
1 Math 512A. Homework 5 Solutions
Problem 1. (i) Define “countable set.”

(ii) Determine (either prove or give a counterexample) whether the following statements are true: (a) The union of two
uncountable sets is uncountable. (b) The intersection of two uncountable sets is uncountable.

Solution. (ii) (a) True. If A ∪ B is countable, then there is a one-one mapping f : A ∪ B → N. The composite f ◦ i : A →
A ∪ B → N is one-one, and hence A is countable. (b) False. A = (−∞, 1] and B = [1,∞) are uncountable but A ∩ B = {1} is
countable. �

Problem 2. (i) Define “ lim
n→∞

an = l.”

(ii) Prove, using the definition in (i), that an =
2n − 1
n + 3

converges to l = 2.

Solution. (ii) Given ε > 0, let N = max{2, 7/ε − 2}. If n > N, then∣∣∣∣∣2n − 1
n + 3

− 2
∣∣∣∣∣ = 7

N + 3
< ε.

�

Problem 3. Let an be the Fibonacci sequence, a1 = a2 = 1, an+2 = an + an+1.

(i) If rn =
an+1

an
, then prove that rn+1 = 1 +

1
rn

.

(ii) Prove that r = lim
n→∞

rn exists, and r = 1 +
1
r

. Conclude that r =
1 +
√

5
2

.

Solution. (i) By definition, an+2 = an+1 + an. If rn =
an+1

an
, then

rn+1 =
an+2

an+1
=

an+1 + an

an+1
= 1 +

an

an+1
= 1 +

1
rn
.

(ii) After looking at the first few terms of the sequence (rn) = (1, 2, 3/2, 5/3, 8/5, . . .), we conjecture that the subsequence
of (rn) given by the terms with even indexes, (r2n), is decreasing and that with odd indexes, (r2n−1), is increasing. This is in
fact true and can be proved by induction, using (i). To start, we have r1 < r3 and r4 < r2. If we know that r2n < r2n−2, then

r2n−1 = 1 +
1

r2n−2
< 1 +

1
r2n
= r2n+1, and similarly, if r2n−1 < r2n+1, then r2n+2 < r2n.

Furthermore, the sequences (r2n) and (r2n−1) are bounded because (rn) is bounded on account of the identity proved in (i):

1 ≤ rn+1 = 1 +
rn−1

rn−1 + 1
≤ 2.

Let re = lim
n→∞

r2n and ro = lim
n→∞

r2n−1. Then, by the properties of limits and the identities

r2n = 1 +
1

r2n−1
and r2n+1 = 1 +

1
r2n

we have
re = 1 +

1
ro

and ro = 1 +
1
re

or rero = re + 1 = ro + 1. Therefore, the limit lim rn = r exists (Why?) and r = re = ro satisfies r = 1 +
1
r

, or r2 − r − 1 = 0.

Since r is positive, it must equal the positive solution of the quadratic equation x2 − x − 1 = 0, that is, r =
1 +
√

5
2

. �
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Problem 4. (i) Find all the accumulation points of the set S =
{

1
n
+

1
m
| n and m in N

}
(ii) Prove that p is an accumulation point of a set S ⊂ Rn if and only if every ball about p contains infinitely many points

of S .

Solution. (i) The accumulation points of S are 0, 1, 1/2, 1/3, . . .. Indeed, each of the numbers
1
n
= lim

n→∞

1
n
+

1
m

, and 0 =

lim
n→∞

1
n
+

1
n

. In each case the point is limit of a sequence whose terms are all in S and are distinct from the point itself.
We prove that those are the only accumulation points of S . Suppose that x , 0, 1, 1/2, · · · is an accumulation point of S .

Then there is a sequence (sn) in S such that sn converges to x and sn , x for all n. Each sn = 1/pn + 1/qn for some natural
numbers pn and qn, with pn ≤ qn. If the sequence (qn) is bounded above, then so is the sequence pn, and thus there are natural
number p and q such that pn = q and qn = q for infinitely many n’s. This implies that sn = 1/p + 1/q for infinitely many n’s.
Since a subsequence of a convergent sequence converges to the same limit, this forces sn = 1/p + 1/q = x for infinitely many
n, which is a contradiction. Thus qn has a subsequence qnk which is strictly increasing, hence such that 1/qnk converges to 0.
If the corresponding subsequence of natural numbers (pnk ) is bounded above, then it has a constant subsequence pnk l = p for
some natural number p, which implies that snk l converges to 1/p, and thus that x = 1/p, again a contradiction. Therefore pnk

has a strictly increasing subsequence pnk l , which implies that snk l and thus sn, converges to 0, also a contradiction. �

Problem 5. (i) Let an be a bounded injective sequence of real numbers. Prove that if p is the only accumulation point of
the set A = {an | n in N}, then the sequence an converges and lim

n→∞
an = p.

(ii) Show by a counterexample that this property is not true for unbounded sequences.

