1 ∩ · · · ∩ Un is an open neighborhood of x disjoint from V ′

x.
Repeating the same process, but considering the cover {U ′

x} of H instead, we obtain two disjoint
open sets separating H and K.

Corollary. If U is open in X and x ∈ U , then there exists an open set V such that x ∈ V ⊂
V − ⊂ U .

Proposition. Let A × B be a compact subset contained in an open set W of the product space
X × Y . Then there are open sets U in X and V in Y such that A×B ⊂ U × V ⊂W .

Proof. It consists in applying twice the technique of the previous proposition. Let x ∈ A. We
cover the compact set {x}×B by base elements U ×V ⊂W . Then there are finitely many of them,
say U1×V1, · · · , Un×Vn, such that {x}×B ⊂ ∪ni=1Ui×Vi ⊂W . Let Ux = ∩ni=1Ui and Vx = ∪ni=1Vi.
Then {x} ×B ⊂ Ux × Vx ⊂W .

The sets {Ux×Vx;x ∈ A} form an open cover of the compact set A×B. Let U1×V1, · · · , Un×Vn
form a finite subcover. Finally, take U = ∪ni=1Ui and V = ∩ni=1Vi. Then A×B ⊂ U × V ⊂W .

Continuity and compactness. The behavior is as expected

Proposition. The continuous image of a compact space is compact.

We also have the following important result.

Proposition. Let f : X → Y be a continuous bijection. Suppose that X is compact and Y is
hausdorff. Then f is a homeomorphisms.

Proof. If A is a closed subset of X, the it is compact. Its image fA is also compact, and since
Y is hausdorff, it is closed in Y .

Exercise. If f : I → X is continuous, onto and open, and X is a Hausdorff space with more than
two points, then X and I are homeomorphic.

Exercise. Suppose that X is hausdorff and Y is compact and hausdorff. Then f : X → Y is
continuous if and only if {(x, f(x));x ∈ X} is closed in X × Y .

2. The Tichonov theorem

This is one of the great theorems of point set topology.

Proposition. A nonempty product
∏

a
Xa is compact if and only if each factor Xa is compact.

Proof. If the product space is compact, so is each factor because the projections are continuous
and onto.

Conversely, let F be an ultrafilter on the product space. Then πaF is an ultrafilter on the space
Xa, thus it converges to a point xa ∈ Xa. Let x = (xa) ∈

∏
a
Xa. To show that F → x, it is enough
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to show that every subbase element π−1a Ua, Ua open in Xa, is in F . But πaF → xa, so Ua ∈ πaF ,
and by the 0-1 law for ultrafilters it must be that π−1a Ua ∈ F .

Since Tichonov’s theorem is so important, we may as well prove it twice. This second proof uses
Alexander’s subbase theorem.

Second proof. We consider the subbase S = {π−1a Ua;Uaopen inXa} of the product space. Let
U be an open cover of

∏
a
Xa by elements of S. For each index a, let Ua be the family of those open

subsets U of Xa such that π−1a U ∈ U . It now follows that there exists an index β such that Uβ is a
cover of Xβ . Indeed, if Ua covers Xa for no a, then we could pick a point xa ∈ Xa not belonging to
any set in Ua, and this would imply that the point (xa) ∈

∏
a
Xa is not covered by U .

Hence Uβ is a cover of Xβ , for some β. It has a finite subcover U1, · · · , Un, and π
−1
β U1, · · · , π

−1
β Un

is a finite subcover of U .

Exercise. Tichonov’s theorem does not hold if the product space is given the box topology.

Axiom of choice. In proving Tichonov’s theorem one invokes the axiom of choice several times.
An instructive exercise is to identify those places where the argument requires its use, and replace
it by other topological hypothesis. For instance, can you prove that a product of finitely many
compact hausdorff spaces is compact without using the axiom of choice?

It may perhaps be surprising that not only one needs the axiom of choice to prove the general
version of Tichonov’s theorem, but that one can deduce the axiom of choice from it. This is a
theorem of Kelley.

Proposition. Tichonov’s theorem implies the axiom of choice.

Proof. Let {Xα} be a collection of nonempty sets. Let ω be an object not in ∪Xα. Let
Yα = Xα ∪ {ω}, and give it a topology which is cofinite on Xα and makes ω isolated. In

∏
Yα, let

Fα = π−1(Xα). This is a collection of closed sets with the finite intersection property, for if I is
a finite subset of A, xα ∈ Xα a choice for α ∈ I, xα = ω for α /∈ I, give a point of ∩IFα. Thus
∩Fα 6= ø.

3. Local compactness

Definition. A space is said to be locally compact if each of its points has a neighborhood base
formed by compact sets.

Examples. With the product topology, Rn is locally compact, but Rω is not. This last one is
locally compact with the box topology.

Hilbert space H = {(xn);xn ∈ R ,
∑

n x
2
n <∞} with the metric

d((xn), (yn)) =
∑

n

(xn − yn)
2

is not locally compact. It is easy to see that a closed ball in hilbert space is not compact, using the
sequential compactness version for metric spaces.

Exercise. The spaces Q and R \Q are not locally compact.

Exercise. The Sorgenfrey line and the Moore plane are not locally compact.

Sometimes it is enough to find a compact neighborhood of a point to know there exists a compact
neighborhood basis.
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Proposition. A hausdorff space is locally compact if and only if each point has a compact neigh-
borhood.

Proof. Let K be a compact neighborhood of x. Let U be any neighborhood of x. Then
V = (K ∩ U)◦ is an open neighborhood of x. The space V − is compact and hausdorff and V is a
neighborhood of x in V −. Therefore, by the corollary above, we can find an open neighborhood W
of x in V − such that ClV −W ⊂ V . Since V is open, W is open in X. The set ClV −W is closed in
V −, hence compact. Thus we found a compact neighborhood of x in X contained in U .

Corollary. A compact hausdorff space is locally compact.

Example. Let X = Q ∪ {∞}. A subset U of X is open if either U is an open subset of Q or
X \ U is a compact subset of Q. Then X is compact but not locally compact.

The following propositions describe the behaviour of local compactness under some standard
constructions.

Proposition. Continuous open onto maps preserve local compactness.

Proof. Let f : X → Y be continuous, open and onto. Let y ∈ Y , and V a neighborhood of y.
By continuity and local compactness, there exists a compact neighborhood K of x ∈ f−1(y) such
that fK ⊂ V . Since x ∈ K◦ and f is open, f(K◦) is a neighborhood of y, and so fK is a compact
one.

Proposition. A nonempty product
∏
Xα is locally compact if and only if each factor is locally

compact and almost all of them are compact.

Proposition. In a locally compact hausdorff space, the intersection of an open set with a closed
set is locally compact. A locally compact subset of a hausdorff space is he intersection of a closed set
and an open one. A dense subset of a compact hausdorff space is locally compact if and only if it is
open.

Proof. Suppose X is locally compact and hausdorff. If U is open in X and x ∈ U , then there is
a compact neighborhood K of x contained in U . Thus U is also locally compact. If F is closed in X
and x ∈ F , then x has a compact neighborhood K in X. But K ∩ F is a compact neighborhood of
x in F , so it is locally compact. Since the intersection of two locally compact spaces in X is locally
compact, the intersection of a closed and a open in X is locally compact.

4. Compactification

Definition. A compactification of a space X is a pair (Y, f), where Y is a compact space and
f : X → Y is an embedding onto a dense subset.

Examples. S1 and [0, 1] are compactifications of (0, 1).
If X is a subset of a compact space Y , then (X−, i) is a compactification of X.

One-point compactification. Also called Alexander compactification. Let X be a space, X∗ =
X ∪ {∞}, where ∞ is a point not in X. A subset U of X∗ is open if either: (1) U ⊂ X is open in
the topology of X, or (2) X∗ \ U is a closed compact subset of X.

Exercise. If X is compact, ∞ is an isolated point of X∗.

Proposition. X∗ is a compact topological space, and X is a subspace of X∗. If X is not compact,
then X is dense in X∗.

Proof. Let U , V be open subsets of X∗. If U , V are open in X, so is U ∩V . If H = X∗ \U and
K = X \ V are closed compact subsets of X, then X∗ \ (U ∩ V ) = H ∪K is closed and compact. If
U is open in X and K = X∗ \ V is closed and compact, then U ∩ V = U ∩ (X \K) is open in X.
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Let Uα, α ∈ A be a family of open subsets of X∗. If ∞ /∈ Uα, the U = ∪Uα is open in X.
Otherwise, ∞ ∈ U0, and X∗ \U = X \U = ∩α(X \Uα) is closed and compact, as is a closed subset
of the compact space X \ U0.

Next, X is a subspace of X∗. Indeed, if U is open in X, then U = X∗ ∩ U is also open in Xast.
If U is open in X∗ and ∞ ∈ U , then U ∩X is the complement in X of a closed set.

That X∗ is compact is easy. If Uα is an open cover of X∗, then one U0 contains∞, and the other
members of the covering form a cover of the compact complement of U0.

Finally, X is dense in X∗ if X is not compact. Indeed, if U is a neighborhood of ∞, then X∗ \U
is a compact subset of X, hence not equal to X. Thus U ∩X 6= ø.

It may happen that the space X∗ does not enjoy some of the properties that X has. Being
hausdorff is one of them.

Example. Let Q∗ be the one-point compactification of the rational numbers Q. Although Q is
hausdorff, Q∗ is not because Q is not locally compact. However Q∗ is T1. Two other properties of
Q∗: it is connected, every sequence has a convergent subsequence.

Proposition. The one-point compactification X∗ of a locally compact hausdorff space X is a
compact hausdorff space.

Proof. We need to show that X∗ is hausdorff. Let x, y be two distinct points of X∗. If both lie
in X, then they can be separated because X is hausdorff. The other possibility is that x ∈ X and
y = ∞. By the local compactness of X, the point X has a compact neighborhood K, and this is
disjoint of the neighborhood X∗ \K of ∞.

Exercise. Let X be a compact hausorff space and Y ⊂ X. Then (X \ Y )∗ and the quotient
space X/Y are homeomorphic.

Components of a compact hausdorff space

Definition. A subset A of a space X is quasiconnected in X if whenever X = U ∪ V , the union
of two disjoint open sets, then either A ⊂ U or A ⊂ V .

Exercise. Connected subsets are quasiconnected, but not conversely. For instance, let X =
R ∪ S be the subset of the plane union of the sets R = {(x, 1/n);−1 ≤ x ≤ 1, n = 1, 2, · · · } and
S = {(x, 0);−1 ≤ x ≤ 1}. The subset A = {(x, 0);x 6= 0} of X is quasiconnected in X but not
connected.

Quasicomponents. The quasicomponent of a point x of a space X is the largest quasiconnected
subset of X containing X. Thus a quasicomponent is the intersection of all subsets containing it
which are both open and closed.

The quasicomponent of a point contains the component, but the example above shows they need
not be equal. The set A is a quasicomponent of R ∪A, but not a component.

Proposition. Let {Ai}i∈I be a collection of compact connected hausdorff subsets of a compact
hausdorff space X, which is linearly ordered by inclusion. The ∩IAi is compact and connected.

