Math 512A. Homework 3. Solutions

Problem 1. Find all the accumulation points of the following sets:

- (i) The interval [0, 1).
- (ii) The set of all the irrational numbers.
- (iii) The set of the natural numbers.

Solution. (i) The interval [0,1]. (ii) The set of all real numbers. (iii) The empty set.

Problem 2. A sequence (a_n) is said to be Cauchy if, for every $\varepsilon > 0$, there is a natural number N such that whenever n, m > N, $|a_n - a_m| < \varepsilon$.

- (i) Prove that a convergent sequence of real numbers is Cauchy.
- (ii) Prove that a Cauchy sequence is bounded.

Proof. Solution(i) Suppose that $a_n \to l$. Given $\varepsilon > 0$ there is a natural number N such that if n > N, then $|a_n - l| < \varepsilon/2$. Therefore, if p, q > N,

$$|a_p - a_q| = |a_p - l + l - a_q| \le |a_p - l| + |a_q - l| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

thus showing that (a_n) is Cauchy.

Problem 3. Prove or give a counterexample:

- (i) If (a_n) is an increasing sequence (that is, $a_1 < a_2 < a_3 < \cdots$) such that $\lim_{n \to \infty} (a_{n+1} a_n) = 0$, then (a_n) is convergent.
- (ii) If (a_n) is increasing and bounded above, and $\lim_{n\to\infty} a_n = l$, then $a_n \leq l$.

Proof. Solution(i) Let $a_n = \sqrt{n}$. Then $a_n < a_{n+1}$ and (rationalizing)

$$0 < a_{n+1} - a_n = \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{(n+1)n}} \le \frac{1}{n+1}$$

which implies that $\lim_{n\to\infty} (a_{n+1} - a_n) = 0$.

- (ii) If there is a natural number N such that $a_N > l$, then $a_n \ge a_N > l$ for all natural numbers $n \ge N$, and a_n cannot converge to l.
- **Problem 4.** (i) Give an example of a sequence of real numbers with subsequences converging to every integer.

<i>Proof.</i> Solution (i) $0, -1, 0, 1, -2, -1, 0, 1, 2, -3, -2, -1, 0, 1, 2, 3,$ and so on. Each integer apper infinitely many times in this sequence and thus you can extract a subsequence which converges to a integer (in fact, a constant sequence).	
Problem 5. Prove that if the subsequences (a_{2n}) and (a_{2n+1}) of a sequence (a_n) of real numbers be converge to the same limit l , then (a_n) converges to l .	$ ag{th}$
<i>Proof.</i> Solution Given $\varepsilon > 0$ there are natural numbers N_e and N_o such that if n is an even natural number and $n > N_e$, then $ a_n - l < \varepsilon$, and if n is an odd natural number and $n > N_o$, then $ a_n - l < \varepsilon$. Let $N = \max\{N_e, N_o\}$. If n is a natural number and $n > N$, then n is either even and $n > N_e$, or n is or and $n > N_o$. In either case, $ a_n - l < \varepsilon$.	ε .

(ii) Give an example of a sequence of real numbers with subsequences converging to every real number.