Allocating Resources to the Project

In this chapter we consider the problem of allocating physical and human resources to projects. * The physical and human resources are granted to and used by the project in order to meet the project's performance objectives. The amount of resources that can be allocated, of course, depends on the timing of the allocation as well as on the total supply of resources available for allocation. Mainly, resource allocation concerns how we allocate specific, limited resources to specific activities (or projects) when there are competing demands for the same limited resources.

Projects compete with each other for the same resources in two different ways. First, consider a resource that is limited but is not consumed when used, the services of a specific technical specialist for instance. The problem here is which project gets to use the resource first and which must wait. Second, consider a resource that is limited and is consumed when used, a specific chemical reagent for instance. In this case, the second project may have to wait until more of the reagent can be purchased and delivered. In both cases, the project that must wait may suffer a schedule delay that makes it late. Just as projects may compete for resources, different activities of the same project may compete. Two or more concurrent activities might require the same personnel, or equipment, or even work space. One activity will be given priority, and the other(s) must wait. 

In order to manage resources in such a way as to optimize the use of a limited supply, trade-offs must be made. The interaction of project scheduling and resource scheduling is clear, but we will examine several different solutions to the allocation problem. Those include the Critical Path Method (CPM), Goldratt's "critical chain" (1997), and many different priority rules for allocating scarce resources. The primary cause of concern is resource scarcity. If some resources (including time) were not scarce, the resource allocation problem would be concerned solely with profit maximization-a relatively easy problem.

In Chapter 5, we evaluated project durations solely in terms of time. A project was either on time or not. Now we must also consider when and for what purposes scarce people, equipment, material, and facilities are used. The PM's performance is judged by the skill with which the trade-offs of time, resources, and performance are managed so the PM must make constant use of cost/benefit analysis. There are countless questions to be answered. "If we come in late on this project, we face a $1,000 per day penalty. How much project slack do we need and what resources at what costs are required to get it?" "If I hire Cheatem Engineering Associates as design consultants, can I improve project performance by 3 percent, without extending the project's due date?" "Adding project slack and hiring a consultant require monetary resources that could be used for other things. Are these the best uses for the dollars?"

At times, the PM is asked to take on a project in which there are the usual time, budget, and performance goals, but which also constrain the trade-offs that the PM may wish to make if required to help the project meet its most important goals. For example, some projects are time constrained and must be completed by a fixed time. In such cases, resources (and possibly performance) are variable. Some projects are resource constrained and cannot go over budget or use more than a fixed amount of a specific resource. In these cases, time (and possibly performance) is variable. Occasionally, a senior manager suffers from a case of the micromanagement virus and fixes time, cost, and performance, thereby leaving the PM with no flexibility whatsoever. Such projects are certain to fail unless the micromanager has been profligate with the firm's resources, which is highly unlikely for micromanagers. The fault actually lies with the PM who accepts command of such a project. (For those who are thinking that such a PM may find him or herself without a job following a refusal of an assignment, we would note the senior manager in question is insuring that the PM will fail. Do you want to work for someone who will not allow you to succeed?)

We will start our tour through the wilds of resource allocation by reconsidering the problem of dealing with a pointy-haired boss who insists that a project be completed in much less than its expected duration.

6.1 EXPEDITING A PROJECT

The unreasonable boss problem in Chapter 5, Section 5.2 could be used as our example here, but a smaller problem will help avoid unnecessary arithmetic. Our problem is set in a deterministic world rather than in a probabilistic one, for the same reason. (Please remember that in reality all projects are carried out under conditions of uncertainty.) Finally, we must also take note of an assumption usually adopted when activities are scheduled, as we did in Chapter 5. That assumption is that all estimates of task duration, whether deterministic or probabilistic, are based on normal or standard resource loadings.

The Critical Path Method

In traditional CPM, the rules of "standard practice" apply and the normal task duration estimate is made with the normal or standard-practice resource usage. Then a second estimate, referred to as the crash duration, is made based on the resources required to expedite the task. More resources of the type already used might be added, more workers and shovels if there is a ditch to be dug. On the other hand, the technology used to dig the ditch might be totally altered, utilizing a backhoe or a Ditch Witch@, for example. When making estimates for crashing, it is important to make sure that the resources required to crash the project are, in fact, available. Using a machine to dig the ditch in three hours instead of the three days required for a worker with a shovel is dependent on the fact that the machine is available and can be on site when needed. (Of course, the warning about resource availability applies equally to normal resource requirements as well as to crash requirements.) It is also important to note that some tasks cannot be crashed. One must not assume that because it takes one woman nine months to carry and bear a child that nine women can accomplish the same result in one month.

Consider the project described in Table 6-1. There is a set of activities, predecessors, normal task duration estimates, crash duration estimates, and columns that show estimates for normal cost and crash cost. One crash duration is marked with an asterisk. For this activity, the task may be carried out in normal time or in crash time, but the duration must be one or the other; it cannot be broken down to one-day segments. Activities without the asterisk may be split into one-day segments charged at the "cost per day" increments shown in the last column. Figure 6-1 (a) shows the project as a Gantt chart, and Figure 6-l(b) shows it as a PERT/CPM network. All task durations (and costs) are normal. The network is included because it shows the various activity paths more clearly.

As can easily be seen, the critical path is a-c-f, and the critical time is 21 days. The total cost of the project is $400, the sum of the normal costs of all activities. If the client wants the project completed in 20 days, additional resources will be needed. What to do?

· 20 DAYS Two things are self-evident. First, it is good management to crash the least cost activities before more costly ones; and second, there is no point in crashing activities not on the critical path because the project's duration would not be shortened.

While e has the lowest cost per crash day, it does not lie on the critical path so it should be ignored.  Activities a, c, and f are on the critical path and of these, a is the least-cost choice. Therefore, we crash a as shown in Figure 6-2. We lower a's normal time by one day. It now equals the crash time and cannot be shortened further. The critical path is unchanged, the critical time has been lowered to 20 days, and the cost of the project is $400 + 30 (a) = $430. [$30 is the additional cost above normal for crashing a one day. The (a) is simply a notation to remind us which activity was crashed and contributed to the additional cost.] Before stopping our investigation, we check all other paths through the network to make sure that they do not limit our ability to shorten project duration to 20 days. The path a-d-g is 19 days and thus allows our 20day solution.

19 DAYS We report the 20-day solution to the client who decides that this is not sufficient. He wants the project sooner. Returning to Table 6-1, we consider the problem of shortening the project from its original 21~day duration to 19 days. We know that a is available for crashing, and f costs $40 more than normal cost and that is the next lowest cost for path a-c-f. On the other hand, rather than crashing a and f at a cost of $70, we could crash c alone. That will cut the duration of a~c~f by two days for an incremental cost of only $60. That would be an excellent idea were it not for the fact that not crashing a means that no matter what we do with other activities on a~c~f, the path a~d~g which requires 20 days will limit us to a one-day improvement in project duration. The result is that we crash a and f for one day each, a now has a 5-day duration and f is 8 days (see Figure 6-3). Project duration has been lowered to 19 days, and the cost is $400 + 30 (a) + 40 (f) = $470. The entire network is now critical, all paths being 19 days.

An examination of Figure 6-3 reveals another interesting feature of the problem. There are two paths leading to g: a~d and b~e. The two activities on the latter path are inexpensive to crash, but it does not matter. If we wish to crash the project further, crashing either b or e will not help. The path to g cannot be shortened beyond its cur~ rent 12~day duration. Activity a has been crashed to its limit, and d is not crashable. The a~d path merges with the b~e path at g, thus, no matter what is done to band e, the start time of g cannot be reduced to less than 12 days. We will ignore path b~e from now on.

· 18 DAYS The client examines the plan for a 19-day duration and appreciates our effort but asks, "What about 18 days?" We have two critical paths and if project duration is to be shortened, both paths must be shortened. Activity g is the only element of path a~d~g (or of path b-e-g) that can be crashed so we cut g by one day at an incremental cost of $60. Activity f could be shortened by another day at a cost of another $40

crashing f by two days raises the project cost by $80. It is less expensive not to crash f at all, but to crash c instead. We now have an 18-day project, see Figure 6-4. All activities are critical, and the total cost of the project is $400 + 30 (a) + 60 (c) + 60 (g) = $550.