Proof. The set A = ∩IAi is compact because it is a closed subset of the compact hausdorff
space X. In fact, it is not necessary to assume X to be compact and hausdorff, as it can be replaced
by one of the Ai’s. Suppose that A is not connected, so that A = H ∪K, the union of two disjoint
nonempty closed subsets of A. Then H and K are also closed in X, and so they can be separated
by disjoint open sets U and V . Since each Ai is connected, no Ai can be contained in U ∪V (if both
are nonempty). Because the Ai’s are linearly ordered by inclusion, the family of nonempty closed
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sets {Ai \ (U ∪ V )} has the finite intersection property. Therefore, ∩i(Ai \ (U ∪ V )) 6= ø. On the
other hand

∩i(Ai \ (U ∪ V )) = (∩iAi) \ (U ∪ V ) = ø,

a contradiction.

Exactly the same reasoning proves the following

Proposition. Let {Ai}i∈I be a collection of compact connected hausdorff subsets of a compact
hausdorff space X, which is linearly ordered by inclusion. The ∩IAi is compact and quasiconnected
in X.

Proposition. Let X be compact and hausdorff. Each component of X is the intersection of all
open and closed sets containing it.

Proof. Let Q be the quasi-component of a point x ∈ X. We know Q = ∩Fα, where the Fα
are the open and closed sets containing x. If Q is not connected, then Q = H ∪ K where H and
K are disjoint nonempty closed subsets of Q, and x ∈ H. We can find disjoint open sets U ⊃ H
and V ⊃ K. The space X \ (U ∪ V ) is covered by the open and closed sets X \ Fα, and by
compactness, finitely many of them are enough to cover it. Thus we have F1, · · · , Fn such that
Q ⊂ F1 ∩ · · · ∩ Fn = F ⊂ U ∪ V . The set F is open and closed, so F ∩ U is open and contains x,
and also

(F ∩ U)− ⊂ F ∩ U− = F ∩ (U ∪ V ) ∩ U− = F ∩ U

so that F ∩ U is also closed.

Totally disconnected. A space is totally disconnected if its components are the points.

Examples. The rational Q, the irrational R \ Q, and Cantor’s ternary set G are examples of
totally disconnected spaces.

Knaster-Kuratowski space. This is a connected space K which has a point p such that K\{p}
is totally disconnected. Recall that the Cantor set G is obtained by removing from the unit interval
I a countable collection of open intervals. Let E ⊂ G be the set of endpoints of those intervals, and
F = G \ E. Let p ∈ R2 be the point (1/2, 1/2). For each x ∈ G, denote by Sx the straight line
segment joining x and p. Let

Tx = {(x1, x2) ∈ Sx;x2 rational } if x ∈ E,

Tx = {(x1, x2) ∈ Sx;x2 irrational } if x ∈ F.

Then the subspace K = ∪x∈GTx of R2 is connected but K \ {p} is totally disconnected.

Zero-dimensional spaces. A space X is zero-dimensional if each of its points has a neighbor-
hood base consisting of sets which are both open and closed.

Exercise. X is zero-dimensional if and only if for each x ∈ X and a closed set F not containing
x there is an open-closed set containing x and disjoint from F .

Exercise. A zero-dimensional T1-space is totally disconnected.

Exercise. A compact hausdorff space is totally disconnected if and only if each pair of distinct
points can be separated by disjoint open-closed sets.

Exercise. A locally compact, totally disconnected hausdorff space is zero-dimensional.

Exercise. Let K, p be the Knaster-Kuratowski space and point described above. Then K \ {p}
is totally disconnected but not one dimensional.
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Extremely disconnected spaces. A space is extremely disconnected if the closure of every
open set in X is open.

Examples. Discrete spaces, cofinite spaces and cocountable spaces are extremely disconnected.
A metric space is extremely disconnected if and only if it is discrete.

Exercise. X is extremely disconnected if and only if every two disjoint open subsets of X have
disjoint closures.

Exercise. Dense subspaces and open subspaces of an extremely disconnected space are extremely
disconnected. However, closed subspaces and products need not be.

Exercise. The only convergent sequences in an extremely disconnected space are those which
are eventually constant.
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CHAPTER VII

THE URYSOHN LEMMA

1. Regular and normal spaces

Axiom T3. A topological space X is T3 if whenever F is a closed subset of X and x /∈ F , then
there are disjoint open sets U 3 x and V ⊃ F . In short, a closed set and a point not belonging to it
can be separated by disjoint open sets.

Although it may look as if T3 is stronger than hausdorff, that is not the case: a trivial space is
T3 but not hausdorff if it has more than one point.

Proposition. The following are equivalent for a space X:

(1) X is T3
(2) If U is open in X and x ∈ U , there exists an open set V such that x ∈ V − ⊂ U .
(3) each point has a neighborhood base consisting of closed sets.

Proof. (1)⇒ (2) X \ U is a closed set not containing X.
(3) ⇒ (1) If F is a closed set not containing x, then X \ F is a neighborhood of x, so there is a

closed neighborhood A of x with A ⊂ X \F . Then A◦ and X \A are open sets separating x and F .

Regular spaces. Spaces which are T1 (points are closed) and T3 are called regular.
Regular spaces are hausdorff, but not conversely: Let X be the real line where every nonzero

point has the standard neighborhood base. The neighborhoods of 0 being of the form U \ F , where
U is a standard neighborhood and F = {1/n;n = 1, 2, · · · }. This is a hausdorff space, but F is a
closed set that cannot be separated from 0.

With the help of compactness it is true:

Proposition. Compact hausdorff spaces are regular.

Axiom T4. A space X is T4 if for each pair of disjoint closed subsets A, B of X there are disjoint
open sets U ⊃ A and V ⊃ B.

Normal spaces. A space which is T1 and T4 is called normal.
There is no relation between axioms T3 and T4. Let X be the real line with the topology which

has the intervals (a,∞) (a ∈ R), as open sets. Then X is T4 because any two nonempty closed sets
intersect. On the other hand, the point 1 cannot be separated from the closed set (−∞, 0].

On the other hand, every normal space is regular.

Exercise. Find regular but not normal spaces.

Proposition. Let X be a space in which every open cover has a countable subcover. Then if X
is T3 it is also T4.

Proof. Let A and B be disjoint closed subsets of X. For each x ∈ A and each y ∈ B we can
find open neighborhoods Ux of x and Vy of y such that U−

x ∩B = V −
y ∩A = ø.

Typeset by AMS-TEX
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The family of sets {Ux, Vy, X \ (A∪B);x ∈ A, y ∈ B} is an open cover of X, and by hypothesis it
has a countable subcover. Thus we obtain countable families {Un}n covering A and {Vn}n covering
B.

Let U ′
n = Un \ (V1 ∪ · · ·Vn)− and V ′

n = Vn \ (U1 ∪ · · · ∪Un)−. Then {U ′
n} is still an open covering

of A, for if x ∈ A,then x ∈ Un for some n, and x belongs to no V −
k . Similarly, {V ′

n} is an open
covering of B.

Furthermore, since U ′
n ∩ Vm = ø if m ≤ n, we have U ′

n ∩ V
′
m = ø if m ≤ n. By reversing the

roles of U ’s and V ’s, we obtain U ′
n ∩ V

′
m = ø for all n,m. Thus ∪nU

′
n and ∪mV

′
m are disjoint open

neighborhoods of A and B respectively.

We note the following condition implying the hypothesis of the proposition.

Proposition. If the space X has a countable base B, then every open cover of X admits a
countable subcover.

Proof. Let U be an open cover of X. For each B ∈ B, let UB ∈ U be such that B ⊂ U (if it
exists). The subfamily {UB ;B ∈ B} is countable and still covers X, as every open set is a union of
elements of B,

Second countable and lindelöf spaces. A space which has a countable base for its topology
is said to be second countable. A space in which every open cover admits a countable subcover is
called a lindelöf space.

Axiom T3 1

2

. A space X satisfies the axion T3 1

2

if whenever F is a closed subset of X and x /∈ F ,

there exists a continuous function f : X → I such that f(x) = 1 and f |F = 0. Sometimes it may be
more convenient to use the following equivalent definition: given x ∈ X and a neighborhood U of x,
there is a continuous function F : X → I such that f(x) = 0 and f(X \ U) = 1.

Tichonov or Completely regular spaces. A space is completely regular or Tichonov if it is
T1 and T3 1

2

.

Tichonov spaces are regular, but not conversely. In fact, there are T3 spaces on which every
continuous function is constant. However these examples are not easy to describe.

Example. The Moore plane M is tichonov. Let x ∈ M and U a base neighborhood of x. That
is, U is an open disc centered at x if x is in the open upper half plane, or U = V ∪ {x}, V a disc
tangent at x in the other case. Define f to be 0 at x and 1 on X \ U , and then extending linearly
along the line segments joining x to the points on the boundary of U .

The space M is not normal, but the proof of this fact will be given after the Urysohn lemma.

Example. Every pseudometric space is completely regular. Indeed, f(y) = d(y, F ) is zero on F
and 6= 0 on x.

2. Urhyson and Tietze extension lemmas

We will use the following version of regularity of a space X. Suppose that A, B are subsets of X
with A− ⊂ B◦. Then there is C ⊂ X such that A− ⊂ C◦ ⊂ C− ⊂ B◦.

Urysohn’s lemma is one of the great theorems of topology. Not only it is simple to state, but also
its proof if beautiful. Furthermore, its consequences and applications are numerous. Here it is:

Proposition. Suppose that X is T4. Then for every pair of disjoint closed (nonempty) subsets
there exists a continuous function f : X → I which takes the value 0 on one set and the value 1 on
the other.

Proof. Let A, B denote disjoint closed subsets of X. The idea to construct the continuous
function f : X → I with f |A = 1 and f |B = 0 is to consider a limit of step functions that increase
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from A to B. A family A = (A0, A1, · · · , An) of subsets of X such that

A = A0 ⊂ A1 ⊂ · · · ⊂ An = X \B

and A−
s−1 ⊂ A◦

s for all s will be called a chain from A to B. We call A−1 = ø and An+1 = X
Given a chain A, we consider the step function fA : X → I which takes the value s/n on

As \ As−1, s = 0, · · · , n, and the value 1 outside An. The open sets A◦
s+1 \ A

−
s−1, s = 0, · · · , n, are

called the step domains of fA. They form an open covering of the whole space because A−
s \A

−
s−1 ⊂

A◦
s+1 \ A

−
s−1. Also note that for each x, y in the same step domain of A, the function fA satisfies

|fA(x) ≤ −fA(y)| ≤ 1/n.
The last concept we need is that of refinement of a chain (A0, · · · , An). By this we mean a chain

of the form (A0, A
′
0, A1, · · · , A

′
n−1, An).

Start with the chain A0 = (A,X \B), and let An+1 be a refinement of An for each n. Let fn be
the step function of An. Then the sequence of functions (fn) is pointwise monotonically decreasing
and bounded below by 0. Thus it is pointwise convergent and the limit function f : X → I satisfies
f |A = 0 and f |B = 1. It remains to show that f is continuous.

Since |f(x) − fn(x)| ≤ 1/2n, and fn does not fluctuate more than 1/2n on each step domain of
An, it follows that f does not fluctuate more than 2/2n on each step domain of An. This implies
continuity: given x ∈ X and ε > 0, choose n such that 2/2n < ε, and the whole step domain of An

containing x, which is an open neighborhood of x, will be mapped into (f(x)− ε, f(x) + ε).

The Urysohn lemma has many important consequences and applications. The first one that is
usually mentioned is Tietze extension lemma, although it was discovered earlier.

Proposition. Let X satisfy the hypothesis of Urysohn lemma. Then every continuous function
f : A→ [a, b] defined on a closed set can be extended to a continuous function F : X → [a, b].

