1 Math 512A. Homework 5 Solutions

(i) Define "countable set." Problem 1.

(ii) Determine (either prove or give a counterexample) whether the following statements are true: (a) The union of two uncountable sets is uncountable. (b) The intersection of two uncountable sets is uncountable.

Solution. (ii) (a) True. If $A \cup B$ is countable, then there is a one-one mapping $f: A \cup B \to \mathbb{N}$. The composite $f \circ i: A \to \mathbb{N}$ $A \cup B \to \mathbf{N}$ is one-one, and hence A is countable. (b) False. $A = (-\infty, 1]$ and $B = [1, \infty)$ are uncountable but $A \cap B = \{1\}$ is countable.

(i) Define " $\lim_{n\to\infty} a_n = l$." Problem 2.

(ii) Prove, using the definition in (i), that $a_n = \frac{2n-1}{n+3}$ converges to l=2.

Solution. (ii) Given $\varepsilon > 0$, let $N = \max\{2, 7/\varepsilon - 2\}$. If n > N, then

$$\left|\frac{2n-1}{n+3}-2\right| = \frac{7}{N+3} < \varepsilon.$$

Problem 3. Let a_n be the Fibonacci sequence, $a_1 = a_2 = 1$, $a_{n+2} = a_n + a_{n+1}$.

- (i) If $r_n = \frac{a_{n+1}}{a_n}$, then prove that $r_{n+1} = 1 + \frac{1}{r_n}$.
- (ii) Prove that $r = \lim_{n \to \infty} r_n$ exists, and $r = 1 + \frac{1}{r}$. Conclude that $r = \frac{1 + \sqrt{5}}{2}$.

Solution. (i) By definition, $a_{n+2} = a_{n+1} + a_n$. If $r_n = \frac{a_{n+1}}{a}$, then

$$r_{n+1} = \frac{a_{n+2}}{a_{n+1}} = \frac{a_{n+1} + a_n}{a_{n+1}} = 1 + \frac{a_n}{a_{n+1}} = 1 + \frac{1}{r_n}.$$

(ii) After looking at the first few terms of the sequence $(r_n) = (1, 2, 3/2, 5/3, 8/5, ...)$, we conjecture that the subsequence of (r_n) given by the terms with even indexes, (r_{2n}) , is decreasing and that with odd indexes, (r_{2n-1}) , is increasing. This is in fact true and can be proved by induction, using (i). To start, we have $r_1 < r_3$ and $r_4 < r_2$. If we know that $r_{2n} < r_{2n-2}$, then $r_{2n-1} = 1 + \frac{1}{r_{2n-2}} < 1 + \frac{1}{r_{2n}} = r_{2n+1}$, and similarly, if $r_{2n-1} < r_{2n+1}$, then $r_{2n+2} < r_{2n}$.

Furthermore, the sequences (r_{2n}) and (r_{2n-1}) are bounded because (r_n) is bounded on account of the identity proved in (i):

$$1 \le r_{n+1} = 1 + \frac{r_{n-1}}{r_{n-1} + 1} \le 2.$$

Let $r_e = \lim_{n \to \infty} r_{2n}$ and $r_o = \lim_{n \to \infty} r_{2n-1}$. Then, by the properties of limits and the identities

$$r_{2n} = 1 + \frac{1}{r_{2n-1}}$$
 and $r_{2n+1} = 1 + \frac{1}{r_{2n}}$

we have

$$r_e = 1 + \frac{1}{r_o}$$
 and $r_o = 1 + \frac{1}{r_e}$

or $r_e r_o = r_e + 1 = r_o + 1$. Therefore, the limit $\lim r_n = r$ exists (Why?) and $r = r_e = r_o$ satisfies $r = 1 + \frac{1}{r}$, or $r^2 - r - 1 = 0$.

Since r is positive, it must equal the positive solution of the quadratic equation $x^2 - x - 1 = 0$, that is, $r = \frac{1 + \sqrt{5}}{2}$.

