Math 512A. Homework 10. Solutions

Problem 1. Prove that if $f(x) = x^3$, then $\int_0^b f = \frac{b^4}{4}$, by considering upper and lower sums for partitions of [0, b] into n equal subintervals, using the formula $1^3 + 2^3 + \cdots + n^3 = (1 + 2 + \cdots + n)^2$ for the sum of the cubes of the first n natural numbers.

Problem 2. Decide which of the following functions are integrable on [0,2], and calculate the integral $\int_{1}^{2} f$ if you

- (i) $f(x) = \begin{cases} x + [x], & x \text{ rational} \\ 0, & x \text{ not rational.} \end{cases}$
- (ii) f is the function whose graph is depicted in the figure below (set f(0) = 0).

Solution. (i) If P is any partition of [0,2], then (clearly) L(f,P)=0 and also $U(f,P)\geq 1$. To see why this inequality holds, let $P = \{t_0, t_1, \dots, t_n\}$ and let t_k be first element in P such that $t_k \ge 1$. Then $M_i \ge 1$ for $i \ge k$, and so, since $f \geq 0$,

$$U(f, P) \ge \sum_{i=k}^{n} (t_i - t_{i-1}) = 2 - t_{k-1} \ge 1.$$

Therefore $\sup_P L(f, P) = 0 < 1 \le \inf_P U(f, P)$ and thus f can not be integrable on [0, 2].

(ii) Discussed in class. Please refer also to the hints posted on the 512A webpage.

(i) Prove that if f is integrable on [a, b] and $f(x) \ge 0$ for all x in [a, b], then $\int_{a}^{b} f \ge 0$. Problem 3.

- (ii) Prove that if f and g are integrable on [a,b] and $f(x) \ge g(x)$ for all x in [a,b], then $\int_{a}^{b} f \ge \int_{a}^{b} g$. (Warning: If you work hard on part (b), then you are waisting time.)
- (iii) Give an example of an f which is integrable on [a,b], satisfies $f(x) \ge 0$ for all x, and f(x) > 0 for some x, and yet $\int_{a}^{b} f = 0$.
- (iv) Suppose that $f(x) \ge 0$ for all x in [a,b] and f is continuous at x_0 in [a,b] and $f(x_0) > 0$. Prove that $\int_0^b f > 0$. (Hint. It suffices to find a partition P for which the lower sum L(f, P) > 0.

Solution. (i) If $P = \{t_0, t_1, \dots, t_n\}$ is a partition of [a, b], then $m_i = \inf\{f(x) \mid t_{i-1} \leq x \leq t_i\} \geq 0$ and so $L(f, P) \ge 0$. Therefore

$$\int_{-b}^{b} f = \sup_{P} L(f, P) \ge 0.$$

- (ii) If $f \ge g$ are integrable, then f g is integrable. By (i), $\int_a^b (f g) \ge 0$. But $\int_a^b (f g) = \int_a^b f \int_a^b g$. (iii) Take f(x) = 0 if a < x < b and f(a) = f(b) = 1.

(iv) If $f \ge 0$ is continuous and $f(x_0) = y_0 > 0$, then there is $\delta > 0$ such that $f(x) > y_0/2$ for all x in $[x_0 - \delta, x_0 + \delta]$. If P is the partition $P = \{a, x_0 - \delta, x_0 + \delta, b\}$, then $L(f, P) \ge \frac{y_0 \delta}{2} > 0$, so $\int_a^b f \ge \frac{y_0 \delta}{2}$.

Problem 4. Suppose that f and g are integrable on [a,b]. If P is a partition of [a,b], let M'_i and m'_i the appropriate sup's and inf's for f on the intervals of P, define M''_i and m''_i similarly for g, and define M_i and m_i similarly for the product fg.

Assume that $f(x) \ge 0$ and $g(x) \ge 0$ for all x in [a, b].

- (i) Prove that $M_i \leq M_i' M_i''$ and $m_i \geq m_i' m_i''$.
- (ii) Prove that

$$U(P, fg) - L(P, fg) \le \sum_{i=1}^{n} (M'_{i}M''_{i} - m'_{i}m''_{i}) (t_{i} - t_{i-1}).$$

(iii) Use the fact that f and g are bounded (so that $|f(x)| \le M$ and $|g(x)| \le M$, for all x in [a, b], to prove that

$$U(P, fg) - L(P, fg) \le M \{U(P, f) + U(P, g) - L(P, f) - L(P, g)\}$$

- (iv) Prove that fg is integrable.
- (v) (Not required) Remove the condition that $f(x) \ge 0$ and $g(x) \ge 0$ on [a, b].

Solution. Discussed in class. Please refer also to the hints posted on the 512A webpage.

Problem 5. (i) (Schwarz Inequality) Prove that

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 \le \sum_{i=1}^{n} x_i^2 \cdot \sum_{i=1}^{n} y_i^2 \tag{*}$$

for real numbers x_1, \dots, x_n and y_1, \dots, y_n . There are many proofs available; one of them starts by first establishing the identity

$$\sum_{i=1}^{n} x_i^2 \cdot \sum_{i=1}^{n} y_i^2 = \left(\sum_{i=1}^{n} x_i y_i\right)^2 + \sum_{i < j} (x_i y_j - x_j y_i)^2.$$

- (ii) Prove that equality in (*) holds if and only if there is a real number λ such that $x_i = \lambda y_i$ for all $i = 1, \dots, n$.
- (iii) (Cauchy-Schwarz inequality) Suppose that f and g are integrable on [a,b]. Prove that

$$\left(\int_{a}^{b} fg\right)^{2} \le \left(\int_{a}^{b} f^{2}\right) \left(\int_{a}^{b} g^{2}\right). \tag{**}$$

(iv) If equality holds in (**), is it necessarily true that $f = \lambda g$ for some real number λ ? What if f and g are continuous?

Solution. Discussed in class. Please refer also to the hints posted on the 512A webpage. \Box