Math 512A. Homework 3. Due 9/19/07 **Problem 1.** Find all the accumulation points of the following sets: - (i) The interval [0, 1). - (ii) The set of all the irrational numbers. - (iii) The set of the natural numbers. **Problem 2.** A sequence (a_n) is said to be Cauchy if, for every $\varepsilon > 0$, there is a natural number N such that whenever n, m > N, $|a_n - a_m| < \varepsilon$. - (i) Prove that a convergent sequence of real numbers is Cauchy. - (ii) Prove that a Cauchy sequence is bounded. **Problem 3.** Prove or give a counterexample: - (i) If (a_n) is an increasing sequence (that is, $a_1 < a_2 < a_3 < \cdots$) such that $\lim_{n \to \infty} (a_{n+1} a_n) = 0$, then (a_n) is convergent. - (ii) If (a_n) is increasing and bounded above, and $\lim_{n\to\infty} a_n = l$, then $a_n \leq l$. **Problem 4.** (i) Give an example of a sequence of real numbers with subsequences converging to every integer. (ii) Give an example of a sequence of real numbers with subsequences converging to every real number. **Problem 5.** Prove that if the subsequences (a_{2n}) and (a_{2n+1}) of a sequence (a_n) of real numbers both converge to the same limit l, then (a_n) converges to l.