Problem 4. (i) Find all the accumulation points of the set $S = \left\{ \frac{1}{n} + \frac{1}{m} \mid n \text{ and } m \text{ in } \mathbf{N} \right\}$

(ii) Prove that p is an accumulation point of a set $S \subset \mathbb{R}^n$ if and only if every ball about p contains infinitely many points of S.

Solution. (i) The accumulation points of S are $0, 1, 1/2, 1/3, \ldots$ Indeed, each of the numbers $\frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} + \frac{1}{m}$, and 0 = 1

 $\lim_{n \to \infty} \frac{1}{n} + \frac{1}{n}$. In each case the point is limit of a sequence whose terms are all in S and are distinct from the point itself.

We prove that those are the only accumulation points of S. Suppose that $x \neq 0, 1, 1/2, \cdots$ is an accumulation point of S. Then there is a sequence (s_n) in S such that s_n converges to x and $s_n \neq x$ for all n. Each $s_n = 1/p_n + 1/q_n$ for some natural numbers p_n and q_n , with $p_n \leq q_n$. If the sequence (q_n) is bounded above, then so is the sequence p_n , and thus there are natural number p and q such that $p_n = q$ and $q_n = q$ for infinitely many p. This implies that $s_n = 1/p + 1/q$ for infinitely many p. Since a subsequence of a convergent sequence converges to the same limit, this forces $s_n = 1/p + 1/q = x$ for infinitely many p, which is a contradiction. Thus p has a subsequence p which is strictly increasing, hence such that p converges to 0. If the corresponding subsequence of natural numbers p is bounded above, then it has a constant subsequence p for some natural number p, which implies that p converges to p and thus that p again a contradiction. Therefore p has a strictly increasing subsequence p which implies that p and thus p and thus p and thus p and contradiction.

- **Problem 5.** (i) Let a_n be a bounded injective sequence of real numbers. Prove that if p is the only accumulation point of the set $A = \{a_n \mid n \text{ in } \mathbb{N}\}$, then the sequence a_n converges and $\lim_{n \to \infty} a_n = p$.
 - (ii) Show by a counterexample that this property is not true for unbounded sequences.

Solution. (i) Suppose that a_n does not converge to p. Then there is $\varepsilon > 0$ such that for every natural number k, there is $n_k > k$ such that $|a_{n_k} - p| \ge \varepsilon$. The sequence (a_{n_k}) is a subsequence of (a_n) and thus it is bounded. Therefore it has a subsequence $(a_{n_{k_l}})$ which converges to a point $q \ne p$ (because $|a_{n_{k_l}} - p| > \varepsilon$). Because the sequence (a_n) is injective, all elements of this subsequence are distinct and therefore q is an accumulation point of the set A.

Note. If "injective" is not assumed, then (i) may not be true. Let $a_n = 1$ is n is odd and $a_n = 1/n$ if n is even. Then the set $A = \{a_n\} = \{1, 1/2, 1/4, 1/6, \dots\}$ has only one accumulation point, namely 0, but the original sequence a_n does not converge to 0 (or to any other number).

(ii) Let $a_n = n$ if n is odd and $a_n = 1/n$ if n is even. The sequence (a_n) is unbounded and 0 is the only accumulation point of the set $A = \{a_n\} = \{1, 1/2, 3, 1/4, 5, 1/6, \dots\}$.

Problem 6. (i) Define the concept "bounded sequence."

- (ii) Prove that a set $S \subset \mathbf{R}$ is bounded if and only if every sequence of points in S has a convergent subsequence.
- Solution. (i) A sequence (x_n) is bounded if there is a number M such that $|x_n| \le M$ for all n.
- (ii) Assume that $S \subset \mathbf{R}$ is bounded. If (x_n) is a sequence in S, then (x_n) is bounded and thus it has a convergent subsequence.

Assume that *S* is not bounded. Then for any integer *n* there is an x_n in *S* such that $|x_n| > n$. Since any convergent sequence is bounded, the sequence (x_n) cannot have a convergent subsequence.

Problem 7. (i) Define the concept "f is a continuous function at the point p."

(ii) Let $f : \mathbf{R} \to \mathbf{R}$ be the function given by f(x) = x if x is rational, and f(x) = -x if x is irrational. Prove that f is continuous only at p = 0.