· 17, 16 DAYS We can even shorten the project to 17 days by crashing both f and g one more day, and to 16 days by crashing them still another day. Activities a, c, f, and g have been crashed to their limits, see Figure 6-5. No further crashing will help so b, d, and e remain at their normal times and costs. The total project cost of the 16-day project is now $400 + $50 (b) + 30 (d) + 70 (e) + 90 (a) + 160 (c) + 120 (f) + 230 (g) = $1150. Because we crashed the project by taking the least cost options first, no matter how many days the project was crashed, it was shortened at the least cost. Figure 6~6 shows cost as a function of project duration.

One final note on CPM. The same method is used when the task durations are probabilistic, that is, using three time estimates. In this case, optimistic, most likely, and pessimistic activity duration estimates are made for the "normal" resource loading and new optimistic, most likely, and pessimistic duration estimates must be made for crash resource loading. The PM should remember that the variance of both the normal and crash activity times largely depends on the technology used to accomplish the activity in question. Thus the variance of the normal activity time may be quite different from the variance of the crash time. The project budget can be determined in exactly the same way. The solution to project duration and resource cost levels can be reached by using the standard analytical method used in the last chapter, or by simulation, also described in Chapter 5.

Using Excel to Crash a Project

As you read the preceding material, you might have wondered whether spreadsheets or other computerized approaches could be used to facilitate the task of crashing a project. While it is typical in real-world projects to find that only a few of the many paths are involved in crashing, occasionally many are involved. In such cases, the manual approach discussed earlier can become quite tedious. In this section, we demonstrate how use of Excel@ spreadsheets can greatly facilitate the task of choosing the activities to crash so that a project is completed by a specified deadline at minimum cost.

To illustrate this, the data from Table 6-1 were entered into the spreadsheet shown in Table 6-2. Figure 6-7 shows the network diagram for this project based on the activity-on-the-arrow (arc) convention or AOA. As you will see, the AOA convention is particularly well suited for this type of analysis since we need to keep track of both the duration of each activity and the time of occurrence of each event. In this example we do make one change to the data in Table 6-1. Namely, we assume that activity c may be crashed one day at a time. While the spreadsheet approach discussed here can handle the situation where activities must be crashed completely or not at all, we make this change to simplify our ensuing discussion.

At the top of the spreadsheet the specified deadline is entered in cell Bl and the total cost of completing the project including both normal cost and crash cost is calculated in cell B2. Below this, columns A to G contain the information given in Table 6-1. Note that in column G the crash cost per day is calculated by dividing the incremental cost of crashing the activity as much as possible by the maximum number of days the activity can be shortened.

In column H the maximum amount each activity can be crashed is calculated by subtracting the crash duration from the normal duration. Column I corresponds to our decision, namely, how much to crash each activity. Then based on the values entered in column I, the cost of crashing each activity is calculated in column J. Finally, in column K the actual time to complete the activity is calculated by subtracting the amount the activity is crashed (column I) from the activity's normal duration (column C).

In cells A15:B21 another table was created to keep track of the event times of each node in the network diagram shown in Figure 6-7. Node 1 is excluded because we assume that this node occurs at time zero. As you will see, we need to keep track of the time each event occurs to ensure that the precedence relationships in the network diagram are not violated. For example, we need to make sure that node 4 does not occur until after node 2 occurs, plus the time it takes to complete activity c.


We now demonstrate how Excel’s Solver can be used to help determine which  activities to crash so that the entire project is completed within 20 days at the minimum costs. To begin, select Tools from the menu bar and then Solver from the next menu that appears. The Solver Parameters dialog box is now displayed (see Figure 6-8). The Set Target Cell field refers to the cell in the spreadsheet that we would like to either minimize or maximize. In our case, we would like to minimize the total cost of completing the project, which is calculated in cell B2. To specify this, we enter B2 in the Set Target Cell field and then select the Min radio button.

Next we tell Excel what cells it can change in order to find the solution with the minimum total project completion cost. In the spreadsheet shown in Table 6-2, the values or cells that can be changed are the amount of time each activity is crashed (cells 16:112) and the time when each event occurs (cells B17:B2l). Thus as is shown in Figure 6-8, these ranges were entered in the By Changing Cells field.

The final type of information we need to enter is the limitations or constraints associated with this situation. Perhaps the most obvious constraint is that we want to complete the project within 20 days (cell Bl). Since node 6 (cell B2l) corresponds to the event of the project being completed, we can specify this constraint as follows:

B21 ≤ B1

Another important set of constraints is needed to make sure we don't crash an activity more than the maximum number of days that it can be crashed. Constraints to ensure this could be entered as follows:

I6 ≤ H6 (activity a) 

I7 ≤ H7 (activity b) 

I8 ≤H8 (activity c) 

I9 ≤ H9 (activity d)

I10 ≤ H10 (activity e) 

I11 ≤ H11 (activity f) 

I12 ≤ H12 (activity g)

Alternatively, by employing a shorthand approach that capitalizes on a spreadsheet's ability to deal with ranges, these seven constraints could be entered as a single constraint as

16:112 ≤ H6:H12

Another set of constraints is needed to make sure that the precedence relationships specified in the network diagram are not violated. We do this by keeping track of the event times of the nodes. For example, the event time of node 2 cannot occur until after activity a has been completed (assuming that the project begins at time zero). The time to complete activity a is its normal time less the amount of time it is crashed. Since cell B17 corresponds to the event time for node 2, mathematically we could enter this constraint as follows:

B17 ≥ C6 - 16

This constraint says that the event corresponding to node 2 cannot occur until after activity a has been completed.

Constraints for the other nodes could be created in a similar fashion. For example,


the constraints for nodes 3 and 4 would be

B18 ≥ C7 - 17

B19 ≥ B17 + C8 - 18

The constraint for node 4 says in effect that the event corresponding to node 4 cannot occur until after the event corresponding to node 2 (cell B17) occurs plus the time it takes to complete activity c.

Moving on to node 5, note that this node has two arrows pointing to it. A node with more than one arrow pointing to it will need a separate constraint for each arrow. Thus we need the following two constraints for node 5.

B20 ≥ B17 + C9 - 19 

B20 ≥ B18 + C10 - 110

This first constraint says that node 5 (cell B20) cannot occur until after node 2 has occurred (cell B17) plus the amount of time it takes to complete activity d. The second constraint says that node 5 cannot occur until after node 3 (cell B 18) has occurred plus the amount of time it takes to complete activity e.

Node 6 is handled in a similar way to node 5 as follows:

B21 ≥ B19 + Cll - I11 

B21 ≥ B20 + C12 - I12

Finally, since it does not make sense to crash an activity a negative amount of time, nor does it make sense for a node to occur at a time less than time zero, we add constraints to ensure these outcomes are not generated. Using Excel's shorthand approach, these constraints can be specified as follows:

I6:I12 ≥ 0

B17:B21 ≥ 0

In this example we assume that the activities can be crashed a fraction of a day. If we preferred to assume that the activities had to be crashed either a whole day or not at all, we could easily add additional constraints to the model to reflect this preference..

To enter these constraints, select the Add button in the Subject to the Constraints section of the Solver Parameters dialog box. The entire set of constraints needed is as follows:

B21 ≤ B1

I6:I12 ≤ H6:H12

B17 ≥ C6-I6

B18 ≥ C7-I7

B19 ≥ B17 + C8-I8

B20 ≥ B17 + C9 - 19

B20 ≥ B18 + CI0 - 110 

B21 ≥ B19 + Cll - 111 

B21 ≥ B20 + C12 - 112

16:112 ≥ 0

B17:B21 ≥ 0

After entering these constraints, the Solver Parameters dialog box appears as shown in Figure 6-8. Before finding the least costly way to crash the project down to 20 days, select the Options... button and click on the Assume Linear Model check box and then click OK. Now to find the least cost solution, select the Solve button in the Solver Parameters dialog box. As is shown in Table 6-3, Excel identified the same solution that we obtained earlier using the manual approach. Specifically, the solution suggests crashing activity a by one day (cell 16). This results in completing the project by day 20 (cell B21) at a total project cost of $430 (cell B2).

