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ABSTRACT

The combined ports of Los Angeles and Long Beach in California are among the world's top ten
busiest container ports. The data on the volume of activities in these ports provide an excellent
dataset to teach time series and regression analysis. We use 26 years of data on the activities of these
ports to teach forecasting models, including moving averages, exponential smoothing, trend-
adjusted exponential smoothing, and regression analysis. We also use 312 monthly data for teaching
seasonality-enhanced regression, multivariate seasonality regression using dummy variables, and
trend and seasonality-adjusted exponential smoothing. Excel functions and formulas are fully
embedded in the models we develop. We have learned when theoretical concepts are taught
through real-life applications, they positively impact students' mental presence and intellectual
engagement inside the classrooms. This manuscript can be used as teaching material or a case study
in a business analytics foundation or a supply chain analytics course.

Keywords: freight transportation; ports of Los Angeles and Long Beach, predictive analytics, time
series analysis, moving average, trend and seasonality adjusted exponential smoothing, seasonality
enhanced regression.
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1. INTRODUCTION

Competitive firms need forecasting to develop integrated resources and processes; nourish multi-
dimensional and structurally integrated capabilities; understand the revolving business eco-system;
create value; and reshape the business organization towards achieving the plans of the enterprises.
Marketing, finance, and operations are the three key building blocks of manufacturing, service, and
distribution systems. Planning, organizing, budgeting, executing, and controlling are the primary
responsibilities of the three key managers. Operations Managers need forecasting for capacity
planning, inventory management, and scheduling. Financial Managers need forecasting for
investment analysis, revenue and cost analysis, and cash flow planning. Marketing Managers need
forecasting for pricing, sales force planning, and promotions. Good forecasting facilitates matching
customer value propositions with product attributes, and product attributes with process
competencies in the four-dimensional space of cost, quality, time, and variety. While marketing,
finance, and operation managers may be interested in forecasting different variables, they have a
common interest in the volume of activities and investment plans. They are all interested in long-
term and short-term forecasts for strategic, tactical, and operational decisions.

Table 1 shows the world's container port throughput (in twenty-foot equivalent units- or TEUs) in
ten countries and ten ports. The combined ports of Los Angeles and Long Beach (LA /LB) are ranked
10th in the world. They comprise the largest port complex in the Western Hemisphere.

Table 1. Container port and country rankings

Container Throughput (Port Ranking) Container Throughput (Country Ranking)
(Million TEU) (Million TEU)

Rank |Port Country MTEUs Rank |Country MTEUs |% to World
1 Shanghai China 43.5 1 China 245.1 31.2%
2 Singapore Singapore 36.6 2 United States 55.0 7.0%

3 Ningbo-Zhoushan [China 28.7 3 Singapore 36.9 4.7 %

4 Shenzhen China 26.6 4 Korea 28.4 3.6%

5 Guangzhou Harbor |China 23.2 5 Malaysia 26.7 3.4%

6 Busan South Korea [21.6 6 Japan 21.4 2.7%

7 Qingdao China 22.0 7 United Arab Emirates [19.3 2.5%

8 Hong Kong, S.A.R |China 18.0 8 Germany 18.0 2.3%

9 Tianjin China 18.4 9 Hong Kong SAR, China |18.0 2.3%
10 SPB (LA /LB) USA 17.3 10 Spain 17.4 2.2%
(a) Top 10 ports: 33% (b) Top 10 countries: 62%

Source: American Association of Port Authorities, 2020.

Approximately 1/3 of US seaborne containers move through the LA /LB ports. According to the
International Trade Outlook, the value of two-way trade in Southern California customs exceeded
10% of total US international trade in goods. Around 75% of this value passes through to LA/LB

ports.

The inbound and outbound volumes of the loaded and empty containers in LA/LB ports provide an
attractive data set to teach the basics of time series and analytics. This manuscript is a complete
teaching material for time series and regression analysis.




We have learned when theoretical concepts are taught through real-life applications, they positively
impact students' mental presence and intellectual engagement inside the classrooms. Our study is
especially fit for California's business schools. Only the California State University (CSU) and the
University of California (US) systems home close to 800,000 students. The Institute for Advanced
Analytics has ranked four California cities in the top 57 cities nationwide, representing the number of
data scientists/business analysts. Another objective of this paper is to constitute a bridge between port
administrations looking for good quantitative research and econometricians eager to apply their skills
to the complex world of modern ports.

Excel functions and formulas are fully embedded in the models we develop. We include additional
mathematical manipulations, Excel formulas, and visualization capabilities in four appendices. Our
spreadsheet models can serve as templates for other real-life applications.

