
Math 512A. 2nd Midterm Solutions

Problem 1. (i) Define the concepts “upper bound” and
“infimum” for a set of real numbers.

(ii) If A 6= ∅ is bounded below, let B be the set of all lower
bounds of A. Prove that B 6= ∅, that B is bounded above,
and that supB = inf A.

Solution. (ii) The set B 6= ∅ because A is bounded below (any
lower bound for A is in B). Because A is nonempty, there is a
in A, and this a satisfies y ≤ a for all y in B. Because of this,
y ≤ x for all x in A and all y in B, and thus supB ≤ inf A.

If supB < inf A, then there is a number x such that
supB < x < inf A. The inequality supB < x implies that
b < x for all b in B and thus that x is not in B. The in-
equality x < inf A implies that x < a for all a in A, and thus
that x is a lower bound for A. Therefore x is in B. But this
contradicts the inequality sup B < x as noted.

Problem 2. (i) Give an example of a continuous function
on (0, 1) which is bounded but attains neither a maxi-
mum value nor a minimum value.

(ii) Suppose that f is continuous on R, and that for any
number M there exists δ > 0 such that f(x) > M if
|x| > δ. Prove that f attains a minimum value.

Solution. (i) The function f(x) = x for x in (0, 1) has
sup{f(x) | 0 < x < 1} = 1 and inf{f(x) | 0 < x < 1} = 0,
but 0 < f(x) < 1 for all x in (0, 1).

(ii) Take M = f(0) and let δ be such that f(x) > f(0) for
|x| > δ. The function f is continuous on the compact interval
[−δ, δ], so f attains a minimum value in that interval; that is,
there is y in [−δ, δ] such that f(x) ≥ f(y) for all x in [−δ, δ].
In particular, f(0) ≥ f(y) and thus f(x) ≥ f(0) ≥ f(y) for
all x such that |x| > δ also.

Note. This proof was done in class for polynomials of even
degree.

Problem 3. (i) Define the concept “uniformly continuous
function.”

(ii) Prove that f(x) =
√

x is uniformly continuous on (1,∞).

Proof. (ii) If x, y > 1, then
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Therefore, given ε > 0, take δ = 2ε. If |x − y| < δ, then
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Problem 4. (i) State the Bolzano-Weierstrass Theorem.
(This includes defining the concepts in the statement of
this theorem.)

(ii) Construct the Cantor set C, and prove that C is compact.

Problem 5. (i) State the Intermediate Value Theorem.

(ii) Prove that if f is continuous on an interval J and f(x)
is rational for any x in J , then f is constant on J .

Solution. (ii) If f is not constant on J , then there are numbers
a and b in J such that f(a) 6= f(b). The Intermediate Value
Theorem implies that for any number y between f(a) and f(b)
there is a number x between a and b such that f(x) = y. This
contradicts the hypothesis that f takes on rational numbers
only, because between f(a) and f(b) there is at least one
number y which is not rational.

Problem 6. (i) For a function f and a point a in the do-
main of f , define the concepts “f is differentiable at a”
and “derivative of f at a.”

(ii) Let f(x) = |x|3. Find f ′(x) and f ′′(x), and find all num-
bers x for which f ′′′(x) exists. (To be sure, f ′′ is the
derivative of f ′, and f ′′′ is the derivative of f ′′, whenever
they exist.)

Solution. (ii) Note that f(x) = x3 if x ≥ 0 and f(x) = −x3

is x < 0. Thus we immediately have f ′(x) = 3x2 if x > 0 and
f ′(x) = −3x2 if x < 0. For x = 0, we find

lim
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f(0 + h)− f(0)
h
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h
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h|h| = 0.

and we obtain that f ′(x) = 3x|x|.
From the above we find that f ′′(x) = 6x if x > 0 and

f ′′(x) = −6x if x < 0. For x = 0, we compute f ′′(0) using
the definition of derivative:

f ′′(0) = lim
h→0

f ′(h)− f ′(0)
h

= lim
h→0

3h|h|
h

0,

and we obtain f ′′(x) = 6|x| for all x.

It follows by similar arguments that f ′′′(x) = 6
|x|
x

if x 6= 0,

and that f ′′′(0) does not exist.

Problem 7. (i) State Rolle’s Theorem and the Mean Value
Theorem.

(ii) Let a 6= 0 and n be even. Prove that the polynomial
equation xn + an = (x + a)n has exactly one (real) solu-
tion.

Solution. (ii) Note first that if n is even, then n − 1 > 1 is
odd and the function g(x) = nxn−1 is strictly increasing (in
particular, one-one).

Let f(x) = (x + a)n − xn − an. If f(x0) = 0 for some
x0 6= 0, then f ′(c) = 0 for some c between 0 and x0, by
Rolle’s Theorem. But f ′(x) = n(x + a)n−1 − nxn−1, so that
f ′(c) = 0 implies that g(c + a) = g(c), contradicting that g is
one-one.