Proof. To begin with, we observe that if φ : A → R is a function such that |φ(x)| ≤ c for all
x ∈ A, then there exists a continuous function Φ : X → R such that |Φ(x)| ≤ 1

3c for all x ∈ X and

|φ(x)− Φ(x)| ≤ 2
3c for all x ∈ A. We call such a function Φ a 1

3 -approximate extension of φ.

Indeed, since the sets H = φ−1[−c,− 13c] and K = φ−1[ 13c, c] are disjoint and closed in A, they
are closed in X, and by the Urysohn lemma there exists a continuous function g : X → I such that
g|H = 0 and g|K = 1. Then we take Φ(x) = 2

3c(g(x)−
1
2 ).

We now construct the extension F of f . We may assume that [a, b] = [−1, 1]. We first choose
a 1
3 -approximate extension F1 of f , and inductively, choose a 1

3 -approximate extension Fn+1 of

f − (F1 + · · · + Fn)|A. Then we have |f(x) −
∑n

i=1 Fi(x)| ≤ ( 23 )
n for all x ∈ A, and |Fn+1(x)| ≤

1
3 (
2
3 )
n for all x ∈ X. Therefore the series

∑
i=1 Fi converges uniformly to the continuous extension

F : X → [−1, 1].

The Tietze extension lemma also holds if we replace the interval [−1, 1] by the reals R.

Proposition. Let X be as above. Then every continuous function f : A→ R defined on a closed
set A ⊂ X can be extended to X.

Proof. Denote by i : R → [−1, 1] the embedding i(x) = x/(1 + |x|). By what we just proved,
there is a continuous extension F1 : X → [−1, 1] of if . Clearly, B = F−1

1 ({−1, 1}) is a closed
subset of X disjoint from A. Let h : X → [0, 1] be a continuous function such that h|A = 1 and
h|B = 0. Then the function F2 = hF1 is also an extension of if with F2(X) ⊂ i(R) = (−1, 1). Thus
F = i−1 ◦ F2 is the required continuous extension of f .

Example. The Moore plane is hausdorff but not normal. This is the set of points in the upper
half plane {(x, y); y ≥ 0}. Let Y denote the x-axis. Its induced topology is discrete. The points
(p, q), where q and q are rational and q > 0 is a countable dense subset D. This implies that there
are at most cℵ0 = c continuous functions on D. Since Y is discrete with cardinal c, there are at least
2c continuous functions on Y . Since c < 2c, not all of them can be extended to X.
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Exercise. Let X be a space which has a dense subset D and a closed relatively discrete subset
Y such that 2o(D) ≤ o(Y ). Then X is not T4.

3. Embeddings

Suppose that A is a family of continuous functions f : X → Yf . Then there is a natural map
e : X →

∏
f Yf whose value at x is the element e(x) of the product whose f -coordinate is f(x). This

is called the evaluation map. It is continuous if all f are continuous. It will be an embedding if A
contains sufficiently many functions.

We say that the family A separates points of X if for any pair x 6= y in X there exists f ∈ A such
that f(x) 6= f(y). We say that A separates points of X from closed sets if for each closed subset F
of X and each point x /∈ F , there exists f ∈ A such that f(x) /∈ f(F )−.

Proposition. Let A = {f : X → Yf} be a family of continuous functions. Then

(1) The evaluation map e : X → Y =
∏
Yf is continuous.

(2) If A separates points, then e is injective.
(3) If A separates points from closed sets, then the map X → e(X) is open.

Proof. The map e is continuous because its compositions with the projections πf are continuous:
πfe(x) = f(x). Part (2) is obvious.

To prove (3) we have to show that the image e(U) of an open neighborhood U ⊂ X of a point x
contains the intersection of e(X) with a neighborhood of e(x) in the product space. Let f ∈ A be
such that f(x) /∈ f(X \ U)−. Then π−1f (Yf \ f(X \ U)) is an open set in Y containing e(x), and its

intersection with e(X) is contained in e(U).

A consequence of this proposition is that a tichonov space is homeomorphic to a subspace of a
cube. A cube is a space homeomorphic to a product of closed intervals. We show that this actually
characterizes tichonov spaces. We first need the following:

Proposition. The product of T3 1

2

-spaces is a T3 1

2

-space.

Proof. We say that a continuous function f : X → I works for the pair (x, U) if U is a neighbor-
hood of x and f(x) = 0, f |(X \U) = 1. If f1, · · · , fn are functions that work for (x, U1), · · · , (x, Un),
and if g(x) = sup{fi(x); 1 ≤ i ≤ n}, then g works for the pair (x,∩ni=1Ui).

Therefore, to show that a space is T3 1

2

it is enough to show that for each x and each neighborhood

U of x belonging to a subbase for the topology, there is a function that works for (x, U).

Let X =
∏

αXα be a product of T3 1

2

-spaces, and let x ∈ X. Let Uα be a neighborhood of x(α)

in Xα. If f works for (x(α), Uα), then f ◦ πa works for (x, π−1α Uα).

Proposition. A space is tichonov if and only if it is homeomorphic to a subspace of a cube.

Proof. Since the interval I is tichonov, a cube, being a product of closed intervals, is also
tichonov. Every subspace of a tichonov space is tichonov: if A ⊂ X and x ∈ A \ B, where B is a
closed subset of A, then we write B = X ∩F , F closed in X. Since x 6 inF , we can find a continuous
f : X → I separating x and F . Thus f |A separates x from B.

On the other hand, the family A of all continuous functions X → I separates points and points
from closed sets. Therefore the evaluation map e : X → IA is an embedding.

As a consequence of the previous discussions we have

Corollary. A locally compact hausdorff space is a tichonov space.
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4. Stone-Čech compactification

Recall that a compactification of a space X is a pair (Y, f) consisting of a compact space Y and
an embedding f : X → Y with dense image. We say that (Y, f) is a hausdorff compactification if Y
is hausdorff.

In the family of all compactifications of a space X we define the following relation: (Y, f) ≤ (Z, g)
if and only if there is a continuous function g : Z → Y such that h ◦ g = f . In other words, the
function f ◦ g−1 : g(X)→ Y admits a continuous extension to Y .

If h can be taken to be a homeomorphism, then we say that (Y, f) and (Z, g) are topologically
equivalent. In this case, (Y, f) ≤ (Z, g) and (Z, g) ≤ (Y, f).

Proposition. The relation ≤ is a partial order in the set of compactifications of a space X. If
hausdorff compactifications (Y, f) and (Z, g) of X satisfy (Y, f) ≤ (Z, g) ≤ (Y, f), then they are
topologically equivalent.

Proof. If (W,h) ≤ (Z, g) ≤ (Y, f) are compactifications ofX, then there are functions k : Y → Z
and l : Z →W such that kf = g and lg = h. Thus lk : Y → Z satisfies lkf = h, so (W,h) ≤ (Y, f).

If (Y, f) ≤ (Z, g) ≤ (Y, f) for hausdorff compactifications, then there are functions k : Y → Z
and l : Z → Y such that kf = g and lg = f . The function lk : Y → Z is the identity on f(X) ⊂ Y .
Since this is a dense subspace and Y is hausdorff, it must be the identity on Y . Similarly, kl is the
identity on Z. Thus k, l are homeomorphisms.

Exercise. Let X = (0, 1). Then (Y = [0, 1], f(x) = x) and (Z = S1, g(x) = e2πx) are compacti-
fications of X such that (Z, g) ≤ (Y, f), but not conversely.

Exercise. Compare the compactifications Q∗ and [−∞,∞] of the rationals Q.

The smallest compactification of a compact space X is X itself. One may expect that the one-
point compactification of a noncompact space would be the minimum for the partial order ≤. This
is not true in general, although it is true if we consider only hausdorff compactifications.

Exercise. Let X be a locally compact hausdorff space. Then (X∗, i) is the minimum among all
hausdorff compactifications of X.

The proof uses a previous exercise: If Z is a compact hausdorff space and D ⊂ Z is a dense locally
compact subspace, then D is open in Z. Using this it is easy to check that the map h : Y → X∗

defined by h(y) =∞ if y ∈ Y \ f(X) and h(y) = x if y = f(x) is continuous and hf = i.

Stone-Čech compactification. If the space X admits a hausdorff compactification (so X is
tichonov), then there is a maximal compactification among the hausdorff ones. (Note that the fact
that a space admits a hausdorff compactication does not imply that its one point compactification
is hausdorff. That is, subspaces of compact hausdorff spaces need not be locally compact.)

Let B = B(X) denote the family of all continuous maps X → I. Then IB is a compact hausdorff
space and the evaluation map e : X → IB is an embedding if and only if X is a tichonov space. The
Stone-Čech compactification of X is the pair (βX, e), where βX is the closure of e(X) in IB .

Proposition. Let X be a tichonov space and let f : X → Y be a continuous map into a compact
hausdorff space Y . Then f ◦ e−1 admits a continuous extension to βX.

Proof. Let B(Y ) denote the set of continuous functions Y → I. Then f induces a map f ∗ :
B(Y ) → B by f∗(g) = gf . This in turn induces a map fB : IB → IB(Y ) by fB(q) = qf∗. Let
ε : Y → IB(Y ). We have the following diagram of continuous maps:

X
f

−−−−→ Y

e

y
yε

βX ⊂ IB
fB

−−−−→ IB(Y ) ⊃ βY
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The map g : Y → βY is a homeomorphism because Y is compact and hausdorff. Since the map fB

is continuous, we would be done if we show that the diagram commutes (fBe = εf), because then
ε−1fB would be the required extension of fe−1.

If x ∈ X then (fB ◦ e)(x) = fB(e(x)) = e(x) ◦ f∗, and (ε ◦ f)(x) = ε(f(x)). Let h ∈ B(Y ) and
compute the h-coordinate of these two elements of IB(Y ):

πh((f
B ◦ e)(x)) = e(x)(h ◦ f) = h ◦ f(x) = (ε ◦ f)(x)(h) = πh((ε ◦ f)(x)).

Exercise. This extension property of the Stone-Čech compactification with respect to compact
hausdorff spaces does in fact characterize it among hausdorff compactifications. More precisely,
suppose that Y is a hausdorff compactification of X with the property that every continuous map
form X into a compact hausdorff space extends to Y . Then Y and βX are topologically equivalent
compactifications of X.

This characterization allows you to decide where some space is or is not the Stone-Čech compact-
ification of a familiar one. For instance, I is not the Stone-Čech compactification of (0, 1), for the
function sin(1/x) has no continuous extension to I.

Size of βN. . The product space Ic has a countable dense subset D. Any map f : N → D is
continuous, so it has a continuous extension F : βN → Ic. Furthermore, if f is surjective, so is F ,
hence o(βN) ≥ o(Ic) = 2c. On the other hand, o(B(N)) = o(IN) = c, so βN ⊂ Ic. Thus o(βN) = 2c.

Using the extension property of the Stone-Čech compactification one shows that βR and βQ also
have cardinal number 2c.

Filter description of βX. The Stone-Čech compactification admits a description in terms of a
special class of filters. It may be more appropriate to understand the structure of βX.

Zero sets. A set A ⊂ X is called a zero set if there is a continuous function f : X → I such that
A = f−1({0}).

Thus, if X is a tichonov space, its zero sets form a base for the closed subsets, that is, every
closed subset of X is an intersection of zero sets.

z-filters. Let Z(X) denote the collection of zero sets of a tichonov space X. A nonempty family
F ⊂ Z(X) is called a z-filter if

(1) ø /∈ F .
(2) If A,B ∈ F , then A ∩B ∈ F .
(3) If A ⊂ B are zero sets and A ∈ F , then B ∈ F .