Having set up the spreadsheet, we can now quickly and easily evaluate the cost of incrementally increasing the amount the project is crashed. Doing this simply requires changing the deadline entered in cell Bl and then clicking on the Solve button. A summary of this analysis is provided in Figure 6-9.

Fast-Tracking a Project

In addition to crashing a project in order to expedite it, a project may also be fast tracked. Used primarily in the construction industry, the term refers to an expediting technique in which the design and planning phases of a project are not actually completed before the building phase is started. Usually design and plan are finished before the building is started, so letting them overlap reduces project duration-if the fact that design and planning are incomplete does not result in a significant amount of rework and change orders during the building phase.

For many projects in construction, maintenance, and similar areas, a large proportion of the work is routine. In these cases, fast-tracking rarely causes serious problems. The number of change orders in fast-tracked construction projects is not significantly different from that for similar projects that were not fast-tracked (Kurtulus and Narula, 1982).

When task durations are estimated, an assumption is made that task resources are set at "normal" levels. This is the "standard practice" assumption. Traditionally, CPM project duration estimates also include a "crash" estimate together with estimates of the crash time and the resources required to shorten the duration of project activities. By selectively choosing which activities to crash and by how much, we can determine the minimum cost for all possible project completion times. Both manual and spreadsheet methods are illustrated.

6.2 RESOURCE LOADING

From the first day on the job, the PM is concerned with resource loading. Resource loading refers to the amounts of specific resources that are scheduled for use on specific activities or projects at specific times. It usually takes the form of a list or table. Figure 6-10 is an MSP generated action plan and Gantt chart of a project aimed at producing a short documentary DVD. Task names, WBS numbers, durations, finish dates, and the resource requirements for each step in the process are shown. (Precedences are not listed in this action plan, but they are illustrated on the Gantt chart.)

After the project plan was developed, the PM confirmed the availability of each required resource, and obtained schedules for each. MSP allows the PM to create an individual availability calendar for each resource on the project. From these calendars, resource schedules are automatically generated, and Table 6-4 shows the schedules for several of the required resources. (Any resource not shown in Table 6-4 works a five-day week, 8:00 AM to 5:00 PM with an hour off for lunch, usually 12 PM-1 PM, without exceptions during the period of the project.) Among other things, the PM noted the following:

· The scriptwriter is available to work six days per week, and nine hours per day.  

· The editing room has limited availability, 9:30 AM to 3:00 PM each day.

· The client, whose input is required for several activities, will be on vacation between March 13 and March 26.

When the calendars for each resource were entered into MSP's database for the project, the project schedule was recalculated. The revised plan is shown in Figure 6-11. Note that the project completion date has been extended from May 3 to May 17. The client's vacation and the availability of the editing room are major contributors to the extension.

From the project plan, the new schedule, and the list of resources required, a resource-loading table was derived by MSP, see Table 6-5. As we noted earlier, a project's resource loading is a list of the amounts of various specific resources that are scheduled for use on specific activities at specific times during the life of the project. A brief study of the data in Table 6-5 reveals that in the first few days of the project [Wednesday through Saturday (March 1-4)] the scriptwriter is slightly overallocated. During those four days of the project this person is scheduled to work 72 hours. That seems a bit much allowing only six hours per day for eating, sleeping, and all of life's other activities. The scriptwriter's first full week is also overallocated at 58 hours. The producer's first three days are also overallocated at 48 hours. Something must be done, and it will be discussed in the next section.

An examination of this table reveals an interesting anomaly in MSP and most other project management software. Unless specified otherwise, MSP assumes that any resource assigned to an activity will work on that activity 100 percent of the time available on the resource calendar. For example, Figure 6-10, WBS 3.2, "Propose shoots" lists the client as a resource (in addition to the producer and scriptwriter). The activity is scheduled to take five days. The PM is aware that in all likelihood the client will only be needed to attend one or two meetings (an hour or two each) to approve or amend the shoots proposed by the producer and scriptwriter. Nonetheless, the resource-loading table (Table 6-5) indicates that the client will spend 40 hours (5 days at 8 hours/day) on the activity.

Were this a large project with a large number and variety of resources it might be necessary to correct this "error." MSP and other software packages have several ways to do this. The PM could allocate a specific percentage of a resource's time for work on the project, or could restrict the availability of the resource on the calendar, for example. In this case, however, because the client has no cost per hour, and because everyone involved in the project, including the client, understands the nature of the client's work, the matter can be ignored.


Quite apart from problems in scheduling the activities, there are other resource loading issues that may face the PM. For instance, there are cost and management issues that must be considered. It is easy to overutilize resources, particularly human resources; note the hours required of the scriptwriter and producer during the first days of the project. For hourly workers, overtime work is usually quite expensive. In the case of the scriptwriter, overtime hours are not sufficient, and another writer may be needed for the first one or two weeks. On the other hand, it is common to find middle managers consistently working 45-60 hours per week-if they have a desire for upward mobility. In the software industry or in architecture, to pick two typical examples, individuals often work 60-80 hours per week or more in order to complete specific projects on time. Be. cause we usually overload our best people, they are the ones most apt to quit and go elsewhere-and they rarely tell us why in their exit interviews. For most senior executives, the workloads are often very heavy-consistently 65-70 or more hours per week. These are the people who are overstressed at the very times they must make momentous decisions.

Such resource-loading documents as Figure 6-5 are among management's most frequent requests of the PM, precisely so they can monitor such situations. As we will see in the section on resource leveling, managers sometimes make incorrect assumptions about the capacity of work groups, and the PM must take on an educational role.

The Charismatic VP

The Vice-President and Manager of a division of a large chemical company became aware that a number of projects he had assigned to his subordinates were not being completed on time. Some were finished late, and others were simply unfinished. The VP was tireless, spending 60-80 hours per week at work. He was very well liked, and his people tried hard to please him. If he asked a subordinate if a task could be handled, in. variably the answer was "Yes."

The VP began to suspect that he was overcommitting his subordinates. He suggested this to his people, but most of them insisted that they could handle the work. Not entirely convinced, the VP installed a project-oriented management system and initiated resource-loading reports for all personnel doing project work. The reports showed clearly that the division had an urgent need for additional staff engineers.

As is typical of such cases, the individuals most overworked were the most experienced and most skilled people. Those engineers with spare time were the least skilled and, for the most part, recent hires. The untrained remained untrained. The Vice. President, however, altered work assignments and ordered that additional engineers be hired. Overscheduling was limited to 125 percent (50 hours per week), and at that level for a limited time only. A policy of partnering new engineers with experienced cohorts was instituted. Within six months, division projects were progressing reasonably on time.

Resource loading is usually displayed as a list of the amounts of specific resources assigned for use on specific project activities at specific times, or as a graph showing the level of a resource's capacity required against the project calendar. To be useful for scheduling, the resource must have a calendar showing the resource's availability. The calendar should include hours-and days worked each week, any holidays on which the resource will not be available, and any other information affecting the availability of the resource. Resource cost per unit of usage should be included on the calendar, plus any additional cost for overtime or overuse. Overscheduling a resource may cause serious problems for the PM.

6.3 RESOURCE LEVELING

Look once again at Figure 6-11. Tasks 2, 3.2, and 3.3 are all scheduled to start on March 1. The scriptwriter is required for the first two of the three items and the producer for the last two. The scriptwriter's calendar (Table 6-4) indicates that the scriptwriter can work a 54-hour week-six days per week at nine hours per day. The producer is available for a standard 40-hour week. The resource-loading table (Table 6-5) shows the above-mentioned tasks assigned to the scriptwriter and producer. Apparently both are expected to do two different jobs at the same time.

The scriptwriter's conflict must be reduced. Figures 6-12 and 6-13 illustrate the problem clearly. Both illustrations are MSP outputs. Figure 6-12 lists all tasks for which the scriptwriter is scheduled. Figure 6-13 indicates that the scriptwriter is overallocated by a factor of two during the period from March 1 to March 4. * (Recall that the project begins on March 1, not February 28, and so the scriptwriter works only four days36 hours-during the first week of March.)

