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Figure C.7.1. Random frog

If the behavior of the frog is accepted as a discrete version of the move-
ment of a Brownian particle, then it is reasonable to expect that the solution
to the Dirichlet problem on a bounded domain D of the manifold X with
boundary data ϕ will be given by

f(x) = Ex [ϕ(ω(TD(ω)))]

where TD is the first exit time from D.

The random frog will now be put to work toward a solution to the Poisson
problem, submitting her to the following process. Positioned at time 0 at
the point (mq, nq), let her jump at will (at discrete times t = 0, 1, 2 . . . ) to
one of the neighbouring lily pads with the same probability as before. If at
time T she hits a boundary pad, then assign the first exit time T = T (ω)
to the sample Brownian path. While it may or may not be possible to
explicitely compute the expectation E(m,n)[T ], it turns out that it satisfies
an important identity.

As before, if the frog is at (mq, nq) at time t, then at time t + 1 she is
going to be at one of the neighboring lilies (m′q, n′q) = ((m+ s)q, (n+ s)q)
with probability 1/4. It follows that

E(m,n)[T ] =

(

∑

−1≤r,s≤1

prsE(m+r,m+s)[T ]

)

+ 1.

Equivalently, the function f(mq, nq) = E(m,n) [T ] satisfies the equation

4f(mq, nq) = −1


