Math 512A. Homework 8 Solutions

Problem 1. Find the maximum value of $f(x) = x^3 - 9x$ in the interval [-3, 3]. Note: No derivatives!

Solution. This was done in class. \Box

Problem 2. Find an integer n such that the polynomial equation $x^3 - x + 3 = 0$ has a solution between n and n+1.

Solution. We have $(-2)^3 - (-2) + 3 = -3$ and $(-1)^3 - (-1) + 3 = 1$, so there is a solution to the equation $x^3 - x + 3$ between n = -2 and n + 1 = -1.

Problem 3. Prove that there is some number x such that $\sin x = x - 1$.

Solution. Let $f(x) = x - 1 - \sin x$. Then f(0) = -1 < 0 and $f(\pi/2) = \pi/2 > 0$, so there is x in $(0, \pi/2)$ such that f(x) = 0, or $\sin x = x - 1$.

Problem 4. (i) Suppose that f is continuous on the interval [0,1] and that $0 \le f(x) \le 1$ for all x in [0,1]. Prove that f(x) = x for some number x in [0,1].

(ii) Let f be continuous and bounded above and below on \mathbf{R} . Prove that there is some number x such that f(x) = x.

Solution. If f(0) = 0 or if f(1) = 1, then we are done. If not, then f(0) > 0 and f(1) < 1. Let g(x) = x - f(x). Then g is continuous on [0,1], g(0) = -f(0) < 0 and g(1) = 1 - f(1) > 0. By the intermediate Value Theorem there is x in [0,1] such that g(x) = 0, or f(x) = x.

(ii) If f is bounded below and above on \mathbf{R} , then there are numbers a and b such that a < f(x) < b for all x. The continuous function g(x) = x - f(x) satisfies g(a) < 0 < g(b). Apply the Intermediate Value Theorem to g on [a,b].

Problem 5. A function f defined on an interval I has the Intermediate Value Property on I if for any two numbers a < b in I and every y strictly between f(a) and f(b), there is c in (a, b) such that f(c) = y.

- (i) Prove that the function f given by $f(x) = \sin 1/x$ if $x \neq 0$ and f(0) = 0 has the Intermediate Value Property on the interval [0, B], for any B > 0.
- (ii) Prove that if f is non decreasing on the interval I and has the Intermediate Value Property on I, then f is continuous on I. (Recall that f is said to be non decreasing on I if $f(x) \le f(y)$ whenever x < y in I.)

Solution. (i) If 0 < a < b are two numbers in [0, B], then we apply the Intermediate Value Theorem to $f(x) = \sin 1/x$ on the interval [a, b] because f is continuous on [a, b].

If 0 = a < b and x is strictly between 0 = f(0) and f(b), let n be a natural number such that $2/b < (2n+1)\pi$ so that the interval $J = [2/(2n+3)\pi, 2/(2n+1)\pi]$ is contained in [0,b]. The function $f(x) = \sin 1/x$ is continuous on J and takes on the values 1 and -1 at the endpoints of J. Since $-1 \le f(x) \le 1$, the Intermediate Value Theorem applied to f on J implies that given any g such that g is strictly between g and g in g and g in g and g in g satisfies g is a desired.

(ii) Suppose that there is a in I where f fails to be continuous. Then there is a sequence (x_n) in I such that $x_n \to a$ but $f(x_n)$ does not converge to f(a). We may assume, by taking a subsequence if necessary, that x_n increases (or decreases) to a. Then $f(x_n)$ is non decreasing and bounded above by f(a), thus it converges to a number p with p < f(a). Let q be a number such that p < q < f(a). For each x_n we have $f(x_n) \le p < q$, so the intermediate value property of f on the interval $[x_n, a]$ implies the existence of y_n in (x_n, a) such that $f(y_n) = q$. The sequence (y_n) converges to a and $f(y_n) = q$ for all n. Since x_n also converges to a, given n there is m such that $y_n < x_m$, but $f(y_n) = q > p \ge f(x_m)$, contradicting that f is non decreasing.