Figure 6-12 also shows considerable slack in WBS 3.2. If we ask MSP to level resources, the software will move activities so that resources do not exceed their capacities-and will do so by using available slack first, where possible, rather than extending the project duration. (Clearly, the PM could do the same thing manually, but the job becomes complex and time-consuming on all but small projects.) Figures 6-14 and 6-15 show the effect of resource leveling on the scriptwriter's workload. In this case the project duration was not affected because there was sufficient slack in WBS 3.2, and the leveling operation used it.

To understand Figure 6-14 correctly requires an understanding of MSP. The figure appears to report that the scriptwriter is still working overtime on Tasks 2 and 3.2. This would also mean that there was an error in Figure 6-15 that shows no such thing. The scriptwriter's efforts are, in fact, solely devoted to scriptwriting (Task 2), but the producer and the client are working on Task 3.2, so the task is shown as being underway. MSP has split Task 3.2, and the scriptwriter begins work on the task on Wednesday, March 15 after work on Task 2 has been completed. The second part of Task 3.2 does not begin until all work on Task 2 is complete. It is easy to verify that this has happened. Figure 6-16 shows the resource allocation, after leveling the scriptwriter's workload, using a daily calendar. The scriptwriter is not assigned more than nine hours per day. On March 15 work transfers from Task 2 to Task 3.2.

The problem of the still overallocated producer is another matter. This is the same problem we discussed above concerning the client's need to attend some meetings. The fact that the producer is overscheduled is not really a problem. Neither of the conflicting tasks (WBS task 3.2 and 3.3) requires eight hours per day of work by the producer. The duration of five days for Task 3.2 (Propose shoots), for example, indicates that the producer will be spending some time during a five-day period on the job of proposing locations and settings for filming. Similarly, Task 3.3 (Hire secretary) will require the producer to interview some candidates for the secretarial position during the same five. day period, but this will not be a full-time job either. The five-day durations are an indication of when the tasks are expected to be complete. Task duration is not necessarily dictated by the amount of labor required to complete the task, but by the calendar time required to complete it. Sometimes, of course, the amount of labor may be the determinant of calendar time, but often it is not.


At this point a short digression is appropriate. As a student of project management reading this book, you probably know little of the reality of the projects used here as examples of this or that project management problem. As a PM working on a real-world project, you know a great deal more about the reality of your project than could possibly be explained in this book on the subject. The PM of the documentary project knows that there will be no problem raised by the apparent conflict in the allocation of the producer's time. The PM could have used one of the methods we noted in the discussion of resource loading to handle the matter, but elected not to take the time and effort. This, then, is another of the trade-offs the PM must make. Not every facet of a project requires equal managerial care. The PM must decide where to expend his or her managerial efforts-and then take responsibility for the decision.

A resource allocation decision may be intended to avoid future problems rather than to cure a present problem. While the scriptwriter is not overallocated, the PM decided to add a second scriptwriter to WBS 2. The PM also leveled the producer's apparent overallocation just to add some slack to the producer's schedule. Both of these additions were made to insure that the project was not made late by a glitch in the producer's work or in the scriptwriting activity, which is on the project's critical path. (See Section 6.5 for additional information about the advisability of having some excess capacity in projects.) The result of all these moves is seen in Figure 6-17. The project can be finished five days earlier than indicated in Figure 6-11.

When resources are added to a project, the PM may be asked to explain just how the project budget came to be underestimated. To answer such a question, the PM would be well advised to contact the administration of any large city that has recently built a sports stadium.

A more or less steady state demand for human resources is highly desirable-if it is not seriously inconsistent with the technological demands of the project. The cost of adding, laying-off, or permanently releasing human beings is very high for both hourly and salaried personnel. If the parent organization is quite large and is operating many projects that have reasonably high commonality in their demand for certain skills, it is often possible to set up "pools" for such skills as clerical, machine operation, and similar types of workers. When pools are used to supply resources for projects, careful records must be kept to ensure fast determination of skill availability and that the proper charges are made to all projects.

Pools of like resources from which labor can be added temporarily to projects tend to cut costs for the firm as a whole. Pools also cut the cost of managing the project. The PM's job is made easier, and the cash flows of the project are less volatile. The PM will spend far less time trying to find and recruit personnel. Such pools, however, are useful only if the labor is not subdivided into highly specialized subtasks. Secretarial skills are less specialized than, say, the skills required to design, generate, or test computer software. The conclusion is that secretarial pools are feasible, but that software design, generation, and testing should be done by "teams" in which the required specialists are available.

Resource Loading/Leveling and Uncertainty

Figure 6-18 is a resource-loading chart for a software engineering group in a large firm. The chart depicts the total number of hours required of a resource group (all members from one department assigned to the firm's projects) displayed against the group's capacity. (MSP resource-loading information was exported to an Excel@ spreadsheet and displayed graphically. The process of producing such displays is not difficult.) There are 21 members of the group. They are scheduled for 40 hours per five-day week by the firm. Figure 6-18 covers a 34-week period. The graph shows estimated work-hours (28,282) committed by this team for projects that are currently on the company's books. The delivery-date commitments are such that group workloads exceed the group's capacity through much of March and April, for a brief period in the middle of May, and again in the latter part of June. (The total of these overloads is 1,747 hours, or a bit more than 83 hours per person.)

A rough estimate of group capacity is

21 (people) X 40 (hours per week) X 34 (weeks) = 28,560 labor-hours.

But a few corrections are in order. There are three national holidays in the period, Memorial Day, the Fourth of July, and Labor Day. The time lost for the holidays is:

21 X 3 (days) X 8 (hours) = 504 labor-hours,

which lowers capacity to 28,056 labor-hours. Assume further that 11 people take a two-week vacation during the 34-week period, a conservative assumption given the fact that the period includes May through September. The time for 11 vacations is an additional capacity loss of

11 X 2 (weeks) X 40 = 880 labor-hours

There are now 28,056 - 880 = 27,176 labor-hours available and even if the group's work were evenly distributed across the 34-week period, the team's capacity is about 1,100 less than the scheduled demand for work. The workload is 28,282/27,176 = 1.04 or 104 percent of capacity.

A 4 percent shortage of capacity does not seem like much. Why not increase the hours worked per week for these salaried software engineers to 41.6 hours per week? The added capacity will (roughly) equal the estimated workload. While such a move might help, it would not begin to solve the problem. For instance, is it likely that no engineers in the group will be ill and absent on any of the 170 workdays? Is it likely. . . no; is it possible that every task the group is scheduled to perform will be ready for the group's work exactly on schedule? Is it possible that all required facilities and equipment will be available when needed? Is it possible that there will be no change orders extending the time required for any phase of the work the group is committed to complete? In reality, the probability that any of the above conditions will be met is, as mathematicians are wont to say, vanishingly small. But even if they were met, what about that large bulge of work required in March and April?

For many years, the study of Operations Management has included the subject of "line balancing." (See Shafer and Meredith, 1998, pp. 230 ff.) The purpose of line balancing is to construct a manufacturing production line such that the individual production units on the line can generate the required amount of product with as little excess capacity as possible. Minimizing excess capacity in the elements of a production line is one test of production line efficiency. This concept, when applied to the resources used by projects-as it often is-is a precursor to disaster. Even in production lines, some excess capacity is required to deal with minor problems and variations that arise during the production process. In projects, the level of uncertainty surrounding the "production process" is so much greater that the amount of excess capacity in the work force needs to be much larger. If this flies in the face of managerial instinct, it is because that instinct is sometimes in error. We will revisit this problem in the following section.

The result of the situation displayed in Figure 6-18 is that all the projects to which this team of engineers is devoted are going to be late and over budget unless some drastic steps are taken to prevent it. The firm in question is known for high-quality work, and it is assumed that the projects will be completed more or less on time with a reasonable percent of the promised specifications in place and working. How this comes about is quite simple. Engineers in this firm are scheduled to work a 40-hour week. They do not, however, work 40-hour weeks. They average between 50 and 60 hours per week. At a 55-hour week, for example, the capacity of the group is approximately 37,500 labor-hours. Given the 28,282 labor-hour workload, the system would operate, on average, at about 75 percent of capacity-which explains the engineering group's ability to meet most of its delivery-date commitments.