This manuscript can be used as teaching material or as a case study to enhance teaching materials. We
have used it as teaching material in an undergraduate course in business analytics foundations and as
a case study in a supply chain analytics graduate course. While we use the total volume of loaded and
empty inbound and outbound containers, all data are included for four combinations of inbound,
outbound, loaded, and empty volumes. Finally, we hope the work can answer many questions port
administrations usually have when trying to understand the research they have commissioned to
third parties, often at a very high cost.

We will have a short literature review in Section 2. In Section 3, we estimate yearly port throughput
levels using moving averages and exponential smoothing. Measures of forecast accuracy and
variability are discussed in Section 4. The level and trend for yearly data are discussed in Section 5
using linear regression and trend-adjusted exponential smoothing. Section 6 estimates monthly data's
level, trend, and seasonality using seasonality-enhanced regression analysis, multivariate seasonality
regression using seasonal dummy variables, and trend and exponential seasonality smoothing.
Conclusions follow in Section 7. In Appendix A, we implement Excel's functional and visualization
capabilities by examining a general any-period moving average and its dynamic tables and graphs. In
Appendix B, we review the basic mathematics of Exponential Smoothing. Appendix C explains the
foundations of the computation of Regression metrics in Excel and provides insight for piecewise
regression analysis. All our Excel worksheets are in Appendix D.

2. LITERATURE REVIEW

Time series analysis and regression form 1-2 chapters in almost all operations management books. In
this study, we have benefited from Chase, Aquilano, and Jacobs (2000), Stevenson (2014), Cachon and
Terwiesch (2020), and especially Chopra (2019) and Iravani (2021).

3. HISTORICAL DATA IN LA/LB PORTS AND FORECASTING CHARACTERISTICS

Time series analyzes past data to identify systematic and random components.; to extend systematic
components into the future and provide measures of variability. We use 26 years of data on the total
inbound and outbound volume of loaded and empty containers in LA /LB ports to experience moving
averages, simple exponential smoothing, trend-adjusted exponential smoothing, and regression
analysis. We also use 312 monthly data for seasonality-enhanced regression, multivariate seasonality
regression using dummy variables, and trend and seasonality-adjusted exponential smoothing. Excel
functions and formulas are fully embedded in these computations.

3.1 Historical Data at LA/LB Ports



Table 2 presents parts of 26 years of monthly data for LA and LB, including loaded inbound, loaded
outbound, empty inbound, and empty outbound - 312 records with 2496 fields.

Table 2. 26-Years Monthly TEUs handling in LA/LB Ports
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Using the Excel SUMIF function, the monthly data are summarized and pictorially presented in
Table 3. The data are in 1000 TEUs; the last digit was rounded to zero. Details of all Excel formulas
with a gray background are shown in the following tables.

Table 3. 26-Year Container Handling at LA/LB Ports

A B C D E F G H I J K L M N
Loaded Empty Loaded  Empty Total  Total Total ~ Total
1 Year Year Inbound Inbound Outbound Outbound Inbound Outbound Loaded Empties Total
2 1997 1 3270 230 1980 980 3500 2960 5250 1220 6460
3 1998 2 3810 230 1770 1660 4050 3430 5580 1900 7480
4 1999 3 4280 160 1810 1970 4440 3780 6090 2130 8220
5 2000 4 4950 170 2030 2330 5120 4360 6980 2500 9480
6 2001 5 5100 150 1990 2400 5260 4390 7090 2550 9650
7 12002 6 5690 170 195( 12000
8 12003 7 6220 180 207C
9 2004 8 6930 190 214( 10000
10 2005 9 7230 210 239(
112006 10 8130 180 2710 go0
12 2007 11 8110 170 318(
132008 12 7330 190 347C 4000
14 2009 13 6060 120 302(
152010 14 7100 200 3400 0
16 |2011 15 7090 280 362(
17 |2012 16 7150 200 358( 2000
18 |2013 17 7430 210 363(
19 |2014 18 7790 250 354( o —o—0—0—
e w0 ;0w BEREERERRLELLLLLLLLLLLLLLY
22 2017 21 8410 200 329( =—8—Loaded Inbound == Empty Inbound ==@=Loaded Outbound ==@=Empty Outbound
23 2018 22 8970 260 343(
24 2019 23 8470 220 3230 5040 8700 8270 11700 5270 16970
25 2020 24 8830 200 3010 5270 9020 8280 11830 5460 17300
26 2021 25 10100 180 2620 7160 10280 9790 12720 7340 20060
27 2022 26 9330 210 2600 6900 9540 9500 11940 7110 19040
28
29 B2 =A2-199%
30 C2 =ROUND(SUMIF(1.MonthlyData12(26) 1S A$3:56A$314,2. YearlyData''$A2,'1. MonthlyData12(26)'1X$3:X$314)/1000,-1)
31 D2 =ROUND(SUMIF('1.MonthlyData12(26)'1$A$3:$A$314,'2.YearlyData'!$A2,'1. MonthlyData12(26)'!Y$3:Y$314) /1000,-1)
32 E2 =ROUND(SUMIF('1.MonthlyData12(26)''$A$3:5A$314,'2. YearlyData'!$A2,'.MonthlyData12(26)'1Z$3:7$314) / 1000,-1)
33 F2 =ROUND(SUMIF(1.MonthlyData12(26) 1$A$3:36A$314,2 YearlyData'!$A2,'1. MonthlyDatal2(26)  AA$3:A A$314)/1000,-1)
34 K2 =ROUND(SUMIF('1.MonthlyData12(26) I$A$3:3A$314,2. YearlyData'[$A2,'1. MonthlyData12(26)  AF$3: AF$314)/1000,-1)
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3.2 Characteristics of Forecasting Techniques
All forecasting techniques have three main characteristics in common.