In other words, a z-filter F is of the form F ′ ∩ Z(X), where F ′ is a filter on X.
A z-ultrafilter is a maximal z-filter. Let ζX denote the collection of all z-ultrafilters on X. A

topology on ζX is defined by taking as base for closed sets all sets of the form CA = {F ∈ ζX;A ∈ F},
where A is any zero sets. The function h : X → ζX which takes x ∈ X to the z-ultrafilter of all
zero sets containing x is an embedding with dense image. Furthermore, ζX is compact because it
satisfies the finite intersection property.

To see that βX is homeomorphic to ζX, we verify that ζX has the universal extension property
that characterizes the Stone-Čech compactification. So let g : X → Y be a continuous map into a
compact hausdorff space Y . If F ∈ ζX, let F denote the collection of zero sets A in Y such that
g−1A ∈ F . Then F is a filter on Y , and since Y is compact, ∩FA 6= ø. Furthermore, if A and B
are zero sets such that A ∪ B ∈ F , then either A or B belongs to F . Suppose that x, y ∈ ∩FA. If
x 6= y, let U , V be disjoint neighborhoods of x and y in Y whose complements are zero sets. Since
(Y \ U) ∪ (Y \ V ) ∈ F , either Y \ U or Y \ V is in F , which is a contradiction. Thus ∩FA consists
of exactly one point. We call this point G(F ). Then G : ζX → Y is an extension of g. To see that
it is continuous, note that if A is a zero set in Y , then G−1(A) = Cf−1A.
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5. Metrization

We know that metric spaces satisfy most of the properties of topological spaces that we have been
discussing. They are normal and first countable. A theorem of Urysohn characterizes those second
countable metric spaces.

Proposition. A countable product of metrizable spaces is metrizable.

Proof. Let Xn, n = 1, 2, · · · , be a sequence of metrizable spaces, and let X =
∏

xXn. Let d′n
be a metric on Xn inducing its topology. We replace d′n by the bounded metric dn = max{1, d′n},
which also induced the topology of Xn. Then, if x = (xn) and y = (yn) are points in X,

d(x, y) =

∞∑

n=1

2−ndn(xn, yn)

is a metric on X as one easily checks.
We show that this metric gives the product topology on X. Let x = (xn) be a point on X. A

basic neighborhood U of x in the product topology is of the form

U = B1(x1, r1)× · · · ×Bn(xn, rn)×
∏

k=n+1

Xk.

Choose r = min{ri/2i; i = 1, · · · , n}. One checks that if d(x, y) < r then di(xi, yi) < ri for each
i = 1, · · · , xn, so that B(x, r) ⊂ U .

Conversely, given r > 0, let n be large enough so that
∑

k=n 2
k < r. Then

B1(x1, r/2n)× · · · ×Bn(xn, rn/2n)×
∏

k=n+1

Xk

is a product basic neighborhood of x contained in the ball B(x, r).

Proposition. For a space X the following are equivalent:

(1) X is regular and second countable,
(2) X is homeomorphic to a subspace of the cube IN,
(3) X is separable and metrizable.

Proof. (1) ⇒ (2) Let B be a countable base for X. The hypothesis of (1) imply that X is
normal, so for each pair of base elements U, V ∈ B with U− ⊂ V there exists a continuous function
fUV : X → I such that fUV |U

− = 0 and fUV |(X \ V ) = 1. The family A of all these functions fUV
separates points and points from closed sets (because X is T1 and B is a base). Thus the evaluation
map e : X → IA is an embedding. Since B is countable, so is A, hence IN and IA are homeomorphic.

(2)⇒ (3) Being separable and metrizable are properties inherited by subspaces.
(3)⇒ (1) We already know this.
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CHAPTER VIII

PARACOMPACT SPACES

1. Paracompact spaces

Refinements. Let X be a space and U be a cover of X. We say that a cover V of X is a
refinement of U if each V ∈ V is contained in some U ∈ U . We write V ≺ U .

Locally finite families. A collection U of subsets of X is locally finite if each x ∈ X has a
neighborhood meeting only finitely many U ∈ U .

Example. Under what conditions on X is the cover {{x}}x∈X locally finite?

Exercise. Let {Aa} be a locally finite family of subsets of X. Then {A−
a } is also a locally finite

family. Moreover, ∪aA
−
a = (∪aAa)

−, so that the union of a locally finite family of closed sets is
closed.

Paracompact. A space X is said to be paracompact if it is hausdorff and if each of its open
covers has a locally finite open refinement.

Example. Compact hausdorff spaces are paracompact.

Exercise. A closed subset of a paracompact space is paracompact.

Proposition. A regular lindelóf space X is paracompact.

Proof. Let U be an open cover of X. For each x ∈ X, choose Ux ∈ U containing it. By
regularity we can find open neighborhoods Vx, Wx of x such that Vx ⊂ V −

x ⊂Wx ⊂W−
x ⊂ Ux.

By the lindelöf property, we can find a countable subcover {V1, V2, · · · } of the open cover {Vx}x∈X
of X. Let T1 = W1 and, for n > 1, let Tn = Wn ∩ (X \ V −

1 ) ∩ · · · ∩ (X \ V −
n−1).

Then {Tn}
∞
n=1 is an open refinement of U , and a cover of X, for if x ∈ X, then there is a smallest

n such that x ∈Wn. Thus x /∈W1 ∪ · · · ∪Wn−1 ⊃ V −
1 ∪ · · · ∪ V −

n−1. Hence x ∈ Tn.
It is also locally finite, for if x ∈ X, then x ∈ Vn for some n, and so x /∈ Tm if m > n.

Exercise. A regular second, countable space is paracompact.

Exercise. The Sorgenfrey line is paracompact, but S × S is not.

Exercise. If X is a compact hausdorff space and Y is paracompact, the X × Y is paracompact.

Exercise. If X × Y is paracompact, then both X and Y are paracompact.

Exercise. Continuous images of paracompact space need not be paracompact. For instance,
every discrete space is paracompact, and every space is the continuous image of a discrete one.

Proposition. Every paracompact space is regular.

Proof. Suppose that F is a closed subset of a paracompact space X, and that x /∈ X. For
each y ∈ F , let Vy be an open neighborhood of y whose closure does not contain x (this is possible
because X is hausdorff). Then {Vy}y∈F ∪ {X \ F} is an open cover of X. Let U be an open locally
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finite refinement. Then W = ∪{U ∈ U ;U ∩ F 6= ø} is an open set containing F . Since U is locally
finite, W− = ∪{U−;U ∩ F 6= ø}, and so x /∈W−.

Exercise. Every paracompact space is normal.

Stone’s theorem. The following important result is due to Stone.

Proposition. Metric spaces are paracompact.

σ-compact. Given a property P of spaces, there is the σ-P property: A space X is σ-P is it is
a countable union of spaces, each one having property P . We only discuss one possibility.

A space X is σ-compact if it can be expressed as a countable union of compact subsets.

Proposition. If X is a locally compact, hausdorff, σ-compact space, then X = ∪∞n=1Un, where
Un are open subsets of X with compact closure, and such that for each n, U−

n ⊂ Un+1.

Proof. By σ-compactness, we can write X = ∪∞n=1Kn, a countable union of compact sets. For
each x ∈ K1, let Vx be an open neighborhood of X with compact closure. Then {Vx}x∈K1

is an
open cover of K1, from which we extract a finite subcover. Let U1 be the union of the members of
this finite subcover. Then U−

1 is compact. Apply the same process to obtain an open set U2 with
compact closure containing the compact set K2 ∪ U

−
1 , and so on.

Proposition. If X is a σ-compact space, then it is lindelöf.

Proof. Let U be an open cover of X. Write X = ∪nKn, a countable union of compact subsets.
For each n, let U1,n, · · · , Uk(n),n be a finite number of members of U which cover the compact set
Kn. It follows that {Ui,n; i = 1, · · · , k(n)}n is a countable subcover of U .

Manifolds. A manifold (of dimension n) is a second countable hausdorff space each point of
which has a neighborhood homeomorphic to an open ball in Rn.

Exercise. A manifold is a paracompact space. More generally, a hausdorff, locally compact and
σ-compact space is paracompact.

Proposition. If X is a compact manifold, then X can be embedded into some euclidean space
RN .

Proof. First note that if U is an open subset of X homeomorphic to a ball in euclidean space,
then the quotient space X/(X \ U) is homeomorphic to the n-sphere Sn, where n is the dimension
of X.

By covering X with a finite number of open sets like U above, we obtain a map from X into
a product of spheres, and it is easily seen to be an embedding. Finally, embed each sphere in a
euclidean space.

2. Partitions of unity

Partition of unity. A partition of unity of a space X is a family of continuous functions
Φ = {ϕ : X → [0, 1]} such that

(1) it is locally finite, that is, each point x ∈ X has a neighborhood on which only finitely many
ϕ ∈ Φ do not vanish, and

(2) for each x ∈ X,
∑

ϕ∈Φ ϕ(x) = 1.

A partition of unity Φ is subordinate to an open cover U of X if for each ϕ ∈ Φ there exists U ∈ U
such that supp(ϕ) ⊂ U . Here supp(ϕ) = Cl{x ∈ X;ϕ(x) 6= 0}.
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Proposition. Every open cover of a paracompact space admits a partition of unity subordinate
to it.

Proof. Let U = {Ua}a∈A be an open cover of the paracompact space X, which we assume to
be locally finite.

First we show that there is an open cover {Va} of X such that V −
a ⊂ Ua for each a ∈ A. For each

x ∈ X we can find (using normality of paracompact spaces) an open neighborhood Wx of x such
that Wx ⊂ U for some U ∈ U . Let {Wβ} be a locally finite refinement of the open cover {Wx}x∈X .
Let Vα = ∪β{Vβ ;Wβ ⊂ Ua. Then {Vα} is an open cover of X, and from the locally finiteness it
follows that V −

α ⊂ Ua, for each a.
Applying this process twice, we find locally finite open covers {Wa} and {Va} of X such that for

each a, W−
a ⊂ Va ⊂ V −

a ⊂ Ua. Then we can find continuous functions φa : X → [0, 1] such that
φa|W−

a = 1 and φa|(X \ Va) = 0.
The function φ(x) =

∑
a
φa(x) is continuous and strictly positive on X. Let ϕa = φa/φ. Then

{ϕa} is the desired partition of unity.

Relabeling trick. The proof above produces a partition of unity {ϕa} subordinated to a locally
finite open cover {Ua}, with the same index set. In general, if you start with an arbitrary open cover
U , the construction will produce a partition of unity subordinate to a refinement V of U , and there
is no reason why the index sets of U and V should be the same. However, this mismatch problem is
easily resolved with the following argument.

Suppose that {Ua}a∈A is an open cover of X and that {Wi}i∈I is an open, locally finite refinement
of it. For each i ∈ I, choose a(i) ∈ A such thatWi ⊂ Ua(i). For each a ∈ A, let Va = ∪{Wi; a(i) = a}.
Then {Va} is a locally finite open cover of X such that Va ⊂ Ua for each a ∈ A. Of course, some of
the Va may be empty.

Exercise. If U is a finite open cover of a normal space, then there is a partition of unity subor-
dinate to U .

Partitions of unity are useful because they allow us to glue local objects, usually functions. They
are used very often in the study of manifolds.