Most project management software will, when asked politely, level out the loads (usage) for individual resources and warn the PM when a resource is scheduled for greater-than-capacity workloads. Whenever possible, the leveling will utilize any available activity slack rather than extend the duration of the project. When a resource is assigned to an activity, it is assigned for 100 percent of its availability unless the PM specifies otherwise.

It is often necessary to have significant excess resource capacity on projects because of the uncertainty that exists in all projects. Dealing with this issue is a major reason for the installation of a competent risk management system.

6.4 ALLOCATING SCARCE RESOURCES TO PROJECTS

When we leveled resources in the case of the overworked scriptwriter, MSP simply used the available activity slack to reschedule WBS item 3.2. The project completion date was not altered because the WBS 3.2's slack was large enough to swallow the added time. Often, that is not possible and the software needs instruction about what priority to use when allocating scarce resources to several tasks-which tasks should get the resources immediately and go first, and which may be delayed. In order to select a suitable method for assigning priorities, we need to understand how the problem is solved.

Most solutions start with the PERT/CPM schedule. Given this initial solution, each activity is examined period by period and resource by resource. If the demand for a resource exceeds its supply, the software considers the tasks one by one and assigns resources to the tasks according to some priority rule chosen by the PM. Tasks that receive resources under this rule proceed as originally scheduled. Tasks that do not get resources are delayed until ongoing tasks are completed and the required resources are freed-up for use. If this increases the project duration, the change will be visible on the project's Gantt chart or network as it was when the videotape project client was not available while on vacation. (See Figures 6-10, 6-11, and 6-17.) No matter what priority rule is used, the project's technology always takes precedence.

Some Comments about Constrained Resources

Every time a project falls behind schedule, the PM is apt to plead for more resources. In spite of the PM's complaints about the scarcity of resources, serious cases of resource scarcity rarely apply to resources in general, but rather to one or two very specific resources. We call such resources "Walts." The term was derived from the name of an individual, Walter A., who is employed by a large insurance company. Walt is a specialist in the rules and laws affecting insurance policies for certain types of casualty losses in the firm's commercial lines of business. He has an excellent analytical mind and many years of experience. His knowledge is required when designing new policies in this area of risk. The firm has only one Walt, and while the firm is training others, such training takes years. Walt is a true scarce resource. Projects requiring Walt's input are scheduled around his availability.

There are many other examples. Military combat missions may be scheduled around the availability of attack aircraft. Construction projects may be scheduled around the availability of a large crane. A Broadway opening may be scheduled around the availability of a star actress. The key problem to be solved is deciding which activities get the scarce resource and in what order.

Some Priority Rules

There are many possible rules for assigning preference to some activities over others when allocating scarce resources. Most popular project management software packages have a limited number of rules that can be automatically applied to level overallocated resources so many of the priority rules for assigning scarce resources to activities may have to be applied manually. Fortunately, as we will see, this is not as difficult as it might seem. Several of the most commonly used rules are as follows:

As soon as possible-This is the standard rule in scheduling. Activities are scheduled to start on their ESTs, and resources are made available with that in mind.

As late as possible-With this rule, resources are made available so that activities start on their LSTs whenever possible without increasing the project's duration. This may seem irrational, but it preserves the firm's resources and delays cash outflows as long as possible. This rule is also compatible with Eliyahu Goldratt's contention that the "student syndrome" leads workers to delay starting an activity until the last possible moment (Goldratt, 1997, Ch. 13).

Shortest task duration first-Always consistent with technological precedences, shorter tasks are given priority over longer tasks. This rule maximizes the number of tasks that can be completed by a system in a given time period.

Minimum slack first-Tasks are supplied with resources in inverse order of their slacks. This rule usually minimizes the number of late activities.

Most critical followers-The number of successors on the critical path(s) for each activity is counted. Activities with a higher number of critical successors take precedence. The rationale here is that such activities would cause the greatest damage to the desired project schedule if they are late.


Most successors-The same as the previous rule except that all successors are

counted. This rule has the same rationale as the preceding rule.

Most resources first-With this rule, the greater the use of a specific resource on a task, the higher the task's priority for the resource. This rule is based on the assumption that more important activities have a greater demand for scarce resources.

In addition to these rules, there are many others. For example, it may be company policy to put favored customers' projects at the head of the resource line--or to reserve special resources for such clients by withholding them from the available supply. The same type of favoritism is sometimes shown to specific projects of high value to the parent firm. (Some firms show favoritism to specific high-value activities, but this rule makes little sense because all activities of an individual project must be completed to finish the project.) Application of a value measure for allocating scarce resources across several projects is both rational and common.

There are many other priority rules that might be used, but most project management software packages recognize only a few; however, assigning scarce resources manually is not difficult. From our earlier example, recall Figure 6-12, in which all tasks requiring the scriptwriter were listed alone on a Gantt chart showing the task duration, scheduled start, scheduled finish, activity slack, and other needed information. The scheduled start dates would allow us to apply either the early or late start rules. Information on activity slack allows us to use the minimum slack rule. Task duration is the necessary input to apply the Shortest Task Duration rule. The project network, Gantt chart, and the task list all allow a simple count of followers, critical or not. MSP and most other project management software allow verbal or numeric priorities to be as. signed easily. This allows the use of any priority system required.

Considerable research has been done on these rules (Fendley, 1996; Kurtulus and Davis, 1982; Kurtulus and Narula, 1985), and the minimum slack rule is usually best or second best. It rarely performs poorly. If a high-slack task is not given resources in one period, its slack is automatically decreased and in the next period it has a better chance of receiving resources. The resource allocation is repeated periodically (hourly, daily, weekly, or monthly, etc.), depending on the time frame of the project's activities. If a task becomes critical, that is, all the slack is used up before the activity receives resources, the project will be delayed. We will consider borrowing resources from ongoing tasks when we discuss the allocation of scarce resources among several projects.

When a resource is overallocated, MSP can level resource usage by adopting a variety of priority rules, including available activity slack. If there is insufficient slack, other priority rules may be used to allocate the scarce resource. Most of the priority rules originated as job shop scheduling rules. The minimum slack rule usually works best. Only a few critical resources are actually scarce in the sense that project schedules must be adjusted to resource availability.

6.5 ALLOCATING SCARCE RESOURCES TO SEVERAL PROJECTS
When the problem of allocating scarce resources is extended to the case when several projects are being carried out concurrently, the size and complexity of the problem increase but the nature of the underlying problem remains the same. The projects might be independent or members of one large superproject. In any case, there is a decided advantage if several projects are joined as a set.

Consider a single project for a moment. It is composed of a set of first-level tasks connected in a technological relationship of predecessors and successors. Each first-level task is composed of a set of second-level tasks, also arranged in technologically determined ways. The second-level tasks are divided into third-level tasks, and so on, much like the fleas in Jonathon Swift's famous verse:

So, naturalists observe, a flea

Hath smaller fleas that on him prey;

And these have smaller still to bite 'em;

And so proceed ad infinitum.

If we take several projects, we can link them together with pseudoactivities, here defined as activities that have duration but do not require any resources. The set of projects linked in such a way becomes a sort of superproject and can be "managed" like any other. We can use the pseudoactivities to establish predecences between the projects they connect, and thus we can separate the projects in time. This is simplest to illustrate as an AOA network (see Figure 6-19), but a Gantt chart could be used by displaying the projects with leads and lags. Each node in Figure 6-19 represents a project, and the arrows connecting them are pseudoactivities. The temporal relationships of the projects are altered by varying the duration of the pseudoactivities.

The individual projects are interrelated by specifying predecessor/successor relationships in MSP. Thus they appear (to MSP) to be parts of one project. If the original project calendars are put on the same time base (exactly as we did with individual activities when scarce resources were allocated among several activities in a single project), we can use the single-project resource-allocation methods for several projects at a time. (MSP's ability to handle projects with a very large number of activities on multiple levels is not limited by the software but by the size of the computer's memory.) MSP can also easily link many large projects, treated as separate and independent, but they share the same set of resources. The pseudoactivities may represent technological relationships among the projects-which will often be the case when individual projects are parts of an overall program. Pseudoactivities may separate projects according to planned delivery dates, or the separations may be completely arbitrary.