(I) Forecasts always deviate from actual observations. Since the world is not deterministic - at least
to us - all forecasts are almost always inaccurate Forecasts provide the average value for the variable
of interest - sales or demand. Demand is a random variable usually following Poisson distribution
estimated by Normal distribution. Thus, besides the average demand, we need a measure of
variability- standard deviation, variance, or coefficient of variation. If the average forecast for the
next period is F, and the standard deviation of F is S, the coefficient of variation CV=S/F provides a
measure of variability; the lower the coefficient of variation, the more confident we are with the
forecast.

(IT) Forecasts of aggregate values are more accurate than individual item forecasts. Aggregate
forecasts reduce variability. The forecast for all container ports in the world is more accurate than
the forecast for US container ports, the forecast for US container ports is more accurate than the
forecast for California's ports, and the forecast for California's ports is more accurate than the
forecast for the port of Oakland in Northern California. Aggregate forecasts reduce the relative
variability with respect to the average forecast. One can intuitively understand that the forecast for
the summation of two products is more accurate than the forecast for each product because the high
demand for one product may compensate for the low demand for the other. From a mathematical
point of view, the variance of the sum of two variables is equal to the sum of the variances of the two
variables. Therefore, the standard deviation of the summation of the two variables (the numerator of
CV) is less than the sum of the two standard deviations. If the standard deviations of the following
year's volume of activities in each of LA and LB ports are equal and are shown by o, then the
variance for the volume of activities in the combined port is = 02+02= 202. Therefore, the next year's
activities volume standard deviation for the combined LA /LB ports is not 20 but SQRT(2)o.

(ITI) Long-term forecasts are less accurate than short-term forecasts. Forecast accuracy diminishes
as we look further into the future. As we get closer to the demand time, we get better information
and make better predictions. The forecast for next year's LA /LB activities is more accurate than the
forecast for ten years in the future.

3.3. Impact of Characteristics of Forecasting Techniques on LA/LB Ports Throughput.

What are the competing edges of LA /LB ports? Deepwater facilities for post-Panama ships
containing close to 20,000 containers? State-of-the-art on-dock facilities to transfer containers
between ship and train? Intermodal transfer between sea, rail, and road? Consolidation and
distribution facilities for trans-loading from 20- and 40-foot containers to 56-foot containers allowed
on California roads? According to Leachman (2010), the characteristics of forecasting techniques are
one of the key reasons behind the attractiveness of LA /LB ports.

As pictorially shown in Figure 1, shipping containers from the far east to the East Coast may take 4
weeks. This shipment takes 2 weeks to the west coast and 2-4 weeks from the far-east to the mid-US.
For shipments from the far-east to the east coast, one needs to forecast the demand of the east-coast
four weeks in advance. But the demand forecast two weeks in advance is enough for shipping to the
west coast. According to forecasting characteristics (III), the west-coast demand forecast for east-cost
will be more accurate since it is less into the future than east-Asia.



Figure 1. Forecasting-Based Competing Edges of LA/LB Ports

Furthermore, according to forecasting characteristic (II), forecasting the US aggregate demand is
more accurate than forecasting demand for any smaller region in the US. Therefore, instead of
forecasting for the three regions 14, 21, and 28 days ahead, one may forecast the total US aggregate
demand 14 days ahead. It will take 1-3 days to drayage the containers to the three regions. Instead of
estimating the demand of the east coast alone, which is less accurate than the demand for the whole
US, and instead of forecasting it four weeks ahead, one can forecast for 14+3 days ahead with more
accuracy.

4. CURRENT LEVEL AND FORECAST FOR THE NEXT PERIOD

In this section, we estimate the level of demand using moving averages and exponential smoothing.
By using these two techniques, we can forecast for the next period. We also provide estimates for the
standard deviation of demand. The forecast for all other future periods remains the same as the next
period (a straight line) until new data is added. In Section 5, we include trends, and in Section 6, we
include seasonality in the levels estimated in this section. All the formulas in all tables are
summarized in a set of cells with a gray or white background.

