Math 512A. Homework 2. Solutions

Problem 1. Recall that the absolute value |a| of a real number a is given by

$$|a| = \begin{cases} a, & a \ge 0 \\ -a, & a \le 0. \end{cases}$$

Prove the following:

- (i) $|a+b| \le |a| + |b|$.
- (ii) $|a b| \le |a| + |b|$.
- (iii) $|a| |b| \le |a b|$.
- (iv) $||a| |b|| \le |a b|$.

Solution. (i) We consider 4 cases:

- (1) $a \ge 0, b \ge 0$
- (2) $a \ge 0, b \le 0$
- $(3) a \le 0, b \ge 0$
- (4) $a \ge 0, b \le 0$

In case (1) we have |a| = a and |b| = b, and we also have $a + b \ge 0$, so |a + b| = a + b, making the result obvious: |a + b| = a + b = |a| + |b|, so that in fact we have equality. Case (4) is similar to case (1). Indeed we have |a| = -a, |b| = -b and also |a + b| = -(a + b) = -a - b because $a + b| \le 0$.

In case (2) we have $a \ge 0$ and $b \le 0$, hence |a| = a and |b| = -b, so we must prove that

$$|a+b| \le a-b$$
.

We divide the proof into two subcases

- (2a) $a+b \le 0$,
- (2b) $a + b \ge 0$.

If case (2a) holds, then |a+b|=-(a+b)=-a-b, and we must show that $-a-b \le a-b$, or that $-a \le a$. This is certainly true because $a \ge 0$ implies that $-a \le 0 \le a$.

If case (2b) holds, then |a+b|=a+b, and we must show that $a+b \le a-b$, or that $b \le -b$. But the hypothesis for case (2) is that $b \le 0$, so that $-b \ge 0$ and hence $-b \le 0 \le b$.

Case (3) requires no additional work; it follows by applying case (2) with a and b interchanged.

(ii) By (i),

$$|a - b| = |a + (-b)| < |a| + |-b| = |a| + |b|$$

(iii) By (i),

$$|a| = |a - b + b| < |a - b| + |b|$$

and subtracting |b|

$$|a| - |b| \le |a - b|$$

(iv) By (iii) we have that $|a| - |b| \le |a - b|$, and by interchanging a and b we also have that $|b| - |a| \le |b - a| = |a - b|$. Therefore,

$$||a| - |b|| = \begin{cases} |a| - |b| \le |a - b| & \text{if } |a| - |b| \ge 0, \\ |b| - |a| \le |a - b| & \text{if } |a| - |b| \le 0. \end{cases}$$

Problem 2. Suppose that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. Prove the following:

- (i) $a_n + b_n \rightarrow a + b$.
- (ii) $a_n \cdot b_n \to a \cdot b$.

Solution. (ii) By adding and subtracting $a_n b$ and then rearranging terms, we obtain

$$|a_n b_n - ab| = |a_n (b_n - b) + (a_n - a)b|$$

 $\leq |a_n||b_n - b| + |b||a_n - a|$

Because the sequences a_n and b_n both converge, they are both bounded: there is M > 0 such that $|a_n| \leq M$ and $|b_n| \leq M$ for all n. Therefore:

$$|a_n b_n - ab| \le M|a_n - a| + M|b_n - b|,$$

for all natural numbers n.

Let $\varepsilon > 0$. There is a natural number N_1 such that if $n > N_1$, then $|a_n - a| < \varepsilon/2M$, and there is a natural number N_2 such that if $n > N_2$, then $|b_n - b| < \varepsilon/2M$. Let $N = \max\{N_1, N_2\}$. If n > N, then

$$|a_n b_n - ab| \le M \frac{\varepsilon}{2M} + M \frac{\varepsilon}{2M} = \varepsilon.$$

Problem 3. (i) Prove that if $a_n \leq b_n$, if $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$, then $a \leq b$.

(ii) Prove that if $a_n \leq c_n \leq b_n$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = l$, then $\lim_{n \to \infty} c_n = l$.

