Math 512A. Homework 2. Due 9/12/07

Problem 1. Recall that the absolute value |a| of a real number a is given by

$$|a| = \begin{cases} a, & a \ge 0 \\ -a, & a \le 0. \end{cases}$$

Prove the following:

(i) $|a+b| \le |a| + |b|$.

(ii) $|a - b| \le |a| + |b|$.

(iii) $|a| - |b| \le |a - b|$.

(iv) $||a| - |b|| \le |a - b|$.

Problem 2. Suppose that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. Prove the following:

(i) $a_n + b_n \rightarrow a + b$.

(ii) $a_n \cdot b_n \to a \cdot b$.

Problem 3. (i) Prove that if $a_n \leq b_n$, if $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$, then $a \leq b$.

(ii) Prove that if $a_n \le c_n \le b_n$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = l$, then $\lim_{n \to \infty} c_n = l$.

Problem 4. Verify the following limits

(i)
$$\lim_{n \to \infty} \frac{3n^3 + 7n^2 + 1}{4n^3 - 8n + 63} = \frac{3}{4}.$$

(ii)
$$\lim_{n \to \infty} \frac{2^n + (-1)^n}{2^{n+1} + (-1)^{n+1}} = \frac{1}{2}.$$

(iii) $\lim_{n\to\infty} \sqrt[n]{n} = 1$. (Hint: put $\sqrt[n]{n} = 1 + a_n$, prove that $a_n > 0$ for n > 1, deduce that $n-1 \ge \frac{1}{2}n(n-1)a_n^2$ for n > 1, hence that $0 \le a_n^2 \le 2/n$.)

Problem 5. Does the sequence converge or diverge? If it converges, what is the limit?

(i)
$$a_n = \frac{n}{n+1} - \frac{n+1}{n}$$
.

(ii)
$$a_n = \frac{2^n}{n!}$$
.

(iii) $a_n =$ the nth decimal digit of π (thus $a_1 = 1$, $a_2 = 4$, $a_3 = 1$, and so on).