Here is one of their applications. Say that a function f : X → R is lower semicontinuous (resp.
upper semicontinuous) if f−1(a,∞) (resp. f−1(−∞, a)) is open in X for each a ∈ R.

Thus a function f : X → R is continuous if and only if it is is both upper and lower semicontinuous.

Proposition. Let f and g be lower and upper semicontinuous functions, respectively, on a para-
compact space X, and such that f(x) < g(x) for each x ∈ X. Then there is a continuous function
h on X such that f(x) < h(x) < g(x) for each x ∈ X.

Proof. For each r ∈ R, let Ur = f−1(r,∞)∩g−1(−∞, r). Then U = {Ur} is an open covering of
X. After passing to a locally finite open refinement and using the relabeling trick above, we obtain
a partition of unity {ϕr} subordinate to U . Then the function h =

∑
r∈R rϕr is continuous and has

the required interpolation property.
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CHAPTER IX

FUNCTION SPACES

1. Topologies on function spaces

Definition. Let Y be a topological space, X a set, F ⊂ Y X a non-empty family of functions,
and Φ ⊂ P(X) a non-empty family of subsets of X. For K ∈ Φ and U ⊂ Y open, set

[K,U ] = {f ∈ F ; f(K) ⊂ U}.

The collection {[K,U ];K ∈ Φ, U ⊂ Y open} is a subbase for the Φ-open topology on F .

Point-open topology. If F = Y X and Φ = {{x};x ∈ X}, then the Φ-open topology is the
product topology. It is also called the pointwise convergence topology.

Compact-open topology. If X is a space, F = C(X,Y ) the set of continuous functions, and
Φ = {K ⊂ X;K compact}, the Φ-open topology is called the compact-open topology.

Example. These two topologies agree if X is discrete, but in general the compact-open topology
is strictly finer.

Exercise. Let Y X have the compact open topology. Then Y X is T0, T1 or T2 if and only if Y is.

Compact convergence topology. Let X be a space and let (Y, d) be a metric space. For
f ∈ Y X , ε > 0, and a compact K ⊂ X, define

B(f, ε,K) = {g ∈ Y X ; sup
x∈K

d(f(x), g(x)) < ε}.

The collection {B(f, ε,K); f ∈ Y X , ε > 0,K ⊂ X compact} is a base for compact convergence
topology on Y X , also called the topology of uniform convergence on compact sets.

Proposition. A sequence fn : X → Y converges to f in the compact convergence topology if
and only if for each compact subset K ⊂ X, the sequence fn|K converges uniformly to f |K.

k-spaces. We say the X is a k-space (or compactly generated space) if it satisfies the following
condition: A subset U ⊂ X is open if and only if U ∩K is open in K for each compact subset K of
X. Note that if we replace ‘open’ by ‘closed’ we obtain an equivalent definition.

Exercise. Let X be a T1 space in which every compact set is finite. Then X is a k-space if and
only if X is discrete.

Exercise. Let X = {0, 1, 2, · · · }. A subset U is open if 0 /∈ U or if 0 ∈ U and limn→∞ o(U ∩
[1, n])/n = 1. Then X is not a k-space.
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Proposition. (1) Every locally compact space is a k-space.
(2) Every first countable space is a k-space.

Proof. Suppose that U ∩K is open in K for each compact K in X. Let x ∈ U , and let V be an
open neighborhood of x with compact closure. Then U ∩V − is open in V −, so U ∩V = (U ∩V −)∩V
is open in V , hence in X.

Suppose that X is first countable, and F ∩ K is closed in K for each compact K. If x ∈ F−,
then there is a sequence (xn) in F which converges to x. But {x, xn}n is compact, so F ∩ {x, xn} is
closed in {x, xn}. Thus x ∈ F .

Exercise. Let X be a k-space. Then f : X → Y is continuous if and only if f |K : K → Y is
continuous for each compact K ⊂ X.

Proposition. Let X be a k-space, (Y, d) a metric space. Then C(X,Y ) is closed in Y X in the
topology of compact convergence.

Proof. Let f ∈ Y X be a limit point of C(X,Y ). To show that f is continuous, it suffices to
show that f |K is continuous on each compact K ⊂ X.

For n ∈ N, let fn ∈ B(f, 1/n,K) ∩ C(X,Y ). Then fn|K → f |K uniformly on K, so f |K is
continuous.

Exercise. Let X and Y be as above. If fn : X → Y is a sequence of continuous functions which
converges to f in the compact convergence topology, then f is continuous.

Proposition. Let X be a space and let (Y, d) be a metric space. Then the compact-open topology
on C(X,Y ) agrees with the compact convergence topology.

Proof. Let [K,U ] be a subbase element for the compact open topology, and let f ∈ [K,U ]
be a continuous function. Then f(K) is a compact subset of U , so there is an ε > 0 such that
Dε[f(K)] ⊂ U . Hence B(f, ε,K) ⊂ [K,U ], and so the compact convergence topology is finer then
the compact open topology.

Conversely, let B(f, ε,K) be a base element of the compact convergence topology. Then each
x ∈ K has a neighborhood Ux such that f(U−

x ) ⊂ Dε[f(x)] = Vx. Cover K by finitely many
U1, · · ·Un, and let Ki = K ∩U−

i . Then Ki is compact and f ∈ [K1, V1]∩ · · · ∩ [Kn, Vn] ⊂ B(f, ε,K).

2. The evaluation map

Proposition. Let X be a locally compact hausdorff space; let C(X,Y ) have the compact-open
topology. Then the map

e : X × C(X,Y )→ Y

defined by e(x, f) = f(x) is continuous.

Proof. Let (x, f) ∈ X × C(X,Y ) and let V be an open neighborhood of f(x) = e(x, f) in Y .
Let U be an open neighborhood of x with compact closure such that f(U−) ⊂ V . Then U × [U−, V ]
is a neighborhood of (x, f) and e(U × [U−, V ]) ⊂ V .

Proposition. Let X, C(X,Y ) be as above, and let Z be a space. Then a map f : X × Z → Y
is continuous if and only if the map

f̂ : Z → C(X,Y )

defined by [f̂(z)](x) = f(x, z) is continuous.

Proof. Suppose that f is continuous and that z ∈ Z. Let [K,U ] be a neighborhood of f̂(z)
in the compact open topology. We have to find an open neighborhood W of z in Z such that
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f̂(W ) ⊂ [K,U ]. This is equivalent to finding an open set W in Z such that f̂(w)(K) ⊂ U for each
w ∈W , or what is the same, f(K ×W ) ⊂ U .

Since z ∈ f̂−1([K,U ]), we have that K × {z} ⊂ f−1(U). Hence there is an open neighborhood

W of z such that K ×W ⊂ F−1(U). Therefore, f̂(W ) ⊂ [K,U ].

If f̂ is continuous, then the map g : X × Z → X × C(Z, Y ) defined by g(x, z) = (x, f̂(z)) is also
continuous. Then f is continuous because e ◦ g = f .

3. Uniform spaces

Notation. Let S be a set. Let ∆ = {(x, x);x ∈ S} ⊂ S × S be the diagonal.
If U is a subset of S × S, then let U−1 denote the set of all pairs (y, x) of S × S such that

(x, y) ∈ U . If U and V are subset of S × S, then U ◦ V is the set of all pairs (x, z) in S × S such
that for some y ∈ S we have (x, y) ∈ V and (y, z) ∈ U .

If x ∈ S and U ⊂ S × S, let U [x] denote the set of all points y ∈ S such that (x, y) ∈ U . If A is
a subset of S, then U [A] = {y ∈ S; (x, y) ∈ U for somex ∈ A} = ∪x∈AU [x].

Let (Y, d) be a metric space. For each ε > 0, let Dε = {(a, b) ∈ Y × Y ; d(a, b) < ε}. Let DY

denote the collection of all these subsets Dε of Y × Y (ε > 0), and let UY be the collection of all
subsets of Y × Y such that U ⊃ Dε for some ε > 0. Thus UY is a filter in Y × Y with base DY .

Note that if y ∈ Y and U ∈ UY , then U [y] is a neighborhood of y. Similarly, if K ⊂ Y , then U [K]
is a neighborhood of K.

The purpose of this fancy notation is that it allows us to abstract the notion of metric space and
to introduce concepts, like uniform continuity, without referring to the real numbers. Here is one
example.

Proposition. Let X, Y be metric spaces. Then f : X → Y is uniformly continuous if and only
if for each V ∈ UY there exists U ∈ UX such that f(U [x]) ⊂ V [f(x)] for each x ∈ U .

Uniform spaces. Here is the abstraction of the notation introduced above.
Let X be a set. A uniformity for X is a collection U of subsets of X ×X such that:

(1) U is a filter,
(2) if U ∈ U , then ∆ ⊂ U ,
(3) if U ∈ U , then U−1 ∈ U ,
(4) if U ∈ D, then there exists V ∈ U such that V ◦ V ⊂ U .

The pair (X,U) is called a uniform space. Any subcollection D ⊂ U such that every member of
U contains one of D is called a base for the uniformity U .

Example. A set D in a uniformity is called symmetric if D = D−1. Then the symmetric sets
D ∈ U form a base. Indeed, if E ∈ D, then E−1 ∈ D, and D = E ∩ E−1 is symmetric.

Example. For a metric or pesudometric space Y , the family DY is a base for a uniformity on
Y , called the metric uniformity.

Topology and uniformity. The uniformity U defines a topology on X. A set U ⊂ X is open
if each x ∈ U there is D ∈ D such that D[x] ⊂ U . Here D[A] is the set of points y ∈ X such that
(x, y) ∈ D for some x ∈ A.

Thus, for a metric or pseudometric space, the topology induced by the metric is the same as the
one induced by the uniformity.

Exercise. Let (X,U) be a uniform space, and let D be a base for U . If x ∈ X, then {D[x];D ∈ D}
is a neighborhood base at x.
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Exercise. Let (X,D). If A is a subset of X, then A− = ∩{U [A];U ∈ U}.
Let x ∈ A−. For each U ∈ U choose a symmetric D ⊂ U . Then D[x] is a neighborhood of x, so

it meets A. If y ∈ A ∩D[x], then x ∈ D[y] ⊂ U [y] ⊂ U [A].
Conversely, if x /∈ A−, there is a symmetric U ∈ U such that U [x] ∩A = ø, that is, x /∈ U [A].

Exercise. Every uniform space is a T3-space. If x ∈ X and U ∈ U , let V ∈ U such that
V ◦ V ⊂ U . Then (V [x])− ⊂ V [V [x]] ⊂ U [x]. Thus x has a base of closed neighborhoods.

4. Ascoli’s theorem

Let X be a space, and let (Y, d) be a metric space. We use the notation DY introduced above for
the family of ε-neighborhoods of the diagonal ∆ ⊂ Y × Y .

Equicontinuous families. Let F be a subset of Y X . Say that F is equicontinuous at x ∈ X if
for each D ∈ DY there is a neighborhood U of x such that f(U) ⊂ D[f(x)], for each f ∈ F . We say
that F is equicontinuous if it is equicontinuous at each point of X. Note that every element of an
equicontinuous family is a continuous function.

Proposition. Let F ⊂ C(X,Y ) be an equicontinuous family of functions. Then its closure F ′

in the point-open topology is also equicontinuous.

Proof. Given x ∈ X and E ∈ DY , let D ∈ DY be such that D ◦ D ◦ D ⊂ E (that is, if E
is an ε-neighborhood, take D to be an ε/3-neighborhood). Let U a neighborhood of x such that
f(U) ⊂ D[f(x)] for all f ∈ F . Let g ∈ F ′. We show that g(U) ⊂ E[g(x)].