4.1. Basics of Moving Average

Given the annual volume of container handling at the LA /LB ports, a progressive (or naive) analyst
may assume last year's demand as the demand forecast for this year. That is Fo7 = Az. A
conservative and perhaps irrational analyst may consider the average of all years as the demand
forecast for next year. That is Fs = (A4+A3+A2+A1)/4, Fs = (A5+A4+A3+A2+A1)/5, F.; = AVERAGE
(AzstAost...... +Axt+Ay).

Ordinary people, however, may stay between these two extremes and estimate the demand for the
next year based on the observations in the past n-periods. An n-period moving average forecast for
year 26 is defined as MA2 =AVERAGE(Az, Aos, ...... , Azn). The forecast for year 27 is then defined
as the n-period moving average in year 26; Fo7 = MAzs. The 4-period moving average forecast in year
27 equals the 4-period moving average in year 26; Fo7 = (Axs+Aos+ Ant+Ax)/4. In general, Fiq =
(AtAut ... + Acn)/n. Note that the n-period moving average first appears in period n, while the
n-period moving average forecast first appears in period n+1. In Appendix A, we develop a general



dynamic formula applicable to every n-period moving average, along with dynamic tables and
graphs.

4.2. Exponential Smoothing

In exponential smoothing, the forecast for the next period equals the forecast for this period plus a
fraction of the gap between the actual and forecast values in this period. Fi+1 = Fi+ o( A¢- Ft), where 0
< a £ 1. A minor manipulation can modify it to Fi1 = (1-a) Fi + 0A¢. That is, the forecast for the next
period is the weighted average of the forecast and actual for this period. Exponential smoothing
smooths the gap between the actual demand and its forecast.

To start, we need to have a forecast for period 1. There are at least three ways to compute Fi. (i)
F1=A,, (i) F1= average of all existing actual values, (iii) F1= intercept of the linear regression line
(discussed later) passing the existing actual values. We assume F1=A.

For a=0.5, the formula is transformed into F+1 = 0.5Ft + 0.5A; = (Ft + A,)/2. The forecast for the next
period is equal to the average of the actual and the forecast for that period. For a=1, the formula is
transformed into Fi+1 = A.. To forecast the next period, we set it equal to the actual for this period. For
0=0, the formula is transformed into Fi+1 = F:. To forecast, the next period is the same as the forecast
for this period.

We usually start with a=0.5 and use an optimization tool, such as Excel's standard SOLVER add-ins
or Data Table, to find the optimal oo minimizing one of the metrics discussed in the next section. In
Appendix B, we show that exponential smoothing is the weighted average of all pieces of data
where the weights get smaller and smallest on the older data. Exponential smoothing forecasts using
0=0.5 are in column F of Table 4. This table also shows the graph for alternative forecasting
techniques that can be prepared using Excel's scatter graph or line chart. Key formulas are shown in
the gray box.

Table 4. Alternative Moving Average and Exponential Smoothing Forecasts.

A B c D E F G H I J K L M N o
1 n=4 o= 05
2 Year Actual (1000 TEUs) Fui=A, Ave-All-A, MA-S-4p  ES
31 6460 6460
4 2 7480 6460 6460 3230
5 3 8220 7480 6970 3740
6 4 9480 8220 7387 4110
75 9650 9480 7910 79100 4740
. 0 .
2 (7’ ﬂgig 1%6:3% :i;z Ziggi ;:E Moving Average and Exponential Smoothing
10 8 13100 11810 9104 103925 5905 = 25000
1 9 14190 13100 9604 112975 6550
12 10 15760 14190 10113 124325 7095 20000
1311 15670 15760 10678 137150 7880
14 12 14340 15670 11132 14680.0 7835 15000
15 13 11810 14340 11399 149900 7170
16 14 14100 11810 11431 143950 5905 10000
17 15 14000 14100 11621 13980.0 7050
18 16 14120 14000 11780 135625 7000 O°° O\, _e—e—
19 17 14600 14120 11926 13507.5 7060 .
20 18 15160 14600 12084 14205.0 7300 12345678 91011121314151617 1819 20 21 22 23 24 25 26 27
21 19 15350 15160 12254 144700 7580
2 20 15630 15350 12417 148075 7675 ——Actual (1000 TEUs) AveAllAt —8—MASdp —o—ES
23 21 16400 15630 12578 151850 7815
24 2 17550 16400 12760 156350 8200
35 23 16970 17550 12978 162325 8775
26 24 17300 16970 13151  16637.5 8485
27 25 20060 17300 13324 170550 8650
28 26 19040 20060 13594  17970.0 10030
29 27 19040 13803 183425 9520
30
31 C8-=B7

32 D8 =AVERAGE(B$3:B8)
33 E8 =AVERAGE(B5:B8)
34 F8 =(1-$F$1)*G8+$F$1°B8




4.4. Age of data in Moving Average and Exponential Smoothing

A 4-period moving average forecast can be computed only after period 4, and then it is set as the
forecast for period 5; Fs=MA4. The newest piece of data in F5 belongs to period 4 and is 1 period old.
The oldest data belongs to period 1 and is 4 periods old. Therefore, in a 4-period moving average,
the age of data is (1+4)/2 = 2.5 periods. In an n-period moving average, the age of data is (n+1)/2
periods.