Solution. (i) Suppose that a > b and apply the definition of limit to $\varepsilon = \frac{a-b}{2}$. There is a natural number N_1 such that if $n > N_1$, then $|a_n - a| < \frac{a-b}{2}$ and a natural number N_2 such that if $n > N_2$, then $|b_n - b| < \frac{a-b}{2}$. If $n > \max\{N_1, N_2\}$, then

$$b_n < \frac{a-b}{2} + b = a - \frac{a-b}{2} < a_n$$

which contradicts the hypothesis.

Problem 4. Verify the following limits

(i)
$$\lim_{n\to\infty} \frac{3n^3 + 7n^2 + 1}{4n^3 - 8n + 63} = \frac{3}{4}$$
.

(ii)
$$\lim_{n \to \infty} \frac{2^n + (-1)^n}{2^{n+1} + (-1)^{n+1}} = \frac{1}{2}.$$

(iii) $\lim_{n\to\infty} \sqrt[n]{n} = 1$. (Hint: put $\sqrt[n]{n} = 1 + a_n$, prove that $a_n > 0$ for n > 1, deduce that $n - 1 \ge \frac{1}{2}n(n-1)a_n^2$ for n > 1, hence that $0 \le a_n^2 \le 2/n$.)

Solution. (i) Divide numerator and denominator by n^3 and obtain:

$$\frac{3n^3 + 7n^2 + 1}{4n^3 - 8n + 63} = \frac{3 + \frac{7}{n} + \frac{1}{n^3}}{4 - \frac{8}{n^2} + \frac{63}{n^3}}.$$

The limit of the numerator is (by using the algebraic properties of limits):

$$\lim_{n \to \infty} 3 + \frac{7}{n} + \frac{1}{n^3} = \lim_{n \to \infty} 3 + 7 \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} 1n^3 = 3$$

and by similar arguments, the limit of the denominator is

$$\lim_{n \to \infty} 4 - \frac{8}{n^2} + \frac{63}{n^3} = 4$$

Since this limit is $\neq 0$, we have

$$\lim_{n \to \infty} \frac{3n^3 + 7n^2 + 1}{4n^3 - 8n + 63} = \frac{3}{4}$$

- (ii) Divide numerator and denominator by 2^{n+1} .
- (iii) Let $\sqrt[n]{n} = 1 + a_n$. It is clear that $a_n \ge 0$, for if $a_n < 0$, then $n = (1 + a_n)^n < 1$. By the binomial theorem

$$n = (1 + a_n)^n = 1 + na_n + \frac{n(n-1)}{2}a_n^2 + \cdots$$

 $\geq 1 + \frac{n(n-1)}{2}a_n^2$ (we removed positive terms form the sum above),

which implies that

$$0 \le a_n \le \frac{\sqrt{2}}{\sqrt{n}}$$

and thus that It follows from Problem 3(ii) that $\lim_{n\to\infty} a_n = 0$, and hence that $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Problem 5. Does the sequence converge or diverge? If it converges, what is the limit?

(i)
$$a_n = \frac{n}{n+1} - \frac{n+1}{n}$$
.

(ii)
$$a_n = \frac{2^n}{n!}$$
.

(iii) $a_n =$ the nth decimal digit of π (thus $a_1 = 1$, $a_2 = 4$, $a_3 = 1$, and so on).

Solution. (ii) We have the inequalities

$$0 \le \frac{2^n}{n!} = \frac{2 \cdot 2 \cdot \ldots \cdot 2}{n(n-1) \cdot \ldots \cdot 2 \cdot 1} \le \frac{4}{n}$$

so Problem 3(ii) implies that $\lim_{n\to\infty} \frac{2^n}{n!} = 0$.

(iii) This assumes that you know that π is not a rational number, thus that its decimal digit expansion does not eventually repeat.

Let a_n be the nth decimal digit of π , and suppose that (a_n) converges, say $\lim_{n\to\infty} a_n = a$. Because all a_n are decimal digits, a must also be a decimal digit. Indeed, if not, $|a_n-a|\geq \min\{|a-d|\ |\ d=0,1,2,3,4,5,6,7,8,9\}>0$, contradicting $a_n\to a$. In fact, we must have $a_n=a$ eventually. Indeed, for $\varepsilon=1$ there is a natural number N such that if n>N, then $|a_n-a|<1$, hence that $a_n=a$ because two decimal digits either are equal or their difference is at least 1 in absolute value. The fact that $a_n=a$ eventually implies that π is a rational number, a contradiction.