For each y ∈ U , the set Vy = [{x}, D[g(x)]] ∩ [{y}, D[g(y)]] is a neighborhood of g in the point-
open topology, so there is f ∈ Vy ∩ F . This means that (f(x), g(x)) ∈ D, (f(y), g(y)) ∈ D. Since
also (f(y), f(x)) ∈ D, we obtain (g(x), g(y)) ∈ E. Thus g(y) ∈ E[g(x)] for all y ∈ U .

Proposition. If F ⊂ C(X,Y ) is an equicontinuous family, then the compact-open topology co-
incides with the point-open topology.

Proof. Let [K,U ] be a subbase element of the compact-open topology which contains f . Since
f is continuous, f(K) is a compact subset of U , so we can find E ∈ DY such that E[f(K)] ⊂ U .
Let D ∈ DY be such that D ◦D ⊂ E.

By equicontinuity, each x ∈ K has a neighborhood Vx such that g(Vx) ∈ D[g(x)] for all g ∈ F . The
sets Vx cover K, and we pick a finite subcover V1, · · · , Vn. We show that ∩ni=1[xi, D[f(K)]] ⊂ [K,U ].

Let x ∈ K. Then x ∈ Vi for some i, and thus g(Vi) ⊂ D[g(xi)], so that (g(x), g(xi)) ∈ D. But
if g ∈ ∩ni=1[xi, D[f(K)]], then g(xi) ∈ D[f(K)]. Thus there is z ∈ K such that (g(xi), f(z)) ∈ D.
Hence (g(x), f(x)) ∈ D ◦D, and so g(x) ∈ E[f(K)] ⊂ U . This holds for all x ∈ K, so g ∈ [K,U ]

Compactness in the point-open topology. Ascoli’s theorem characterizes compactness of
families of continuous functions in the compact-open topology. Compactness in the point-open
topology is a consequence of Tichonov’s theorem.

Proposition. Let Y be a hausdorff space. A set of functions F ⊂ Y X is compact in the point-
open topology if and only if

(1) F is closed in Y X ,
(2) for each x ∈ X, F(x) has compact closure in Y .

Exercise. Let Y be the function space II with the point-open topology. Which of the following
subspaces of Y is compact?

(1) {f ∈ Y ; f(0) = 0}.
(2) {f ∈ Y ; f continuous, f(0) = 0}.
(3) {f ∈ Y ; f differentiable, |f ′(x)| ≤ 1 for all x ∈ I}.
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Compactness in the compact-open topology. And now to Ascoli’s theorem.

Proposition. Let X be a hausdorff k-space, Y a metric space. A family of functions F ⊂
C(X,Y ) is compact in the compact-open topology if and only if

(1) F is closed in the point-open topology,
(2) for each x ∈ X, the orbit F(x) = {f(x), f ∈ F} is compact,
(3) F is equicontinuous on each compact subset of X.

Proof. If F is compact in the compact-open topology, it is also compact in the point-open
topology, so the first two conditions are necessary by the previous proposition. Let K be any
compact subset of X. Then the family FK = {f |K; f ∈ F} is compact in the compact-open
topology on C(K,Y ). This is so because the restriction map

r : C(X,Y )→ C(K,Y )

given by r(f) = f |K, is continuous in the compact-open topology, and r(F) = FK .
Let x ∈ K, D,D′ ∈ DY with D ◦D ⊂ D′. The space K is compact and hausdorff, so we can find

a neighborhood Uf of x in K such that f(U−
f ) ⊂ D[f(x)]. The set [U−

f , D[f(x)]] is a neighborhood

of f in the compact-open topology of C(K,Y ). Thus the resulting cover of FK has a finite subcover
[U−

i , D[fi(x)]], i = 1, · · · , n.
Let U = U1 ∩ · · · ∩ Un. If f ∈ FK , then f ∈ [U−

i D[fi(x)] for some i, hence f(U) ⊂ f(U−
i ) ⊂

D[fi(x)]. It follows that f(U) ⊂ (D ◦D)[f(x)] ⊂ D′[f(x)], hence FK is equicontinuous at x.
To prove sufficiency, note that (3) implies that the compact-open topology reduces to the point-

open topology on FK , for each compact subset K ⊂ X. Let [K,U ] be any subbase element in the
compact-open topology on X. Let [K,U ]K = {f : K → Y ; f(K) ⊂ U} be the subbase element in
the compact-open topology of C(K,Y ). It is also open in the point-open topology. Furthermore,
[K,U ]K ∩ FK = {f |K, f ∈ [K,U ] ∩ F}. The map r is continuous for the point-open topology, so
r−1([K,U ]K∩F) = [K,U ]∩F) is open in the point-open topology. Thus the compact-open topology
reduces to the point-open topology on F , and compactness follows from Tichonov’s theorem.

There is another version of Ascoli’s theorem in which the condition on equicontinuity on compacts
is replaced by global equicontinuity.

Proposition. Let X be a locally compact hausdorff space and let (Y, d) be a metric space. A
family of functions F ⊂ C(X,Y ) is compact in the compact open topology if and only if

(1) F is closed in the point-open topology.
(2) for each x ∈ X, the orbit F(x) = {f(x); f ∈ F} is compact.
(3) F is equicontinuous.

Proof. The proof is almost the same as the one above. The only difference appears in proving
that if F is closed in the compact-open topology then F is equicontinuous and the orbits have
compact closure. This uses the continuity of the evaluation map

e : X × C(X,Y )→ Y.

Let x ∈ X. The set {x} × F is compact in X × C(X,Y ). Therefore, e(x×F) = F(x) is compact.
To prove that F is equicontinuous at x ∈ X, let E,D ∈ DY such that D◦D ⊂ E. For each f ∈ F ,

let Nf = [Kf , Uf ] be a neighborhood of f in the compact open topology and Vf a neighborhood of
x such that e(Uf ×Nf ) ⊂ D[f(x)].

Let N1, · · ·Nr be a finite subcover of F . Let U = ∩ni=1Ui. Equicontinuity will follow if we
show that f(U) ⊂ E[f(x)] for each f ∈ F . Let f ∈ F and y ∈ U . Then y ∈ Ui for some i, so
f(y) ∈ D[fi(x)]. Also, f(x) ∈ D[fi(x)] since x ∈ Ui. Hence (f(y), f(x)) ∈ D ◦D ⊂ E.
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If F is equicontinuous we know that compact-open topology reduces to the point-open topology.
If it is closed and the orbits are compact, then F is compact in Y X in the point-open topology,
hence also in the compact-open topology.

Exercise. Let m denote the space of bounded sequences of real numbers, c the set of all con-
vergent sequences from m, c0 the set all sequence which converge to 0. Give m the topology given
by the metric

d((xn), (yn)) = sup
n
|xn − yn|

Them m is the space of bounded continuous functions N → R. It is not compact because orbits are
not compact.

What about c? c0?

Exercise. A family of continuous functions in C(I,R) is compact in the compact open topology
if and only if it is equicontinuous and uniformly bounded.

Exercise. Let X be a compact hausdorff space. Let F ⊂ C(X,R) be a closed set. Then F is
compact if and only if it is equicontinuous and pointwise bounded.



48 TOPOLOGY

MATH 262. HOMEWORK 2 . DUE: 1/18/96

1. For each positive integer n, let Sn = {n, n + 1, . . . }. The collection of all subsets of N which
contain some Sn is a base for a topology on N.

Describe the closure operation of this topological space.

2. Let X be the set of positive integers n ≥ 2. Show that the sets Un = {x ∈ X;xdividesn}, n ≥ 2,
form a base for a topology on X. Find the closure of the one-point sets {x}, x ∈ X, and of the set
of prime numbers.

3. (Sorgenfrey line) Show that the sets [a, b), a, b real numbers, form a base for a topology on
the real line. Determine which of the following subsets of X are open and which ones are closed:
(−∞, a), [a, b), [a,∞), (a, b), (a,∞), (−∞, a], [a, b], {a}.

4. Let X be the slotted plane. Describe the topology induced on a straight line, and the one induced
on a circle.

5. Prove or disprove: The intersection of an arbitrary family of topologies on X is a topology on
X. The union of two topologies on X is a topology on X.

6. (Exercise 5, §2-2) If B is a base for a topology on X, then the topology generated by B equals
the intersection of all topologies on X that contain B.

7. (Small neighborhoods make large topologies.) For each x ∈ X, let B1
x and B2

x be neighborhood
bases at x for topologies O1 and O2 on X. Then O1 is coarser than O2 (i.e., O1 ⊂ O2) if and only
if at each x ∈ X, given B1 ∈ B1

x, there is some B2 ∈ B2
x such that B2 ⊂ B1.

8. (Exercise 8, §2-5) Show that the dictionary order topology on the set R × R is the same as the
product topology Rd × R, where Rd denotes the set of real numbers with the discrete topology.
Compare this topology with the standard topology of R2.

9. X has the discrete topology if and only if whenever Y is a topological space and f : X → Y ,
then f is continuous.

X has the trivial topology if and only if whenever Y is a topological space and f : Y → X, then
f is continuous

10. A map f : X → Y is said to be closed if it takes closed subsets of X to closed subsets of Y .
Show that f is continuous and closed if and only if f(A−) = f(A)− for every subset A of X.
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4. ASCOLI’S THEOREM 49

MATH 262. HOMEWORK 3. DUE: 1/25/96

1. Let X be an infinite set with the cofinite topology, and let (xn) be an injective sequence in X
(i.e., xn 6= xm if n 6= m). Show that xn → x for all x ∈ X.

2. Let Xα, α ∈ A be a family of topological spaces. Show that if Fα is closed in Xα for each α, then
the product

∏
Fα is closed in

∏
Xα. Is this also true in the box topology?

3. Let A and B be subsets of topological spaces X and Y , respectively. Prove that in the product
X × Y :

(1) (A×B)− = A− ×B−.
(2) (A×B)◦ = A◦ ×B◦.

Do these results extend to arbitrary products?

4. Let X =
∏

AXα and Y =
∏

A Yα be two product spaces over the same index set A, and let
fα : Xα → Yα be continuous for each α in A. Then the map f : X → Y defined by f({x(α)}) =
{fα(x(α))} is continuous.

5. Let ∼ be an equivalence relation on the space X and give X/ ∼ the quotient topology. Let
p : X → X/ ∼ be the quotient map. The following are equivalent:

(1) The map p is open.
(2) If A is open in X, then [A] is open.
(3) If A is closed in X, then the union of all elements of X/ ∼ contained in A is closed.

Note. Recall that by [x] we denote the set {y; y ∼ x}, and the corresponding point of X/ ∼. For
A ⊂ X, [A] is the set of all those y ∈ X equivalent to some point in A, that is, [A] = ∪x∈A[x]. The
same symbol represents a subset of X/ ∼.

6. Let C denote the complex plane. Say that a function f : C → C satisfies the maximum modulus
principle if the following holds: if K ⊂ C and a ∈ K is such that |f(z)| ≤ |f(a)| for all z ∈ K
then a is in the boundary of K. Probably you know that nonconstant analytic functions satisfy this
principle. Show that open maps f : C → C satisfy the maximum modulus principle.

(The boundary of a subset Y of a space X is bY = Y − ∩ (X \ Y )−.)

7. Let Rω be the space of sequences of real numbers. Let R∞ the subset of Rω consisting of all
sequences (xn) such that xn 6= 0 for only finitely many values of n. What is the closure of R∞ in
Rω in the product and box topologies?