The age of data in Exponential Smoothing is 1/a (it is proved in Appendix B). Given 2.5 as the age of
data in a 4-period moving average, the data in an exponential smoothing with 1/a. =2.5,i.e., a =04,
has the same age. An exponential smoothing forecast with a = 0.6667 is equivalent to a 2-period
moving average forecast, and an exponential smoothing forecast with a = 0.1 is equivalent to a
moving average forecast with about 19 periods. The smaller the a (i.e., the larger the number of
periods in the moving average), the higher the tendency to smooth out the recent fluctuations.
Larger values for a (i.e., the smaller the number of periods in the moving average) result in higher
responsiveness to recent fluctuations. A value of a =1 represents a trend in the past few years and
states that the best forecast for the following year's volume of activities is the actual of the current
year.

5. Measuring Forecast Accuracy and Variability

In this section, we provide foundations to answer two questions. How to measure the suitability of a
forecasting technique for a specific dataset? How can one compare the quality of several forecasting
techniques for a specific dataset?

5.1. A Basic Forecast Accuracy and Variability Measure

Given the actual data and forecast (At and Fy) and error (E: = A; - Fy), we define the sum of forecast
error SFE = SUM(E) and average error BIAS = AVERAGE(Ey). Since the error values are positive or
negative, they cross each other out in a forecasting method. Therefore, SFE and BIAS are expected to
be small and close to zero. A forecasting approach may be considered of high quality on the
foundations of SFE and BIAS. At the same time, there may be significant gaps between actual and
forecast values in both positive and negative directions. WE can resolve this problem by considering
the absolute value of the gaps. Mean Absolute Deviation (MAD) is defined as MAD =
AVERAGE(ABS(E)).

MAD serves two essential purposes. First, it compares two or more forecasting techniques and
identifies the best based on the lowest MAD value. Second, 1.25MAD provides an estimate of the
standard deviation of the demand forecast. We may use any forecasting method to compute F.1 as
our estimate for the average demand in the next period. We also provide 1.25 times the most recent
MAD as the standard deviation of the forecast for the next period. In other words, A1 ~N(F,
1.25MAD:); demand for the next period follows a normal distribution with an average of Fi+1 and a
standard deviation of 1.25MAD:..

Tracking signal (TS) is defined as SFE divided by MAD. It is a positive or negative number divided
by a positive number. If the parameters are identified correctly, the summation of all errors has an
expected value of zero. TS should be close to zero while jumping up and down on the positive and
negative sides due to randomness in the actual data. We can also define the upper control; limit
(UCL) and lower control limit (LCL) for TS=SFE/MAD. In some textbooks, it is stated that TS moves
between LCL=-4 and UCL=+4. In Appendix B, we will mathematically prove that the limits of +4 are
incorrect.



TS serves two essential purposes. First, we expect it to stay within UCL and LCL that we define over
time. Second, we do not expect a pattern over time. For example, we do not expect to see an always
positive or consistently negative TS. In the first case, our forecasting technique underestimates the
demand (we have the summation of At-Ft in the numerator); in the second case, it overestimates the
demand. We also do not expect to see a cyclic pattern since there may be seasonality in the data that
we have not incorporated into our forecasting.

Sometimes we may assign a higher weight to positive gaps than to a negative gap. In the latter case,
we are over stock, while in the first case, we have lost sales. Usually, the cost of overstock is less than
the cost of lost sales. In these cases, we may assign a coefficient greater than 1 to positive Et=At-Ft
values. We may also benefit from the insight into a problem recognized as the newsvendor problem
- to find a good tradeoff coefficient of underestimating and overestimating demand.

4.2. Alternative Forecast Accuracy and Variability Measures

An alternative approach to removing negative signs is to square the errors and replace MAD with
Mean Squared Error (MSE) = AVERAGE(E?). MSE prevents large gaps between forecast and actual
values since the errors are squared. MAD computation was more straightforward when
implemented long before calculators and sliding rulers. However, working with an absolute value in
mathematical expressions is difficult. It is not difficult to deal with squared values in mathematical
expressions. The square root of MSE provides another estimate for the standard deviation of the
forecast. That is At ~N(F t+1, SQRT(MSE ).

