Math 512A. Homework 9. Due 11/14/07

(Revised 11/10)

Problem 1. (i) Suppose that g(x) = f(x+c) for all x. Prove, starting from the definition of the derivative, that g'(x) = f'(x+c) for all x.

- (ii) Prove that if g(x) = f(cx), then $g'(x) = c \cdot f'(cx)$.
- (iii) Suppose that f is differentiable and periodic, with period a, i.e., f(x+a) = f(x) for all x. Prove that f' is also periodic with period a.
- (iv) (Not required) Prove that if f is even, i.e., f(x) = f(-x), then f'(x) = -f'(-x).
- (v) (Not required) Prove that if f is odd, i.e., f(-x) = -f(x), then f'(x) = f'(-x).

Problem 2. (i) Let $f(x) = x^2$ if x is rational, and f(x) = 0 if x is irrational. Prove that f is differentiable at 0.

- (ii) Let f be a function such that $|f(x)| \leq x^2$ for all x. Prove that f is differentiable at 0.
- (iii) (Not required) Let $\alpha > 1$. Prove that if f satisfies $|f(x)| \leq |x|^{\alpha}$, then f is differentiable at 0.

Problem 3. Suppose that a and b are two consecutive roots of the polynomial function f, but that a and b are not double roots, so that we can write f(x) = (x - a)(x - b)g(x) where $g(a) \neq 0$ and $g(b) \neq 0$.

- (i) Prove that g(a) and g(b) have the same sign.
- (ii) Prove that there is some number x with a < x < b and f'(x) = 0.
- (iii) (Not required) Prove that (ii) holds true even if a and b are multiple roots. Hint: If $f(x) = (x-a)^n (x-b)^m g(x)$ where $g(a) \neq 0$ and $g(b) \neq 0$, consider the polynomial function $h(x) = f'(x)/(x-a)^{n-1}(x-b)^{m-1}$.

Problem 4. (i) If $a_1 < a_2 < \cdots < a_n$, find the minimum value of $f(x) = \sum_{i=1}^{n} (x - a_i)^2$.

- (ii) Find the minimum value of $f(x) = \sum_{i=1}^{n} |x a_i|$.
- (iii) (Not required) Let a > 0. Prove that the maximum value of

$$f(x) = \frac{1}{1+|x|} + \frac{1}{1+|x-a|}$$

1

is (2+a)/(1+a).

Problem 5. (i) Suppose that $|f(x) - f(y)| \le |x - y|^{\alpha}$ for some $\alpha > 1$. Prove that f is constant.

(ii) Find a function f other than a constant function such that $|f(x) - f(y)| \le |x - y|$