
Math 512A. Homework 10. Hints

Problem 2 (ii) This f is not continuous on [0, 2] (why?) but it is continuous on [a, 2] for any a > 0, hence integrable
there. Given ε > 0, use that to find a partition P = {t1 = ε/2, t2, · · · , tn} of [ε/2, 2] for which U(P, f)−L(P, f) < ε/2
(on [ε/2, 2]) and then look at the partition {0, ε/2, t1, · · · , tn} of [0, 2].

Of course, you still need to find the value
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0

f . You can further elaborate the same idea.

Slightly more generally, if you know that an f is integrable on [a, b], then you know that for each n there is a
partition Pn of [a, b] for which U(Pn, f)− L(Pn, f) < 1/n, and hence that
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because
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f ≤ U(Pn, f).

Problem 5 (iii) If P = {t0, t1, · · · , tn} is a partition of [a, b], then, with the notation of Problem 4,
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Now apply the Schwarz inequality from Part (i), etcetera.