There is also a third method that we refer to it as Mean Absolute Relative Deviation (MARD).
Instead of averaging | Et| values, we average |E:|/A: values. For example, a | E:| of 10 states that
there were 10 units of deviations between A and F.. If A is 200, then 10 relative to 200 is a .05 (or 5%
gap). In MARD, the relative absolute gaps (relative to the demand) are computed instead of the
absolute gaps. There are still other methods. For example, we may minimize the maximum absolute
deviation between actual and forecast. Table 5 shows the computations of error (E), the sum of
forecast error (SFE), average error (BIAS), absolute error, MAD, TS, MSE, and MARD for exponential
smoothing with a.=0.5.



Table 5. All Metrics for Forecast Accuracy and Reliability

A B C D E F G H I J K L M N © P Q R S
1, o=05 Exponential Smoothing alpha = 0.5
2t At Ft E |E| E2 |[E|/A MAD MSE MARD SFE TS  BIAS 0

3 01[MAD  MSE MARD
41 6460 64600 0.0 0.0 0 000 0O 0 0.00 0 0.0 1225 2206887 0.09
5 2 7480 6460.0 10200 1020.0 1040400 0.14 510 520200 0.07 1020 2.0 510.0 0| 73431 65663869 0.49306
6 3 820 6970.0 1250.0 1250.0 1562500 0.15 757 867633 0.0 2270 3.0 756.7 0.1| 34157 14002305 0.24137
7 4 0480 75950 1885.0 1885.0 3553225 0.20 1039 1539031 0.12 4155 4.0 103838 02| 21655 6163943 0.15851
8 5 9650 8537.5 11125 11125 1237656 0.12 1054 1478756 0.12 5268 5.0 1053.5 03| 16545 3820964 0.12404
9 | 6 10630 9093.8 ST CTATS Stcnnciaasidassssancas o sascons 60 11340 04| 13833 2775230 0.10523
10 7 11810 98619 23000 7.0 12503 05| 12253 2206887 0.09398
11 8 13100 10835.9 Exponential Smoothing alpha = 0.5 8.0 1377.0 0.6| 11046 1866304 0.08520
12| 9 14190 11968.0 20000 9.0 14709 0.7 10305 1652045 0.07930
13| 10 15760 13079.0 100 1591.9 0.8 9809 1515529 0.07493
14] 11 15670 144195 o000 110 1560.9 09| 9394 1431130 0.07119
15| 12 14340 150447 111 13721 jl 9185 1384538 0.068911
16| 13 11810 14692.4 85 104438

17| 14 14100 132512 10000 o4_anang [ 9185 1384538 0.068911]
18| 15 14000 13675.6 Tracking Signal

19| 16 14120 13837.8 5000 200 05 =02

20 17 14600 13978.9 . [N 06 =05+5033

21 18 15160 14289.4 0 P4 =H29

22 19 15350 147247 0 5 10 1100 Q4 =129

23 20 15630 15037.4 . R4 =J29

24 21 16400 15333.7 10663 10663 1137036 0.07 P17 =MIN(P5:P15)

25 22 17550 15866.8 1683.2 16832 2833026 0.10 | e Q17 ~MIN(Q5:Q15)

26 23 16970 167084 261.6 261.6 68424  0.02 Oicix cvovour wiaOS curve 1 e R17 =MIN(R5:R15)

27 24 17300 16839.2 460.8 460.8 212327  0.03 1183 2008783 0.09 21219 17.9 884.1

28 25 20060 17069.6 2990.4 2990.4 8942462 0.15 1255 2286130 0.10 24210 19.3 968.4 a=[1214.463 2086889 0.007517
29 26 19040 18564.8 4752 4752 225813  0.02 1225 2206887 0.09 24685 20.1 949.4 0 7.99 4743 716
30 27 18802.4 0.1 3.72 10.11 3.50
31 =8—MAD =@=MSE MARD 0.2 2.36 445 2.30
32 [ C6 =(1-5B$1)*C5+5BS1*B5 03 1.80 2.76 1.80
33 | D6 =IF(ISNUMBER($C6),B6-C6,NA()) 10 04 1.51 2.00 1.53
34 E6 =ABS(D6) . 0.5 1.33 1.59 1.36
35 F6 =D6"2 0.6 1.20 1.35 1.24
36 G6 =E6/B6 s 0.7 112 1.19 1.15
37 G7=E7/B7 0.8 1.07 1.09 1.09
38 17 =~AVERAGE(F$4F7) 4 0.9 1.02 1.03 1.03
39 J6 ~AVERAGE(G5$4:G6) ] 1 1 1 1
40| K6 =K5+D6 2 — .