Solution. (i) f is continuous at p if for every $\varepsilon > 0$ there is $\delta > 0$ such that if $0 < |x - p| < \delta$ and x is in the domain of f, then $|f(x) - f(p)| < \varepsilon$.

The following equivalent version of continuity will be used bellow: f if continuous at p if and only if $f(x_n) \to f(p)$ for any sequence (x_n) in domain f such that $x_n \to p$.

(ii) f is continuous at 0. Given $\varepsilon > 0$, take $\delta = \varepsilon$. If $|x| < \delta$, then

$$|f(x) - f(0)| = |f(x)| = |x| < \delta = \varepsilon.$$

If $p \neq 0$, then f is not continuous at p. Indeed, if p is not rational there is a sequence p_n of rational numbers such that $p_n \to p$, and if p is rational, there is a sequence of irrational numbers $p_n \to p$ (for example, $p_n = p + \sqrt{2}/n$). In either case, $\lim_{n \to \infty} f(p_n) = -p$, which is $\neq p$ for $p \neq 0$.

Problem 8. (i) If $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ do not exist, can $\lim_{x \to a} [f(x) + g(x)]$ or $\lim_{x \to a} (f \cdot g)(x)$ exist?

- (ii) If $\lim_{x \to a} f(x)$ exists and $\lim_{x \to a} [f(x) + g(x)]$ exists, must $\lim_{x \to a} g(x)$ exist?
- (iii) If $\lim_{x \to a} f(x)$ exists and $\lim_{x \to a} g(x)$ does not exist, can $\lim_{x \to a} [f(x) + g(x)]$ exist?
- (iv) If $\lim_{x \to a} f(x)$ exists and $\lim_{x \to a} f(x)g(x)$ exists, does it follow that $\lim_{x \to a} g(x)$ exists?

Solution. (i) Yes. Let f(x) = 1 if x is rational and f(x) = -1 if x is not rational, and let g = -f. Then f(x) + g(x) = 0 for all x, and f(x)g(x) = -1 for all x.

- (ii) Yes. Write g(x) = (f(x) + g(x)) f(x). Each of the terms f(x) + g(x) and f(x) on the right side has limit when $x \to a$, so their difference also has limit when $x \to a$.
 - (iii) No. Apply (ii).
- (iv) No. Let f(x) = 0 for all x and let g(x) = 1 if x is rational and g(x) = -1 if x is not rational. Then, for any a, f(x) and f(x)g(x) = 0 both have limit when $x \to a$, but g(x) does not have limit when $x \to a$.

Problem 9. (i) Define the concepts "closed set" and "closure of a set."

- (ii) Prove that the closure of a set $S \subset \mathbf{R}^n$ is the smallest closed subset of \mathbf{R}^n which contains S.
- Solution. (i) A set is closed if it contains all its boundary points. The closure of a set S is $\overline{S} = S \cup \partial S$.
 - (ii) By definition, the closure of *S* is $\overline{S} = S \cup \partial S$, hence \overline{S} contains *S*.

We show that \overline{S} is closed. Let p be point in of $\partial \overline{S}$, the boundary of \overline{S} . Then every ball around p intersects \overline{S} and its complement \overline{S}^c . Hence there is a sequence (x_n) in \overline{S} such that $|x_n - p| < 1/n$ for all n. Because x_n is in \overline{S} , there is y_n in S such that $|y_n - x_n| < 1/n$. Then, by the triangle inequality, $|y_n - p| \le |y_n - x_n| + |x_n - p| < 2/n$. Thus p is in \overline{S} because the (y_n) is in S and converges to p.

We show that \overline{S} is the smallest closed set containing S, that is, if T is closed and $S \subset T$, then $\overline{S} \subset T$. Assume this was not the case. Then there is p in \overline{S} which is also in T^c . In particular, p is not in S. Moreover, since T^c is open, there is a ball around p which is completely contained in T^c . This ball cannot intersect S because $S \subset T$, and this p cannot be a boundary point of S. Hence p is not in $S \cup \partial S = \overline{S}$, a contradiction.