8. Let X be the euclidean plane R2 with the standard topology. Let A be the x-axis. Show that the
projection p : X → X/A is a closed map. Show that, if m is a positive integer, then the sequence
(xn) with xn = (m, 1/(n + 1)) converges to the point A in X/A. Does the sequence (n, 1/(n + 1))
converge to A?

9. Let f be a continuous map from X onto Y and give Y the quotient topology. Then f is a
homeomorphism if and only if it is one-one.
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50 TOPOLOGY

10. A subset D of a space X is said to be dense (in X) if D− = X

(1) If D is dense in X if and only if D meets every nonempty open subset of X.
(2) If D is dense in X and Y ⊂ X, is it true that D ∩ Y is dense in Y ?
(3) If Xα is a nonempty space and Dα ⊂ Xα, for each α ∈ A, then

∏
Dα is dense in

∏
Xα if

and only if Dα is dense in Xα for each α.
(4) Let B, S be a base and a subbase for X, respectively. Are these statements true: D is dense

if and only if D meets every nonempty element of B (of S).



MATH 262. HOMEWORK 4. DUE: 2/1/96

1. Connected or not: Rω with the box topology (look at the space of bounded sequences). [0, 1]×[0, 1]
with the order topology given by the dictionary order. [0, 1) × [0, 1) with the order topology given
by the dictionary order.

2. True or false: A subset Y of X is not connected if and only if there are disjoint open subsets A
and B in X, each meeting Y , and Y ⊂ A ∪B.

3. Let (X,<) be a linearly ordered set (i.e., a chain) and give X the order topology. We say that
X is order complete if every subset of X which has an upper bound has a supremum.

(1) If X is connected, then it is order-complete.
(2) If there are a < b in X but no c such that a < c < b, we say that X has a jump. Show that

X is connected if and only if it is order-complete and has no jumps.

4. Let X be a space. The path-components of X are the equivalence classes of the equivalence
relation x ∼ y if there is a path joining x and y. That is, the path-component P (x) containing
x ∈ X is the largest path-connected subset of X containing x.

(1) Show that X is locally path-connected if and only if each path-component of each open set
is open.

(2) If X is locally path-connected, then the path-components are both open and closed.

5. Let 2 be the discrete space with two points, and let C = 2N with the product topology. Then
the components of C are the points.

6. The spaces [0, 1) ∪ (2, 3) and (0, 1) ∪ (2, 3) are not homeomorphic.

7. A map f : X → Y is locally constant if each x ∈ X has a neighborhood U such that f |U is
constant. Show that a space is connected if and only if every locally constant map is constant.

8. Prove the following:

(1) If f : X → Y is continuous and Y is Hausdorff, then

∆(f) = {(x1, x2); f(x1) = f(x2)}

is a closed subset of X ×X.
(2) If f is an open map of X onto Y and ∆(f) is closed in X ×X, then Y is Hausdorff.
(3) If f is a continuous open map of X onto Y , then Y is Hausdorff if and only if ∆(f) is closed.

Definition. A topological space X is called a T0-space (resp., T1 space) if whenever x and y are
two distinct points of X, there is an open set containing one and not the other (resp. there is a
neighbrohood of each not containing the other). Hausdorff spaces are also called T2-spaces. Clearly
T2 ⇒ T1 ⇒ T0, and you should be able to find pertinent examples showing that the converse impli-
cations need not be true. The T comes from Trennungsaxiome, the German version of Separation
axioms.
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9. Let X be a space. Define x ∼ y if {x}− = {y}−. Show that ∼ is an equivalence relation on X
and the the quotient space X/ ∼ is T0.

10. For a space X the following are equivalent:

(1) X is T1.
(2) One-point sets are closed.
(3) If A ⊂ X, then A is the intersection of all open sets containing it.
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MATH 262. HOMEWORK 5. DUE: 2/8/96

1. Suppose that F is an ultrafilter on a set X.

(1) ∩FF consists of at most one point.
(2) If ∩FF = {x}, then F = {F ⊂ X;x ∈ F}.

2. Let F be a filter on a complete metric space (M,d). Show that F converges to some point of M
if and only if for each ε > 0 there is F ∈ F such that diam(F ) < ε.

3. Show that if a filter F on a space X converges to a point x, then x ∈ ∩FF
−.

4. Show that the neighborhood filter of a point x ∈ X is an ultrafilter if and only if {x} is open
(i.e., x is an isolated point).

5. A filter F on a product space
∏
Xα converges to x = (x(α)) if and only if πα(F) converges to

xα for every α.

6. Use Alexander’s subbase theorem to give a proof of Tychonoff’s theorem without using ultrafilters.

7. Suppose that A×B is a compact subset of a product spaceX×Y andW is an open subset ofX×Y
which contains A×B. Then there are open sets U in X and V in Y such that A×B ⊂ U ×V ⊂W .

8. Prove that in a compact hausdorff space X, every connected component is the intersection of all
sets containing it which are both open and closed.

9. Let X be a compact hausdorff space. Prove that X has a base consisting of sets which are both
open and closed if and only if every component of X is a simgle point.

10. Let X be a compact space and A be a family of continuous functions from X into I such that

(1) if f, g ∈ A, then f − g ∈ A, and
(2) for each x ∈ X there is a neighborhood Ux of x and f ∈ A such that f |Ux = 0.

Show that f(x) = 0 for each x ∈ X and each f ∈ A.
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MATH 262. HOMEWORK 6. DUE: 2/15/96

1. Let X be a hausdorff space and suppose that {Kn}
∞
n=1 is a countable family of compact subsets

of X such that Kn ⊂ Kn−1. Show that if there exists an open set U containing the intersection
∩∞n=1Kn, then there exists an integer N such that Kn ⊂ U if n ≥ N .

2. True or false: The closure of a compact set is compact.

3. A compact locally connected space has only a finite number of components.

4. Let X be a first countable space. Then X is hausdorff if and only if every compact subset is
closed.

5. Which of the following spaces is locally compact?

(1) The slotted plane.
(2) R with the cofinite topology.
(3) A ∪ B, where A = {(x, 1/n); 0 ≤ x ≤ 1, n = 1, 2, · · · } and B = {(x, 0); 0 ≤ x ≤ 1}. The

topology is that induced from the plane.
(4) A ∪ C, where A is as above and C = {(0, 0), (1, 0)}. The topology is the induced one.

6. A subspace of a regular space is regular. A nonempty product space is regular if and only if each
factor is regular.

7. Find a hausdorff space which is not regular.

8. The one-point compactification of N is homeomorphic to the subspace {1, 1/2, · · · , 1/n, · · · , 0}
of R.

9. The one-point compactification of the rationals is T1 but not T2.

10. Suppose that X is a locally compact hausdorff space and f : X → R a continuous map. Then
f can be extended to a continuous map f ∗ : X∗ → R if and only if for each ε > 0 there exists a
compact set Kε ⊂ X such that |f(x)− f(y)| < ε whenever x, y /∈ Kε.
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MATH 262. HOMEWORK 7. DUE: 2/22/96

1. Let X be a set and A ⊂ X be a subset. The family of all subsets of X which contain A, together
with the empty set, is a topology. Under what conditions is T3? T3 1

2

? T4?

2. Let X be a T3 1

2

space, A a compact subset, and B a closed subset disjoint from A. Then there

is a continuous function f : X → [0, 1] such that f |A = 1 and f |B = 0.

3. A subset of a space is said to be a Gδ-set if it is a countable intersection of open sets.

(1) A one-point set on a first countable T1-space is a Gδ-set.
(2) If f is a real valued continuous function on a space X, then f−1(0) is a Gδ-set.
(3) If A is a closed Gδ-set of a T4-space X, then there is a continuous real valued function f on

X such that f−1(0) = A.

4. (1) Closed subspaces of normal (or T4) spaces are normal (resp. T4).
(2) The continuous image of a normal (or T4) space under a closed map is normal (resp. T4).
(3) The continuous open image of a normal space need not be normal.

5. (1) The Moore plane M (p.3 in notes) is a tichonov space.
(2) Subspaces of normal spaces need not be normal.

6. Let X be an uncountable set and Y and infinite set, both with the discrete topology. Let
X∗ = X ∪ {∞X} and Y ∗ = Y ∪ {∞Y } be their one point compactifications. Let W be the
complement of (∞X ,∞Y ) in X∗ × Y ∗. Are the spaces X∗ × Y ∗ and W normal? regular?

7. A space is lindelöf if each of its open covers of has a countable subcover.

(1) Every uncountable subset of a lindelöf space has a limit point.
(2) A T3-space is lindelöf if each open cover has a countable subfamily whose closures cover.
(3) Let X be a space and 0 be a point not in X. Let Y = X ∪ {0}, and take sets of the form

L ∪ {0}, X \ L a lindelöf subspace of X, as neighborhoods of 0. Conclude that any space X
can be embedded as a dense subset of a lindelöf space.

8. A space is separable if it has a countable dense subset.

(1) The continuous image of a separable space is separable.
(2) Let {Xα;α ∈ A} be a collection of hausdorff spaces, each with at least two points. Then the

product space X =
∏

αXα is separable if and only if each factor is separable and the index
set A has cardinal number ≤ c.

9. Let S denote the Sorgenfrey line (i.e., the set of real numbers with the topology having the
half-open intervals [a, b) as base). It is proved in the book that S is normal and lindelöf.

(1) X = S × S is neither normal nor lindelöf. (There is a proof of the former fact in the book,
but you can do better.)

(2) True or false: separable, first countable spaces are second countable.
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10. A subspace A of a space X is called a retract of X if there is a continuous function r : X → A
such that r(a) = a for all a ∈ A. The map r is called a retraction.

(1) If x ∈ Rn, then the closed ball A = {y ∈ Rn; |x− y| ≤ 1} is a retract of Rn.
(2) A retract in a hausdorff space is a closed set.
(3) A ⊂ X is a retract of X if and only if every continuous function f : A→ Z has a continuous

extension F : X → Z.
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MATH 262. HOMEWORK 8. DUE: 2/29/96.

1. Suppose that (Y, f) is a hausdorff compactification of X such that it satisfies the following
extension property: if g : X → R is a bounded continuous function, then there is a continuous
function G : Y → R such that G◦f = g. Then (Y, f) is equivalent to the Stone-Čech compactification
(βX, e).

2. (1) If X is a tichonov space, then no point of βX \X has a countable neighborhood base.
(2) If X is normal, then no point of βX \X is the limit point of a sequence in X.

Therefore βX cannot be metrizable unless X is already compact and metrizable.

3. Let X be an infinite discrete space.

(1) Any two disjoint open subsets of βX have disjoint closures.
(2) β(X×X) and βX×βX are not homeomorphic (look at the closure of the open set {(x, x);x ∈

X}).

4. (1) Let X be a tichonov space. then X is connected if and only if βX is connected.
(2) βR is a continuous image of βN, but not conversely.

5. In class we saw that o(βN) = 2c. Show that βQ and βR also have cardinal number 2c.

6. Let X be locally compact metric space. The following are equivalent:

(1) The one-point compactification X∗ of X is metrizable.
(2) X = ∪∞n=1Un, where each Un is open with U−

n compact and U−
n ⊂ Un+1.

(3) X is second countable.

7. Are the following spaces metrizable?

(1) [0, 1]× [0, 1] with the dictionary order topology.
(2) The Sorgenfrey line.