41 L6 =IFERROR(K6/H6,"") . - P29 =D5/P517

42 | M6 =AVERAGE(D$4:D6) o 01 02 03 o4 05 06 07 o0& o8 1 Q29 =Q5/Q517

43 s v T R29 —R5/R$17

4 » .| 4.AllMetricsUsing.ES

4.4. Optimal a Value

The optimal a value can be computed in at least two ways. (i) SOLVER and (ii) Data Table. For
SOLVER, the objective function is set to one of the three measures of MAD, MSE, or MARD (in cells
H29, 129, and ]29) to be minimized, and a cell Bl is the changing cell to minimize the objective
function value. For the Data Table, we set cells P4, Q4, and R4 equal to cells H29, 129, and J29,
respectively. The set of o values are typed one column to the left of MAD and start from one cell
below MAD. Using a formula, we can find the value of a in the Data Table to as many as the decimal
point that may be desired in SOLVER. This is done by typing the starting o value of 0 and the
increment in two arbitrary cells (such as cells O2 and O3 in this example). We then set O5=02 and
06=02+$0$3 and copy down from 0 to 1. After setting O4 to R15, - Data - What-if Analysis -
Data Table. Since alternative o values are typed in a column (not in a row), inside the column input
cell, we point to B1, where the a value is placed. We then find the a value corresponding to the
minimal MAD (or MSE or MARD) value. Suppose the a value for the minimal MAD is 0.7. To
estimate o with more decimal points we can set cell O2 to 0.65 and O3 to 0.001 and find the minimal
o in the range of 0.65 to 0.74. We can continue this procedure to as many decimal points as we wish;
to find answers as precisely as SOLVER with Data Table.
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Optimal o computations using both solver and Data Table for all three metrics) and normalization
(divide each by the minimal value in that column) of these metrics as (changes are included in Table
5). The reader is encouraged to look into all the formulas in gray cells. We have also used conditional
formatting to highlight the minimal values. The Tracking Signal curve for a =0.5 is also shown in
Table 5.

The reason for an upward tracking signal is the positive overall trend of actual data. That is why the
moving average recommends n=1, and exponential smoothing recommends a=1. When the tracking
signal shows a continual or increasing positive trend, we may add a constant to the forecast value. In
Table 6, we implemented a two-dimensional Data Table to find the optimal value for a = 0.66 plus a
constant of 495 to be added to the forecast to minimize MAD. The computations for exponential
smoothing and the essential formulas are shown in Table 6.

Table 6. Forecasting Measures under Optimal o and a Constant for Exponential Smoothing

A B C D E F G H 1 J K L M N o P Q

1 a=0.66 Constant= 495 MAD Constant 480 5

2 t At Ft E |E| MAD SFE TS BIAS 755 480 485 490 495 500 505
3 0.6 7643 763.5 762.8 762.0 761.3 760.7
4 1 6460 6460.0 0.0 0.0 0 0 0.0 0.61 7612 7604 759.7 759.5 759.4 759.3
5 2 7480 6955.0 525.0 525.0 263 525 2.0 262.5 alpha 0.62 7589 7584 7583 758.2 758.1 758.0
6 3 8220 7796.5 4235 4235 316 949 3.0 316.2 0.6 0.63 7581 7574 757.1 757.0 756.9 756.7
7 4 9480 8571.0 909.0 909.0 464 1857 4.0 4644 0.01 0.64 7574 756.6 756.0 755.9 755.8 756.3
8 5 9650 9665.9 159 15.9 375 1842 49 368.3 0.65 756.7  756.0 755.2 755.2 755.6 756.1
9 6 10630 101504  479.6 479.6 392 2321 5.9 386.9 0.66 756.1 7554 s EEE 7555 755.9
10 7 11810  10961.9 8481 848.1 457 3169 6.9 452.7 0.67 7559  755.7 755.6 7554 755.5 755.9
1 8 13100 120167 10833  1083.3 536 4253 7.9 531.6 0.68 7562 756.1 755.9 755.8 755.6 755.9
12 9 14190 132267 963.3 963.3 583 5216 8.9 579.5 0.69 756.7 7565 756.3 756.2 756.0 756.0
13, 10 15760  14357.5 14025 14025 665 6618 10.0 661.8 0.7 7571 756.9 756.8 756.6 756.5 756.3
14 11 15670 157781 -108.1 108.1 614 6510 10.6 591.8
15 12 14340 162018  -1861.8 18618 718 4648 6.5 387.4 Min= 755.1
16 13 11810  15468.0  -3658.0  3658.0 944 990 1.0 76.2
17, 14 14100  13548.7 5513 5513 916 1542 17 110.1 C6 =SDS1+(1-SBS1)*C5+$BS1*B5
18] 15 14000  14407.6  -407.6 4076 882 1134 1.3 75.6 K3 =J6
19 16 14120 14633.6  513.6  513.6 859 621 0.7 38.8 K4 =K3+5]57
20 17 14600  14789.6  -189.6  189.6 820 431 0.5 254 K2 =F29
21 18 15160  15159.5 0.5 0.5 774 432 0.6 24.0 L15 =MIN(L3:Q13)
2 19 15350 156548 3048 3048 750 127 0.2 6.7 B1 =XLOOKUP(09,03:013,K3:K13)
23 20 15630  15948.6 3186  318.6 728 192 0.3 9.6 D1 =XLOOKUP(L15,L.9:Q9,L2:Q2)
24 21 16400 162333 1667 166.7 701 25 0.0 1.2
25 22 17550 168383 7117 7117 702 686 1.0 31.2
26 23 16970  17803.0  -833.0  833.0 708 -147 0.2 6.4
27| 24 17300 177482 4482 4482 697 595 0.9 24.8
28 25 20060 179474 21126 21126 753 1518 2.0 60.7
29 26 19040  19836.7 7967  796.7 755 721 1.0 27.7
E 4 19805.9
31 28 19805.9
32| 29 19805.9
33 30 19805.9
34
35 25000 3000
36 Forecast vs Actual Error
37| 20000 2000
38
39 15000 1000
40
41 0
42 10000 0 5 10 25 30
43 -1000
44 5000
45 -2000
46 N
:Z; 0 5 10 15 20 25 30 -3000
49 —o—At ——Ft 4000
50
2 700 12
52
53 BIAS T
54 600 10
55 500
56 8
57 400
58 6
59 300
60 4
61 200
62 2
63 100
64 0 o
65 I 5 1 5 20 % s 0 5 10 15 20 2 30
€5 -100 2
67
68