Putting a set of projects into a format that deals with them as a single project allows us to use MSP's resource loading and leveling charts and tables. Remembering that the calendars of all projects should be adjusted to the same time-base, we can examine the status of resource allocation---or overallocation-for all activities in all projects over any time period. By using the leveling routines, we can also examine the consequences of adopting different resource allocation priority rules. Further, we can examine the implications of adding more resources by comparing the costs of additional resources with the costs that might accrue from late deliveries or delays if the resources are not added. The assignment and handling of various priority rules are, of course, the same as in the single project case. The number of cases to be investigated will be larger in the multiproject case, but few genuine Walts are involved. Extending or contracting the pseudoactivities is the mechanism by which we change the start or finish dates of projects in order to avoid overallocation of Walts.

Criteria of Priority Rules

Whatever the priority rule, the PM faces the problem of choosing between the alternative outcomes that result from different priority rules, as well as different arrangements and durations of the pseudoactivities. There are many measurable criteria available to help us choose a priority rule. The most useful for projects are schedule slippage, resource utilization, and in-process inventory.

Schedule slippage simply measures the amount by which a project, or a set of projects, is delayed by application of a leveling rule (or by extending a pseudoactivity so that a project finishes later because it starts later). As we noted above, the PM (and senior management) must trade off penalty costs or the possible displeasure of clients against the cost of adding resources, if that is possible, or by reducing the overallocation of Walts. Just as serious is the ripple effect that often occurs when a delay in one project causes a delay in others. Indeed, expediting one project typically causes disturbances in the schedules of others.

The shortest-task-first rule for assigning resources minimizes the level of in-process inventory or how much unfinished work is in the system. Clients have little desire to pay for things they have not yet received-though partial prepayment is sometimes arranged by contract-and the organization carrying out projects may have large quantities of human and material resources invested in projects that have little value until they are complete.

The minimum slack rule is probably the best overall priority rule according to research on the subject. It gives the best combination of minimum project slippage, mini. mum resource idle-time, and minimum in-process inventory (Fendley, 1968). While first-come-first-served may be the client's idea of "fair," it is a poor priority rule when measured against almost any of the others. If the minimum slack rule produces ties among two or more projects (or activities), the shortest task rule seems to be the best tie-breaker.

The Basic Approach

It is now appropriate to stop for a moment and consider a matter. The basic approach taken here to solve project loading and leveling problems is borrowed from a manufacturing model that has widespread application and works equally well for projects. Our problem is that there exists a set of activities belonging to one or more projects all eager for processing by a limited set of facilities or other resources. Not all activities require the same subset of facilities or resources, and some activities are more in need of immediate attention than others. To make matters worse, some activities need more work than others, and some insist (for technological reasons, of course, rather than natural cussedness) on being dealt with before some others.

As if this were not enough, the activities do not have access to the facility or resources at precise, predetermined times so the PM or facility manager does not know with any great precision-when to expect specific activities to be ready for processing. Finally, even when an activity does arrive, and when the facility is ready to begin, there may still be considerable uncertainty about exactly how much time it requires to do the processing. Remember that we are discussing the unfinished outputs of some projects. They have completed a previous activity and are now waiting for resources to engage in the next activity for which they are scheduled. All of these activities involve the use of a scarce resource (or two) that we must allocate to the waiting activities.

In this setting, a scarce facility (resource) is like a bottleneck. A line or queue of activities waiting to be processed forms in front of the processor. Assume that jobs arriving to join the queue arrive randomly at an average or expected rate of A jobs per unit of time. Also assume that the time required for the processor to service the activities is random and has an average or expected rate of J.L jobs per unit of time. The behavior of queues has been studied for many years and under our assumptions, not unreasonable for the constrained resource, multiproject problem, the average number of jobs in the waiting line is given by 

J = ((/()/(1-(/(). Note what happens when the arrival rate of tasks approaches the system's capacity, for example, A approaches J.L.], the number of jobs in the queue, heads toward infinity. This supports our earlier contention that production or servicing systems must have excess capacity unless they are tightly controlled assembly-line type operations-and even these need a small amount of excess capacity to handle the normal, small variations in arrival or service rates.

Resource Allocation and the Project Life Cycle

Whatever the scheduling rule, the scheduling method assigns scarce resources to activities on the basis of the degree to which the activity meets some priority conditions. Once the most urgent cases (as measured by the priority rule) have been given resources, the next most urgent cases receive their resources. The process continues until there are no more activities qualified under the rule.

If all critical activities demanding scarce resources are supplied, but the remaining stock of scarce resources is depleted before all noncritical activities are resource loaded, the less urgent activities go unsupplied. When this happens, the less urgent activities become more urgent as period after period passes until they rise far enough up the priority rank list and receive their resources. But what happens if the stock of scarce resources is depleted before all the critical activities receive resources? For example, when using the minimum slack rule, what happens if we run out of our scarce resource before we run out of critical (zero slack) activities?

When this condition occurs, it is often possible to borrow resources from another (ongoing) activity that is lower on the priority list, that is, has some slack in the case of the minimum slack rule. Perhaps we could even deschedule such an activity and take all the scarce resource being used, restoring the scarce resource later when the descheduled activity has risen higher on the priority list. The decision about whether to borrow some resources from a high-slack ongoing task or whether to stop the task and use all its resources is made by looking at the implication of either action on the project. Borrowing the scarce resource may only slow down progress on an activity or it may stop the activity altogether. If borrowing does the latter, it would make sense to borrow all other resources at the same time.

We can also use our knowledge of the project's life cycle to help make the decision. Figure 6-20 shows both types of project life cycle that were discussed in Chapter 1, Section 1.4. The Type 1 life cycle shows decreasing returns to additional resources toward the end of the project. If we borrow from or deschedule activities late in the life of a Type 1 project, we lose proportionately little from the project. If we borrow from or deschedule activities late in the life of a Type 2 project, we may destroy it completely. On the other hand, if the borrowing or descheduling is done near the middle of the life of the project, our conclusion might be exactly the opposite. We need to understand the general shape of the project's life cycle curve in order to assess the implications of slowing or stopping it.

Allocating scarce resources among multiple projects is more complicated than the single project case, but is not different in its basic logic. The several projects are linked with pseudoactivities and treated as if they were the individual activities of a single project. Schedule slippage, resource utilization, and in-process inventory are measures of the goodness of any priority rule.

Much of the allocation problem results because project facilities/resources have insufficient excess capacity to handle the uncertainties associated with projects. The shape of the project's life cycle helps determine whether or not resources can be borrowed from ongoing activities to supply stalled activities with critical resource needs.

6.6 GOLDRATT'S CRITICAL CHAIN

Much research has been done on scheduling with constrained resources, and the findings verify what was expected-projects are completed faster when there are fewer of them struggling for attention from a limited set of facilities (Adler, Mandelbaum, Nguyen, and Schwerer, 1996). More recently, in the book Critical Chain (1997) Eliyahu Goldratt applies his Theory of Constraints-so brilliantly developed in his famous book, The Goal (Goldratt and Cox, 1992)-to the constrained resource problem. While Goldratt's focus in the Critical Chain is on a single project with multiple demands on a scarce resource, the logic extends to the multiproject case without alteration.

In the following few pages you will note that the exposition focuses mainly on scheduling. But isn't this chapter supposed to be about resource usage? It should be quite clear by now that resource usage and project schedules are inextricably bound together. The technological necessities that force schedules to be ordered in very specific ways simultaneously force resources to be used in very specific ways. To schedule work is also to schedule resource usage. If technology is the prime force behind scheduling the activities of a project, resource availability constrains all solutions to the scheduling problem.

To begin our discussion of Goldratt's approach, imagine for the moment that you are sitting in a room full of people with extensive experience as both project team members and project managers. Now imagine the responses you would hear if the group were asked the question: "What things bugged you most about the projects you have been involved with?" Typical of the responses that we have gotten to that question are:

· Project due dates are too often unrealistic.

· There are too many changes made in the project's scope.

· Key resources and data are often unavailable when needed.

· The budget is frequently unrealistic and therefore often exceeded.

· It seems like my project is always in competition for resources with other projects.