Solution. (i) Suppose that an does not converge to p. Then there is ε > 0 such that for every natural number k, there is nk > k
such that |ank − p| ≥ ε. The sequence (ank ) is a subsequence of (an) and thus it is bounded. Therefore it has a subsequence
(ank l ) which converges to a point q , p (because |ank l − p| > ε). Because the sequence (an) is injective, all elements of this
subsequence are distinct and therefore q is an accumulation point of the set A.

Note. If “injective” is not assumed, then (i) may not be true. Let an = 1 is n is odd and an = 1/n if n is even. Then the set
A = {an} = {1, 1/2, 1/4, 1/6, · · · } has only one accumulation point, namely 0, but the original sequence an does not converge
to 0 (or to any other number).

(ii) Let an = n if n is odd and an = 1/n if n is even. The sequence (an) is unbounded and 0 is the only accumulation point
of the set A = {an} = {1, 1/2, 3, 1/4, 5, 1/6, · · · }. �

Problem 6. (i) Define the concept “bounded sequence.”

(ii) Prove that a set S ⊂ R is bounded if and only if every sequence of points in S has a convergent subsequence.

Solution. (i) A sequence (xn) is bounded if there is a number M such that |xn| ≤ M for all n.
(ii) Assume that S ⊂ R is bounded. If (xn) is a sequence in S , then (xn) is bounded and thus it has a convergent subse-

quence.
Assume that S is not bounded. Then for any integer n there is an xn in S such that |xn| > n. Since any convergent sequence

is bounded, the sequence (xn) cannot have a convergent subsequence. �

Problem 7. (i) Define the concept “ f is a continuous function at the point p.”

(ii) Let f : R → R be the function given by f (x) = x if x is rational, and f (x) = −x if x is irrational. Prove that f is
continuous only at p = 0.

Solution. (i) f is continuous at p if for every ε > 0 there is δ > 0 such that if 0 < |x − p| < δ and x is in the domain of f , then
| f (x) − f (p)| < ε.

The following equivalent version of continuity will be used bellow: f if continuous at p if and only if f (xn) → f (p) for
any sequence (xn) in domain f such that xn → p.

(ii) f is continuous at 0. Given ε > 0, take δ = ε. If |x| < δ, then

| f (x) − f (0)| = | f (x)| = |x| < δ = ε.

If p , 0, then f is not continuous at p. Indeed, if p is not rational there is a sequence pn of rational numbers such that
pn → p, and if p is rational, there is a sequence of irrational numbers pn → p (for example, pn = p +

√
2/n). In either case,

lim
n→∞

f (pn) = −p, which is , p for p , 0. �
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Problem 8. (i) If lim
x→a

f (x) and lim
x→a

g(x) do not exist, can lim
x→a

[
f (x) + g(x)

]
or lim

x→a
( f · g)(x) exist?

(ii) If lim
x→a

f (x) exists and lim
x→a

[
f (x) + g(x)

]
exists, must lim

x→a
g(x) exist?

(iii) If lim
x→a

f (x) exists and lim
x→a

g(x) does not exist, can lim
x→a

[
f (x) + g(x)

]
exist?

(iv) If lim
x→a

f (x) exists and lim
x→a

f (x)g(x) exists, does it follow that lim
x→a

g(x) exists?

Solution. (i) Yes. Let f (x) = 1 if x is rational and f (x) = −1 if x is not rational, and let g = − f . Then f (x) + g(x) = 0 for all
x, and f (x)g(x) = −1 for all x.

(ii) Yes. Write g(x) = ( f (x) + g(x)) − f (x). Each of the terms f (x) + g(x) and f (x) on the right side has limit when x→ a,
so their difference also has limit when x→ a.

(iii) No. Apply (ii).
(iv) No. Let f (x) = 0 for all x and let g(x) = 1 if x is rational and g(x) = −1 if x is not rational. Then, for any a, f (x) and

f (x)g(x) = 0 both have limit when x→ a, but g(x) does not have limit when x→ a. �

Problem 9. (i) Define the concepts “closed set” and “closure of a set.”

(ii) Prove that the closure of a set S ⊂ Rn is the smallest closed subset of Rn which contains S .

Solution. (i) A set is closed if it contains all its boundary points. The closure of a set S is S = S ∪ ∂S .
(ii) By definition, the closure of S is S = S ∪ ∂S , hence S contains S .
We show that S is closed. Let p be point in of ∂S , the boundary of S . Then every ball around p intersects S and its

complement S
c
. Hence there is a sequence (xn) in S such that |xn − p| < 1/n for all n. Because xn is in S , there is yn in S such

that |yn − xn| < 1/n. Then, by the triangle inequality, |yn − p| ≤ |yn − xn| + |xn − p| < 2/n. Thus p is in S because the (yn) is in
S and converges to p.

We show that S is the smallest closed set containing S , that is, if T is closed and S ⊂ T , then S ⊂ T . Assume this was
not the case. Then there is p in S which is also in T c. In particular, p is not in S . Moreover, since T c is open, there is a ball
around p which is completely contained in T c. This ball cannot intersect S because S ⊂ T , and this p cannot be a boundary
point of S . Hence p is not in S ∪ ∂S = S , a contradiction. �
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