Foliations II

Alberto Candel

Lawrence Conlon

California State University at Northridge, Northridge, CA 91330

Washington University, St. Louis, MO 63130

1991 Mathematics Subject Classification. 57R30
The first author was supported by NSF grants DMS-9973086 and DMS-0049077.
To our wives Juana and Jackie

Contents

Preface		vii
Part 1. A	analysis and Geometry on Foliated Spaces	
Foreword t	to Part 1	3
Chapter 1.	The C^* -Algebra of a Foliated Space	5
§1.1. T	wisted Forms and Densities	6
§1.2. F	unctions on non-Hausdorff Spaces	8
§1.3. T	The Graph of a Foliated Space	11
§1.4. T	The C^* -algebra of a Foliated Space	18
§1.5. T	The Basic Examples	27
§1.6. G	Quasi-invariantCurrents	37
§1.7. R	depresentations of the Foliation C^* -algebra	48
§1.8. N	finimal Foliations and their C^* -algebras	54
Chapter 2.	Harmonic Measures for Foliated Spaces	61
§2.1. E	Existence of Harmonic Measures	62
§2.2. T	The Diffusion Semigroup	68
§2.3. T	The Markov Process	80
§2.4. C	Characterizations of Harmonic Measures	86
§2.5. T	The Ergodic Theorem	96
§2.6. E	Ergodic Decomposition of Harmonic Measures	99
§2.7. R	Recurrence	112

iii

iv Contents

Chapter	3. Generic Leaves	121
$\S 3.1.$	The Main Results and Examples	121
$\S 3.2.$	The Holonomy Graph	124
$\S 3.3.$	Proof of the Theorems	130
$\S 3.4.$	Generic Geometry of Leaves	133
Part 2.	Characteristic Classes and Foliations	
Forewor	d to Part 2	141
Chapter	4. The Euler Class of Circle Bundles	143
$\S 4.1.$	Generalities about Bundles	144
$\S 4.2.$	Cell Complexes	146
$\S 4.3.$	The First Obstruction	150
$\S 4.4.$	The Euler Class	157
$\S 4.5.$	Foliated Circle Bundles	166
$\S 4.6.$	Further Developments	176
Chapter	5. The Chern-Weil Construction	179
$\S 5.1.$	The Chern-Weil Homomorphism	180
$\S 5.2.$	The Structure of $I_n^*(\mathbb{K})$	183
$\S 5.3.$	Chern Classes and Pontryagin Classes	186
Chapter	6. Characteristic Classes and Integrability	189
$\S 6.1.$	The Bott Vanishing Theorem	189
$\S 6.2.$	The Godbillon-Vey Class in Arbitrary Codimension	194
$\S 6.3.$	Construction of the Exotic Classes	196
$\S 6.4.$	Haefliger Structures and Classifying Spaces	202
Chapter	7. The Godbillon-Vey Classes	211
$\S 7.1.$	The Godbillon Class and Measure Theory	211
$\S 7.2.$	Proper Foliations	234
$\S 7.3.$	Codimension One	236
$\S 7.4.$	Quasi-polynomial Leaves	241
Part 3.	Foliated 3-Manifolds	
Forewor	d to Part 3	253
Chapter	8. Constructing Foliations	255
§8.1.	Orientable 3-Manifolds	256