One interesting observation is that these same issues are raised regardless of the organizational context. Thus we hear strikingly similar complaints regardless of whether the group is referring to a construction project, a software development project, a project to develop an advertising campaign, or an R&D project. Hussain and Wearne (2005) asked more than 1000 project managers to identify the "greatest problem of project management," a subtly different question than we asked, and they found that project "organization," "resource," and "time" issues were paramount. ("Change in scope was ranked 11th in their research.) Based on these findings, it is not farfetched to conclude that the causes of these problems are generic to all types of projects. As we have discussed throughout this book, project management is fundamentally concerned with effectively trading off performance, cost, and time. Referring back to the lists of complaints, it can be seen that each issue (excepting "organization") deals with one or more of the three primary project objectives.

Given our conclusion that the problems encountered when managing projects are strongly related to the need to trade off one project objective for another, a natural question arises about the extent to which the need to make these trade-offs are caused by human decisions and practices. In other words, can more effective project management minimize the occurrence of these problems? To investigate this issue, let's examine the complaint regarding unrealistic due dates in more detail.

One way to investigate this issue is to see if we can identify any generally accepted practices that would tend to cause the shared perception of many project workers that project due dates are often set too optimistically. To make our discussion more concrete, consider the three AOA network diagrams shown in Figure 6-21. The primary difference between the three diagrams is the degree of interdependence across the paths. In scenario 1, there is only a single path. In scenario 2, the path B-C-D-E is preceded by three activities AI, A2, and A3. Therefore, the completion of path B-C-D-E depends on which of its three preceding tasks takes the longest. In scenario 3 there are two completely independent paths each consisting of five tasks.

Assume that as project manager you are told that all of the tasks in the three network diagrams require ten days to complete. What completion time would you calculate for each project? If you assume that the activity times are known with certainty, then all three projects would have the same duration of 50 days. If you find this result somewhat unsettling, you are in good company. Thinking about it intuitively, how can a simple project like scenario 1 with a single path and only five activities have the same duration as scenario 2 with three paths and seven activities, or with scenario 3 with two paths and ten activities?

Part of the problem is our assumption that the activity times are known with certainty. To investigate this further, let's assume that all activity times are normally distributed with a mean of ten days and standard deviation of three. The results of simulating the completion of the three projects 200 times each are summarized in Table 6-6.

As you can see from Table 6-6, removing the assumption that the activity times are known with certainty leads to quite different results. Scenario l's average duration was slightly higher than the 50 we calculated earlier under the assumption of deterministic time estimates. To a large extent with this linear structure and with our assumption of normally distributed activity times, activities that take less than the expected time tend to cancel out the variability of activities that take more than the expected time, resulting in an overall average completion time that is close to the expected completion time for the project. (Remember, in Chapter 5 we discovered that this canceling out rarely hap. pens in the real world, because activities may start late or on time, but rarely start early because resources are usually not available before the activity's EST.) Also observe that the more interdependent scenarios 2 and 3, on average, take even longer than scenario 1 and that their minimum times are significantly longer than scenario l's minimum time.

Most important, note that while the average completion times of the projects are still close to 50, this is simply the average project completion time after simulating the execution of each project 200 times. That is, approximately 50 percent of the time the projects will be completed in less than 50 days and 50 percent of the time the projects will be completed in more than 50 days under the reasonable assumption that the distribution of project completion times follows a symmetrical distribution. (Note that here we are referring to the distribution of project completion times as being symmetrical, not the project activity times.) In other words, had we determined the project duration based on the assumption that the activity times are known with certainty (when they were actually probabilistic), we would incur a greater than 50 percent chance that the actual project duration would exceed this estimate. How would you like to have responsibility for a project that has less than a 50 percent chance of being completed on time? This example clearly demonstrates how the commonly made assumption of known activity times in practice can lead to quite unrealistic project deadlines.

It is important to point out that the results would have been even more dramatic had the activities required some common resources. Similarly, the results would have been more dramatic and realistic had a nonsymmetrical distribution been used to model the activity times. Why, you might ask, would a nonsymmetrical distribution more realistically model the activity times? Suppose you scheduled a status meeting to last 20 minutes. Is there any chance the meeting will last 40 minutes longer than expected, or 60 minutes? What about 40 minutes less, or - 20 minutes?

Estimating Task Times

Based on the discussion to this point and assuming that project workers have a general desire to be recognized for good performance, what do you imagine project workers do when they are asked to provide time estimates for tasks if they will be held responsible for actual task duration? Do you think they give an estimate that they believe provides them with only a 50 percent chance of being met? Or, more likely, do you imagine they inflate or pad their estimate to increase the likelihood of successfully completing the task on time? What would you do?

If you are like most people, you would inflate your time estimate. Unfortunately, inflated time estimates tend to create even more problems. First, inflating the time estimate has no impact on the actual probability distribution of completing the activity. Second, what do you imagine happens in cases when a project team member finishes early? All too often, the team member believes that it is in his or her best interest to remain silent about completing activities in less than the allotted time so that future time estimates are not automatically discounted by management based on a track record of early task completions. Moreover, there are sometimes penalties for completing early, such as the need to store partially finished materials because the resources required for the next activity are not yet available. Third, just as things tend to fill available closet and storage space in your home, work tends to fill available time. Thus, the scope of the task may be expanded to fill the available time, as Parkinson's Law dictates.

Perhaps even more dangerous than the inflated estimate becoming a self-fulfilling prophecy is that, after receiving approval for a task based on an inflated time estimate, workers may perceive that they now have plenty of time to complete the task and therefore delay starting the task. As we noted in Chapter 5. Goldratt (1997) refers to this as the student syndrome, likening it to the way students often delay writing a term paper until the last minute. The problem of delaying the start of a task is that obstacles are frequently not discovered until the task has been underway for some time. By delaying the start of the task, the opportunity to cope with these obstacles and complete the task on time is greatly diminished.

In summary, we observe that the common practice of simply adding up task durations often leads to unrealistic project due dates. This is primarily the result of assuming the task times are known with certainty, and that we ignore path mergers and assume that the paths are independent. A natural consequence of this is that project team members will tend to inflate their time estimates. Inflated time estimates further compound the problem, particularly in cases where the student syndrome comes into play. In other words, this system tends to cause unethical behavior.

In our discussion we used computer simulation to investigate the impact that increasing interdependencies in a project network has on the distribution of project completion times. Crystal Ball can also be used to investigate a variety of issues related to resource allocation. To illustrate this, let's investigate the impact of not reporting early completion times.

The Effect of Not Reporting Early Activity Completion

Once again, refer to Table 5-8 and consider the project described, solved, and then simulated in Chapter 5. When simulating this problem, we suggested that you should save the spreadsheet you created because we intended to use this problem in Chapter 6. We used triangular distributions to reflect the uncertainty in activity duration times. The same distributions can be used, but in order to reflect Goldratt's contention (and ours) that early completion times go unreported (and even if they were reported, the appropriate resources would probably not be available because managers avoid gathering resources until the last moment), we can truncate the distributions so that the lower bound is equal to the most likely time estimate. In effect, this means that no time below the most likely time can be reported. The required changes are easily made.

1. Call up the spreadsheet for the simulation you performed for the project shown in Table 5-8. 

2. Click on cell A3. Then click on Cell in the toolbar, and then on Define Assumption. 

3. The triangular distribution you used for the prior simulation will appear. In the box above the Min box, type in the most likely time for the activity-l0 days for activity a as shown in Figure 6-22. Then click on OK.

4. Proceed to alter each of the activities b, h (excepting d, which is a constant) similarly. Activity f requires special treatment. The most likely and maximum times are both 10 days. When the distribution is truncated, the cell entry becomes a constant, but CB cannot allow that value for a triangular distribution. Delete the contents from cell F3. Click on Edit, then on Clear, Formats. (The green color of an assumption cell will disappear.) You can now enter the activity time of 10 days in F3.

5. Simulate the project 1000 times.

Figure 6-23 shows the statistical results of the simulation. A comparison of this figure with Figure 5-20 clearly shows the impact of a failure to report early activity finishes. The mean completion time is increased by approximately 3.5 days. The time for completion with a 95 percent probability (1.645() increases from 53.5 days to more than 56 days.