8. Let f : X → Y be a continuous map from a compact metric space X onto a hausdorff space Y .
Then Y is metrizable.

9. Give examples of:

(1) a regular lindelöf space which is not metrizable,
(2) a hausdorf second countable space which is not metrizable.

10. Let {Ai}i∈I be a locally finite family of subsets of a space X (i.e., each point of X has a
neigborhood meeting only finitely many Ai’s).

(1) The family {A−
i } of closures is also locally finite.

(2) ∪iA
−
i = (∪iAi)

−.
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MATH 262. FIRST MIDTERM. 1/30/96

Work out 4 problems from Part I and 3 from Part II.

Part I

1. Let A be a nonempty collection of continuous functions from a topological space X into the
closed interval I = [0, 1]. For x ∈ X, define e(x) ∈ IA by πfe(x) = f(x) for f ∈ A. Show that the
map e : X → IA is continuous.

2. Let X denote the set of real numbers with the cofinite topology. Show that X is path-connected.

3. Let X be the set of real numbers with the following topology: a neighborhood base of x 6= 0 is
given by the usual open intervals centered at x. A neighborhood base of the origin is formed by the
sets (−∞,−n)∪ (−ε, ε)∪ (n,∞), for all choices of ε > 0 and positive integers n. Show that the filter
F generated by the filterbase {(a,∞); a > 0} converges to 0.

4. Let X be the real numbers with the topology which has the sets (a,∞), a ∈ R, as a base. Which
sequences converge to which points? What is the closure of (−∞, 0)?

5. Let A ⊂ X. Show that the family of all subsets of X which contain A, together with ø, is a
topology on X. Describe the closure and interior operations of this topology.

Part II

6. Let N be the set of positive integers and let X = N ∪ {∞}.

(1) The finite subsets of N, together with X, are the closed sets for a topology on X.
(2) X is T0 but not T1.
(3) X is path-connected and locally path-connected.

7. Let X = RN be the space of sequences of real numbers with the box topology.

(1) X is not first-countable.
(2) The component of a ∈ X is the set of points x ∈ X such that {n ∈ N; an 6= xn} is finite.

8. Let I be an infinite set and a, b be two points not in I. Define a topology on X = I ∪ {a, b} as
follows. Any subset of I is open, and a subset containing a or b is open if it contains all but a finite
number of points of I.

(1) X is T1 but not hausdorff.
(2) The components of X are the points.

9. Let X be the set of pairs of nonnegative integers with the following topology: each point (m,n),
except (0, 0), is open. A set U is a neighborhood of (0, 0) if the sets {n; (m,n) /∈ U} are finite, except
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for finitely many integersm. (Thus, viewing X in the plane, a neighborhood of (0, 0) contains almost
all the points of almost all the columns.)

(1) Show that no sequence (xk) in X \ {(0, 0)} converges to (0, 0). Conclude that X is not
first-countable.

(2) X is neither connected nor locally connected.
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MATH 262. LAST MIDTERM. DUE: 3/5/96

1. Noetherian spaces

A topological space is called noetherian if every ascending sequence of open subsets is eventually
constant, that is, if U1 ⊂ U2 ⊂ · · · are open subsets of X, then there exists n such that Un = Un+1 =
· · · . A space is called artinian if every descending sequence of open sets is eventually constant.

1.1. A space is noetherian if and only if every subspace is compact.
1.2. A hausdorff noetherian space is finite.
1.3. Find an artinian space which is not noetherian, and a noetherian one which is not artinian.

2. Paracompact spaces

A function f : X → R is lower semicontinuous (resp. upper semicontinuous) if and only if for
each a ∈ R, f−1(a,∞) (resp. f−1(−∞, a)) is open in X.

2.1. Suppose that X is paracompact and that f : X → R and g : X → R are upper and lower
semicontinuous functions, respectively, such that f(x) < g(x) for each x ∈ X. Show that there exists
a continuous function h : X → R such that f(x) < h(x) < g(x) for each x ∈ R.

A space is said to be σ-compact if it is locally compact, hausdorff, and can be expressed as a
countable union of compact subsets.

2.2. If a space X is σ-compact, then there is a sequence U1, U2, · · · of open subsets of X, each
with compact closure, with U−

n ⊂ Un+1, and such that X = ∪∞n=1Un.
2.3. If X is a σ-compact space, then X is lindelöf.

3. Filter description of βX

Let X be a tichonov space. Let ζX denote the collection of all z-ultrafilters on X. A topology on
ζX is defined by taking as base for closed sets all sets of the form CA = {F ∈ ζX;A ∈ F}, where
A is any zero set.

3.1. The function h : X → ζX which takes x ∈ X to the z-ultrafilter of all zero sets containing
x is an embedding with dense image.

3.2. ζX is compact.
3.3. The Stone-Čech compactification βX is homeomorphic to ζX.

4. Universal spaces

The Cantor set G is the product space {0, 1}N, where {0, 1} has the discrete topology.
4.1. If A is a closed subset of G, then there is a continuous map r : G → A such that r(x) = x

for each x ∈ A.
Let X be a second countable compact hausdorff space. Let U1, U2, · · · be a base for the topology

of X, and define fn : {0, 1} → P(X) by fn(0) = U−
n , f(1) = X \Un. If x = (xn) ∈ G, then ∩nfn(xn)

is an intersection of closed subsets of X, hence it is either empty or else it contains a single point.
In the latter case, denote this single point by φ(x).
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4.2. The map φ is defined on a closed subset A of G. Furthermore, φ : A → X is a continuous
surjection. Therefore the composition φ ◦ r : G → X is a continuous surjection.

4.3. If X is a second countable compact hausdorff space, then there is a continuous surjection
βN → X.

4.4. Is there a continuous surjection G → βN?
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MATH 262. FINAL EXAM. 3/14/96

Work out 4 problems from Part I and 3 from Part II. Each problem of the first part is worth 5
points, and 6 points each one of the second.

Part I

1. Let X be a T1-space. Then every connected subset of X containing more than one point is
infinite.

2. True or false? Let f : (0, 1) → R be the function f(x) = 1/x. Then f extends to a continuous
function F : β(0, 1)→ R.

3. A connected normal space having more than one point is uncountable.

4. Let D ⊂ [0, 1]N be the subspace of nondecreasing sequences. If N has the discrete topology, is D
compact in the compact-open topology? What if N has the cofinite topology?

5. Show that every second countable space is separable, but the converse is false.

Part II

6. Suppose that X and Y are topological spaces. Let C(X,Y ) be the space of continuous functions
from X into Y with the compact-open topology. For each y ∈ Y , let cy : X → Y denote the constant
function cy(x) = y. Let j : Y → C(X,Y ) be the map j(y) = cy.

(1) The map j is an embedding of Y into C(X,Y ).
(2) If Y is hausdorff, then j(Y ) is closed.

7. A space is called irreducible if it is non-empty and it is not the union of two proper closed
subsets. The irreducible components of a topological space are the maximal irreducible subspaces.
(A subspace is irreducible if it is irreducible as a space with the induced topology.)

(1) A topological space X 6= ø is irreducible if and only if every nonempty open subspace is
dense. A subspace Y is irreducible if and only if Y − is irreducible.

(2) The irreducible components of a space X are closed and cover X. What are the irreducible
components of a hausdorff space?

8. Let X be the set of positive integers. A subset of X is open if it contains the successor of every
odd integer in it.

(1) Every open cover of X has an open locally finite refinement. X is not compact, but it is
locally compact.

(2) X is locally connected and locally path-connected. What are the components of X?

Typeset by AMS-TEX

62



9. Let X be an infinite set and let 0 be a particular point of X. Define a topology on X by declaring
open any set whose complement either is finite or contains 0.

(1) If A, B are subsets of X such that A ∩ B− = B ∩ A− = ø, then they can be separated by
disjoint open sets.

(2) X is metrizable if and only if it is a countable set.
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MATH 262. FINAL EXAM. FREE SAMPLE. 0/00/00

Work out 4 problems from Part I and 3 from Part II.

Part I

1. True or false: if A ⊂ X is path-connected, then so is A−.

2. True or false: If A1 ⊃ A2 ⊃ · · · is a collection of closed connected subsets of the plane, then
∩∞n=1An is connected.

3. Suppose that X is a hausdorff space and D ⊂ X is a dense locally compact subspace. Then D
is open.

4. The inclusion N ⊂ Q induces and inclusion N ⊂ βQ. Show that ClβQN = βN.

5. Let X = (0, 1) ∪ (1, 2) ∪ (2, 3) ∪ (5, 7) with the topology induced from R. Describe the one-point
compactification of X.

Part II

6. (1) True or false: Every subspace of a k-space is a k-space.
(2) The space RI is not a k-space.
(3) Let X be a k-space. Then f : X → Y is continuous if and only if f |K : K → Y is continuous

for each compact K ⊂ X.

7. Let Y be a metric space. Let fn : X → Y be a sequence of continuous functions, and let
f : X → Y be a function (not necessarely continuous).

(1) If {fn} is equicontinuous and fn → f in the point-open topology, then fn → f in the
compact-open topology.

(2) Prove the converse of (1) in case X is a hausdorff k-space.
(3) In either case, f is continuous.

8. Let H be the subspace of II consisting of all non-decreasing functions.

(1) H is compact.
(2) H is separable.
(3) H is not metrizable.

9. Let X be the set of pairs of nonnegative integers with the following topology: each point (m,n),
except (0, 0), is open. A set U is a neighborhood of (0, 0) if the sets {n; (m,n) /∈ U} are finite, except
for finitely many integersm. (Thus, viewing X in the plane, a neighborhood of (0, 0) contains almost
all the points of almost all the columns.)

(1) Show that no sequence (xk) in X \ {(0, 0)} converges to (0, 0). Conclude that X is not
first-countable.

(2) X is neither connected nor locally connected.
(3) X is lindelöf.
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MATH 262. FINAL EXAM. 4/22/96

Work out 4 problems from Part I and 3 from Part II. Each problem of the first part is worth 5
points, and 6 points each one of the second.

Part I

1. Let X be a T1-space. Then every connected subset of X containing more than one point is
infinite.

2. True or false? Let f : R → R be the function f(x) = ex. Then f extends to a continuous function
F : βR → R.

3. A connected normal space having more than one point is uncountable.

4. Let D ⊂ [0, 1]N be the subspace of nondecreasing sequences. If N has the discrete topology, is D
compact in the compact-open topology?

5. Show that every second countable space is separable, but the converse is false.

Part II

6. Suppose that X and Y are topological spaces. Let C(X,Y ) be the space of continuous functions
from X into Y with the compact-open topology. For each y ∈ Y , let cy : X → Y denote the constant
function cy(x) = y. Let j : Y → C(X,Y ) be the map j(y) = cy.

(1) The map j is an embedding of Y into C(X,Y ).
(2) If Y is hausdorff, then j(Y ) is closed.

7. A space X is called symmetric if x ∈ {y}− implies y ∈ {x}−.

(1) Every T3-space is symmetric.
(2) A symmetric T4-space must be T3.

8. Let X be the interval [−1, 1] with the following topology. A subset of X is open if and only if
either does not contain {0} or does contain (−1, 1).

(1) X is compact. Is it locally compact?
(2) X is locally connected and locally path-connected. What are the components of X?

9. Let X be an infinite set and let 0 be a particular point of X. Define a topology on X by declaring
open any set whose complement either is finite or contains 0.

(1) If A, B are subsets of X such that A ∩ B− = B ∩ A− = ø, then they can be separated by
disjoint open sets.

(2) X is metrizable if and only if it is a countable set.
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