Contents

$\S 8.2.$	Open Book Decompositions	263
$\S 8.3.$	Nonorientable 3-Manifolds	264
$\S 8.4.$	Raymond's Theorem	267
$\S 8.5.$	Thurston's Construction	276
Chapter	9. Reebless Foliations	287
$\S 9.1.$	Statements of Results	288
$\S 9.2.$	Poincaré-Bendixson Theory and Vanishing Cycles	292
$\S 9.3.$	Novikov's Exploding Disk	302
$\S 9.4.$	Completion of the Proofs of Novikov's Theorems	309
$\S 9.5.$	The Roussarie-Thurston Theorems	314
Chapter	10. Foliations and the Thurston Norm	327
§10.1.	Compact Leaves of Reebless Foliations	328
$\S 10.2.$	Knots, links, and genus	335
$\S 10.3.$	The norm on real homology	342
$\S 10.4.$	The unit ball in the Thurston norm	347
$\S 10.5.$	Foliations without holonomy	357
Chapter	11. Disk Decomposition and Foliations of Link Complements	s 363
§11.1.	A Basic Example	363
$\S 11.2.$	Sutured Manifolds	366
§11.3.	Operations on Sutured Manifolds	369
§11.4.	The Main Theorem	378
§11.5.	Applications	387
§11.6.	Higher Depth	399
Appendi	\times A. C^* -Algebras	401
§A.1.	Bounded operators	401
$\S A.2.$	Measures on Hausdorff spaces	402
§A.3.	Hilbert spaces	405
\S A.4.	Topological spaces and algebras	408
$\S A.5.$	C^* -algebras	410
\S A.6.	Representations of Algebras	412
§A.7.	The Algebra of Compact Operators	417
\S A.8.	Representations of $C_0(X)$	420
$\S A.9.$	Tensor products	422
8A.10.	von Neumann algebras	424

vi Contents

Annendi	x B. Riemannian Geometry and Heat Diffusion	427
§B.1.	Geometric Concepts and Formulas	427
§B.2.	Estimates of Geometric Quantities	430
§B.3.	Basic function theory	434
§B.4.	Regularity Theorems	435
§B.5.	The Heat Equation	438
§B.6.	Construction of the Heat Kernel	440
§B.7.	Estimates for the Heat Kernel	447
0	The Green Function	447
§B.8.		449
§B.9.	Dirichlet Problem and Harmonic Measure	
§B.10.	Diffusion and Resolvent	455
Appendi	x C. Brownian Motion	463
§C.1.	Probabilistic Concepts	463
§C.2.	Construction of Brownian Motion	467
§C.3.	The Markov Process	471
§C.4.	Continuity of Brownian Paths	476
$\S C.5.$	Stopping Times	479
§C.6.	Some Consequences of the Markov Property	482
§C.7.	The Discrete Dirichlet and Poisson Problems	485
§C.8.	Dynkin's Formula	488
§C.9.	Local Estimates of Exit Times	494
Appendi	x D. Planar Foliations	499
§D.1.	The Space of Leaves	499
§D.2.	Basic Isotopies	503
§D.3.	The Hausdorff Case	508
§D.4.	Decomposing the Foliation	512
§D.5.	Construction of the Diffeomorphism	516
Appendi	x. Bibliography	529
Appendi	x. Index	539

Figure C.7.1. Random frog

If the behavior of the frog is accepted as a discrete version of the movement of a Brownian particle, then it is reasonable to expect that the solution to the Dirichlet problem on a bounded domain D of the manifold X with boundary data φ will be given by

$$f(x) = E_x \left[\varphi(\omega(T_D(\omega))) \right]$$

where T_D is the first exit time from D.

The random frog will now be put to work toward a solution to the Poisson problem, submitting her to the following process. Positioned at time 0 at the point (mq, nq), let her jump at will (at discrete times t = 0, 1, 2...) to one of the neighbouring lily pads with the same probability as before. If at time T she hits a boundary pad, then assign the first exit time $T = T(\omega)$ to the sample Brownian path. While it may or may not be possible to explicitly compute the expectation $E_{(m,n)}[T]$, it turns out that it satisfies an important identity.

As before, if the frog is at (mq, nq) at time t, then at time t+1 she is going to be at one of the neighboring lilies (m'q, n'q) = ((m+s)q, (n+s)q) with probability 1/4. It follows that

$$E_{(m,n)}[T] = \left(\sum_{-1 \le r,s \le 1} p_{rs} E_{(m+r,m+s)}[T]\right) + 1.$$

Equivalently, the function $f(mq, nq) = E_{(m,n)}[T]$ satisfies the equation

$$\triangle f(mq, nq) = -1$$