The main lesson to be learned is that single point estimates of activity duration are not adequate for planning real-world projects. For a number of reasons discussed above, the earlys and lates do not cancel out. The most likely time is, therefore, not a satisfactory substitute for a three-time estimate of activity duration.

Multitasking

Up to this point, our perspective has been a single project. We now investigate another problem created by conventional practice-the practice of assigning people concurrently to multiple projects.

In Figures 6-25(a) and 6-25(b), Gantt charts have been developed for two alternative ways of completing the tasks. In Gantt chart 6-25(a), you switch between projects after each task is completed, while in Gantt chart 6-25 (b) you complete all of your assigned tasks for Project A before beginning any work on Project B. In both of these cases the two projects are finished in 25 days; therefore aren't both sequences equally desirable? The answer is absolutely not. First, while it is true that in both cases Project B is finished by time 25, in the first sequence Project A finishes in 20 days, while in the second sequence Project A finishes five days earlier. Therefore the sequence shown in the second Gantt chart is preferable because it results in Project A finishing five days earlier with no penalty to Project B.

Even more important, our analysis overlooks another significant factor. Specifically, there is typically a penalty or cost associated with switching from working on one project to another. In your own experience as a student, is it more efficient to complete the assignment for one course and then move on to another course or is it more efficient to complete one project management homework problem, then move on to an accounting problem, then on to a statistics problem, then back to a project management problem, and so on? Obviously each time you switch to a different course you have to retrieve the appropriate textbook, find the right page, recall where you left off, and (perhaps most significantly) get into the proper frame of mind. As this example demonstrates, switching attention from project to project is likely to extend activity times. Eliminating such switching costs further increases the benefits associated with the Gantt chart shown in Figure 6-25(b).
Common Chain of Events

According to Goldratt, the activities discussed above lead to the following chain of events:

1. Assuming that activity times are known and that the paths are independent leads to underestimating the actual amount of time needed to complete the project.

2. Because the time needed to complete the project is underestimated, project team members tend to inflate their time estimates.

3. Inflated time estimates lead to work filling available time, workers not reporting that a task has been completed early, and the ever-present student syndrome.

4. An important caveat then becomes that safety time is usually visible to project workers and is often misused.

5. Misused safety time results in missed deadlines and milestones.

6. Hidden safety time further complicates the task of prioritizing project activities. 

7. The lack of clear priorities likely results in poor multitasking.

8. Task durations increase as a result of poor multitasking.

9. Uneven demand on resources-some overloaded and others underloaded-may also occur as a result of poor multitasking.

10. In an effort to utilize all resources fully, more projects will be undertaken to make sure that no resources are underutilized. (Recall the impact of this policy from our discussion of waiting lines in Section 6.5.)

11. Adding more projects further increases poor multitasking.

According to Goldratt, this chain of events leads to a vicious cycle. Specifically, as work continues to pile up, team members are pressured to do more poor multitasking. Increasing the amount of poor multitasking leads to longer activity times. Longer activity times lead to longer project completion times, which ultimately lead to more projects in the waiting line.

It might have occurred to you that one way to reverse this cycle would be to add more resources. According to Goldratt, however, the appropriate response is to reduce the number of projects assigned to each person in an effort to reduce the amount of bad multitasking. Incidentally, a simple way to measure the amount of bad multitasking is to calculate the difference between the time required to do the work for a task and the elapsed time actually required to complete the task.

Determining when to release projects into the system is the primary mechanism for ensuring that the right amount of work is assigned to each person. If projects are started too early they simply add to the chaos and contribute to poor multitasking. On the other hand, if projects are started too late, key resources may go underutilized and projects will be inevitably delayed.

Consistent with his Theory of Constraints, Goldratt suggests that the key to resolving this trade-off is to schedule the start of new projects based on the availability of bottleneck resources or Walts. Goldratt further suggests that time buffers be created between resources that feed bottleneck resources and the bottleneck resources.

While properly scheduling the start of new projects does much to address the problems associated with poor multitasking, it does little to address the problem of setting unrealistic project deadlines and the accompanying response of inflated time estimates. Relying on elementary statistics, it can be easily shown that the amount of safety time needed to protect a particular path is less than the sum of the safety times required to protect the individual activities making up the path. The same approach is commonly used in inventory management where it can be shown that less safety stock is needed at a central warehouse to provide a certain service level than the amount of safety stock that would be required to provide this same service level if carried at multiple distributed locations.

Based on this intuition, Goldratt suggests reducing the amount of safety time added to individual tasks and then adding some fraction of the safety time reduced back into the system as safety buffer for the entire project, called the project buffer. The amount of time each task is reduced depends on how much of a reduction is needed to get project team members to change their behavior. For example, the allotted time for tasks should be reduced to the point that the student syndrome is eliminated. Indeed, Goldratt suggests using activity duo rations where in fact there is a high probability that the task will not be finished on time.

The Critical Chain
Another limitation associated with traditional approaches to project management is that the dependency between resources and tasks is often ignored. To illustrate this, consider the network diagram shown in Figure 6,26. According to the figure, the activities emanating from node 1 require resource A, while the activities emanating from nodes 2 and 3 require resources C and B, respectively. Using traditional approaches to project management, two paths would be identified: AI~CI with a duration of 17 days and A2~BI with a duration of 11 days. Taking this approach a step further we would conclude that path AI~CI is the critical path.

The problem with this logic is that activities Al and A2 are not truly independent as the diagram would seem to indicate since their completion requires the same resource. Based on this new insight, we see that if resource A completes activity Al first, thereby delaying the start of A2 for 7 days, then path A I ~C I 's duration remains 17 days while path A2~BI 's duration increases from 11 to 18 days. Likewise, if resource A completes activity A2 first then path AI~CI 's duration increases from 17 to 22 days while path A2~BI's duration remains 11 days. (This is precisely what was considered when we examined the process of resource leveling.)

To address the need to consider both precedence relationships and resource dependencies, Goldratt proposes thinking in terms of the longest chain of consecutively de. pendent tasks where such dependencies can arise from a variety of sources including precedence relationships among the tasks and resource dependencies. Goldratt coined the term critical chain to refer to the longest chain of consecutively dependent activities.

Based on this definition of the critical chain, there are two potential sources that can delay the completion of a project. One source of delay is in the tasks that make up the critical chain. The project buffer discussed earlier is used to protect against these de. lays (see Figure 6-27). The second source of delay is in the tasks external to the critical chain. These tasks can also delay the completion of the project if delays in these "feeder" paths end up delaying one or more of the tasks on the critical chain. As shown in Figure 6-27, safety time can be added to these paths as well to ensure that they do not delay tasks on the critical chain. The safety time added to chains other than the critical chain is called a feeding buffer since these paths often feed into or merge with the critical chain. Thus, the objective of feeding buffers is to ensure that noncritical chains are completed so that they do not delay tasks on the critical chain.

Clearly activities on the critical chain should be given the highest priority. Likewise, to ensure that resources are available when needed, they should be contracted at the start of the project. It is also wise to keep these resources updated on the status of the project and to remind them periodically of when their input will be needed. Goldratt suggests reminding these resources two weeks before the start of their work, then three days prior to their start, and finally the day before they start. Since any delay of an activity on the critical chain can cause a delay of the entire project, it is important that a resource immediately switch to the task on the critical chain when needed.

The critical chain concept identifies the facts that activity times are unknown and independent, that workers will inflate their time estimates to protect themselves, early completion tasks will not be reported, the work will expand to fill the time, tasks will not be started until the last minute, multitasking will be misapplied, resource demands will be uneven and result in task delays, and more projects and tasks will be undertaken to increase resource utilization. All these contribute to project delays and inefficiencies. To correct these problems, feeder time buffers are cut severely to change behavior, a project buffer is added at the end of a project, the release of projects and tasks is based on the availability of bottleneck resources, and time buffers are added to resources that feed bottleneck resources.

The last three chapters on budgeting, scheduling, and allocating resources are the outcome of the planning process we described in Chapter 3. These subjects, taken together, are a description of what to do. Now we turn to two allied subjects: how to report what is going on and how to control it.

