Math 512A. Homework 9. Solutions

Problem 1. (i) Suppose that g(x) = f(x+c) for all x. Prove, starting from the definition of the derivative, that g'(x) = f'(x+c) for all x.

- (ii) Prove that if g(x) = f(cx), then $g'(x) = c \cdot f'(cx)$.
- (iii) Suppose that f is differentiable and periodic, with period a, i.e., f(x+a)=f(x) for all x. Prove that f' is also periodic with period a.
- (iv) (Not required) Prove that if f is even, i.e., f(x) = f(-x), then f'(x) = -f'(-x).
- (v) (Not required) Prove that if f is odd, i.e., f(-x) = -f(x), then f'(x) = f'(-x).

Solution. (i) According to the definition.

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h+c) - f(x+c)}{h} \quad \text{because } g(y) = f(y+h)$$

$$= f'(x+c)$$

(ii) By the definition

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(cx+ch) - f(cx)}{h}$$

$$= \lim_{h \to 0} c \frac{f(cx+ch) - f(cx)}{ch}$$

$$= c \lim_{k \to 0} \frac{f(cx+k) - f(cx)}{k} \quad \text{make } k = ch$$

$$= cf'(cx)$$

(iii) Follows directly from (i).

Problem 2. (i) Let $f(x) = x^2$ if x is rational, and f(x) = 0 if x is irrational. Prove that f is differentiable at 0.

- (ii) Let f be a function such that $|f(x)| \le x^2$ for all x. Prove that f is differentiable at 0.
- (iii) (Not required) Let $\alpha > 1$. Prove that if f satisfies $|f(x)| \leq |x|^{\alpha}$, then f is differentiable at 0.

Solution. (i) We compute

$$\frac{f(0+h) - f(0)}{h} = \begin{cases} h, & h \text{ is rational} \\ 0, & h \text{ is irrational} \end{cases}$$

It follows that $\lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = 0$, so that f is differentiable at 0 and f'(0) = 0.

(ii) It follows from $|f(x)| \le x^2$ that $-x^2 \le f(x) \le x^2$ and f(0) = 0, so that

$$-h \le \frac{f(h) - f(0)}{h} \le h$$

and hence that f is differentiable at 0 and f'(0) = 0.

Problem 3. Suppose that a and b are two consecutive roots of the polynomial function f, but that a and b are not double roots, so that we can write f(x) = (x-a)(x-b)g(x) where $g(a) \neq 0$ and $g(b) \neq 0$.

- (i) Prove that g(a) and g(b) have the same sign.
- (ii) Prove that there is some number x with a < x < b and f'(x) = 0.
- (iii) (Not required) Prove that (ii) holds true even if a and b are multiple roots. Hint: If $f(x) = (x-a)^n (x-b)^m g(x)$ where $g(a) \neq 0$ and $g(b) \neq 0$, consider the polynomial function $h(x) = f'(x)/(x-a)^{n-1}(x-b)^{m-1}$.

Solution. (i) If g(a) and g(b) have opposite sign, then, by the Intermediate Value Theorem, there is c in (a, b) such that g(c) = 0. Then f(c) = 0 also, contradicting that a and b are consecutive roots of f.

(ii) Because a and b are roots of f, f(a) = f(b) = 0. Moreover, f is continuous on [a, b] and differentiable on (a, b) because it is a polynomial. Thus Rolle's Theorem implies that f'(x) = 0 for some x in (a, b).

Note that the derivative f'(x) = (x-a)g(x) + (x-b)g(x) + (x-a)(x-b)g'(x), so that $f'(a) = (a-b)g(a) \neq 0$ and $f'(b) = (b-a)g(b) \neq 0$.

Problem 4. (i) If $a_1 < a_2 < \cdots < a_n$, find the minimum value of $f(x) = \sum_{i=1}^{n} (x - a_i)^2$.

- (ii) Find the minimum value of $f(x) = \sum_{i=1}^{n} |x a_i|$.
- (iii) (Not required) Let a > 0. Prove that the maximum value of

$$f(x) = \frac{1}{1+|x|} + \frac{1}{1+|x-a|}$$

is (2+a)/(1+a).

Solution. Done in class. \Box

Problem 5. (i) Suppose that $|f(x) - f(y)| \le |x - y|^{\alpha}$ for some $\alpha > 1$. Prove that f is constant.

(ii) Find a function f other than a constant function such that $|f(x) - f(y)| \le |x - y|$

Solution. (i) Becasue $\alpha > 1$, this inequality implies that f'(x) = 0 for all x:

$$|f'(x)| = \lim_{y \to 0} \frac{|f(x) - f(y)|}{|x - y|} \le \lim_{y \to 0} |x - y|^{\alpha - 1} = 0.$$

(ii)
$$f(x) = x/2$$
.