
Math 512A. Homework 2. Solutions

Problem 1. Recall that the absolute value |a| of a real number a is given by

|a| =
{

a, a ≥ 0
−a, a ≤ 0.

Prove the following:

(i) |a + b| ≤ |a|+ |b|.

(ii) |a− b| ≤ |a|+ |b|.

(iii) |a| − |b| ≤ |a− b|.

(iv)
∣∣|a| − |b|

∣∣ ≤ |a− b|.

Solution. (i) We consider 4 cases:

(1) a ≥ 0, b ≥ 0
(2) a ≥ 0, b ≤ 0
(3) a ≤ 0, b ≥ 0
(4) a ≥ 0, b ≤ 0

In case (1) we have |a| = a and |b| = b, and we also have a + b ≥ 0, so |a + b| = a + b, making the result obvious:
|a + b| = a + b = |a|+ |b|, so that in fact we have equality. Case (4) is similar to case (1). Indeed we have |a| = −a,
|b| = −b and also |a + b| = −(a + b) = −a− b because a + b| ≤ 0.

In case (2) we have a ≥ 0 and b ≤ 0, hence |a| = a and |b| = −b, so we must prove that

|a + b| ≤ a− b.

We divide the proof into two subcases

(2a) a + b ≤ 0,

(2b) a + b ≥ 0.

If case (2a) holds, then |a + b| = −(a + b) = −a− b, and we must show that −a− b ≤ a− b, or that −a ≤ a. This
is certainly true because a ≥ 0 implies that −a ≤ 0 ≤ a.

If case (2b) holds, then |a+ b| = a+ b, and we must show that a+ b ≤ a− b, or that b ≤ −b. But the hypothesis
for case (2) is that b ≤ 0, so that −b ≥ 0 and hence −b ≤ 0 ≤ b.

Case (3) requires no additional work; it follows by applying case (2) with a and b interchanged.
(ii) By (i),

|a− b| = |a + (−b)| ≤ |a|+ | − b| = |a|+ |b|

(iii) By (i),
|a| = |a− b + b| ≤ |a− b|+ |b|

and subtracting |b|
|a| − |b| ≤ |a− b|
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(iv) By (iii) we have that |a|−|b| ≤ |a−b|, and by interchanging a and b we also have that |b|−|a| ≤ |b−a| = |a−b|.
Therefore, ∣∣|a| − |b|

∣∣ =

{
|a| − |b| ≤ |a− b| if |a| − |b| ≥ 0,
|b| − |a| ≤ |a− b| if |a| − |b| ≤ 0.

Problem 2. Suppose that lim
n→∞

an = a and lim
n→∞

bn = b. Prove the following:

(i) an + bn → a + b.

(ii) an · bn → a · b.

Solution. (ii) By adding and subtracting anb and then rearranging terms, we obtain

|anbn − ab| = |an(bn − b) + (an − a)b|
≤ |an||bn − b|+ |b||an − a|

Because the sequences an and bn both converge, they are both bounded: there is M > 0 such that |an| ≤ M and
|bn| ≤ M for all n. Therefore:

|anbn − ab| ≤ M |an − a|+ M |bn − b|,

for all natural numbers n.
Let ε > 0. There is a natural number N1 such that if n > N1, then |an − a| < ε/2M , and there is a natural

number N2 such that if n > N2, then |bn − b| < ε/2M . Let N = max{N1, N2}. If n > N , then

|anbn − ab| ≤ M
ε

2M
+ M

ε

2M
= ε.

Problem 3. (i) Prove that if an ≤ bn, if lim
n→∞

an = a and lim
n→∞

bn = b, then a ≤ b.

(ii) Prove that if an ≤ cn ≤ bn and lim
n→∞

an = lim
n→∞

bn = l, then lim
n→∞

cn = l.

Solution. (i) Suppose that a > b and apply the definition of limit to ε =
a− b

2
. There is a natural number N1 such

that if n > N1, then |an − a| <
a− b

2
and a natural number N2 such that if n > N2, then |bn − b| <

a− b

2
. If

n > max{N1, N2}, then

bn <
a− b

2
+ b = a− a− b

2
< an,

which contradicts the hypothesis.

Problem 4. Verify the following limits

(i) lim
n→∞

3n3 + 7n2 + 1
4n3 − 8n + 63

=
3
4
.

(ii) lim
n→∞

2n + (−1)n

2n+1 + (−1)n+1
=

1
2
.

(iii) lim
n→∞

n
√

n = 1. (Hint: put n
√

n = 1 + an, prove that an > 0 for n > 1, deduce that n − 1 ≥ 1
2n(n − 1)a2

n for

n > 1, hence that 0 ≤ a2
n ≤ 2/n.)
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Solution. (i) Divide numerator and denominator by n3 and obtain:

3n3 + 7n2 + 1
4n3 − 8n + 63

=
3 +

7
n

+
1
n3

4− 8
n2

+
63
n3

.

The limit of the numerator is (by using the algebraic properties of limits):

lim
n→∞

3 +
7
n

+
1
n3

= lim
n→∞

3 + 7 lim
n→∞

1
n

+ lim
n→∞

1n3 = 3

and by similar arguments, the limit of the denominator is

lim
n→∞

4− 8
n2

+
63
n3

= 4

Since this limit is 6= 0, we have

lim
n→∞

3n3 + 7n2 + 1
4n3 − 8n + 63

=
3
4

(ii) Divide numerator and denominator by 2n+1.
(iii) Let n

√
n = 1 + an. It is clear that an ≥ 0, for if an < 0, then n = (1 + an)n < 1. By the binomial theorem

n = (1 + an)n = 1 + nan +
n(n− 1)

2
a2

n + · · ·

≥ 1 +
n(n− 1)

2
a2

n (we removed positive terms form the sum above),

which implies that

0 ≤ an ≤
√

2√
n

and thus that It follows from Problem 3(ii) that lim
n→∞

an = 0, and hence that lim
n→∞

n
√

n = 1.

Problem 5. Does the sequence converge or diverge? If it converges, what is the limit?

(i) an =
n

n + 1
− n + 1

n
.

(ii) an =
2n

n!
.

(iii) an = the nth decimal digit of π (thus a1 = 1, a2 = 4, a3 = 1, and so on).

Solution. (ii) We have the inequalities

0 ≤ 2n

n!
=

2 · 2 · . . . · 2
n(n− 1) · . . . · 2 · 1

≤ 4
n

so Problem 3(ii) implies that lim
n→∞

2n

n!
= 0.

(iii) This assumes that you know that π is not a rational number, thus that its decimal digit expansion does not
eventually repeat.

Let an be the nth decimal digit of π, and suppose that (an) converges, say lim
n→∞

an = a. Because all an are

decimal digits, a must also be a decimal digit. Indeed, if not, |an−a| ≥ min{|a−d| | d = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} > 0,
contradicting an → a. In fact, we must have an = a eventually. Indeed, for ε = 1 there is a natural number N
such that if n > N , then |an − a| < 1, hence that an = a because two decimal digits either are equal or their
difference is at least 1 in absolute value. The fact that an = a eventually implies that π is a rational number, a
contradiction.
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