< » .| 3.MAESLevel 4.AllMetricsUsing.ES 5.AddConstant
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4.5. Stationary vs. Non-Stationary Data.

In our dataset, the optimal a for all three metrics is equal (this is not the case most of the time) and is
equal to 1 (this is not a general observation). Since we have an upward trend almost in all years, an
0=1, and therefore Fi+1=A:is the best solution. Moving average and Exponential Smoothing are
appropriate for stationary data. We can draw the Cum: = SUM(A;) function to check whether data is
stationary. The data is stationary if Cum; is close to a line. Figure 2 shows Cum:; for our data is
distant from a line. We will later discuss trend-adjusted exponential smoothing and regression for
data with a trend.

Figure 2. Stationary vs. Non-Stationary Data

Stationary vs Non-Stationary
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350000
300000

250000

150000
100000
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5. LEVEL AND TREND
This section reviews (i) Bi-variate linear regression and (ii) Trend adjusted exponential smoothing.
5.1. Bi-variable Linear Regression.

The bi-variable linear regression is generally stated as y=bo+bix. Our specific case can be stated as
Fi= bo +bit. While we could have continued with the actual years, we set t equal to the current year
minus 1996 for simplicity. Nevertheless, no matter how we enumerate the years, while we will
have different values for bp and by, all the analyses and the shape of the regression line remain the
same. Alternative linear regression computations are explained below and are summarized in
Table 7.

Procedure-1. Add Trend Line. After drawing the data in a scatter graph, we can right-click on the
graph and choose to add a trendline. Options of exponential, linear, logarithmic, polynomial,
power, and moving average will appear. We chose liner. We also check the display equation and
display the R-squared value on the chart. The scatter graph shows the regression equation y =
419.22x + 8143.6 and R? = 0.8418.

Procedure-2. Data Analysis Add-Ins. Choose Data Tab > Data Analysis = Regression. In the next
table, enter the Y variable (A:), then X variables (t), and select the cell that will be in the east-north
of the table (we select cell E1). This approach is not recommended for bi-variable linear regression
since we must prepare a new table once a number is changed. Excel functions perform better and
are updated as a change is made in the data. As it is shown in the seasonality-enhanced multi-
variable regression, Data Analysis Add-Ins is a good choice for bi-variable non-linear and multi-
variable linear and non-linear cases,
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Procedure 3. Excel Functions. Excel formulas are entered into the Data Analysis Add-Ins output to
simplify explanations. There are mainly INTERCEPT, SLOPE, RSQ, STEYX, and CORREL
functions that we have added to the table. All the formulas are shown in the gray cells. The larger
the R-square (0<R2<1), the more reliable the regression line. If the distance between the two blue
numbers in the bottom part of the table does not cover zero, there is a relationship between Y and
X (b10). If the blues number in the top part of the table is less than 0.05, with more than 95%
confidence, not both by and b, are zero.

Procedure 4. Using More Fundamental Computations in Excel. In Appendix C, we will
provide fundamental insight into the computation of regression metrics through computing SST,
SSE, and SSR, as well as a piecewise regression.

Table 7. Alternative Linear Regression Computations

A B C D = F G H J K L Y
1 t At | Yhat (Reg) SUMMARY OUTPUT
2 | 1 6460 8562.8 Regression Statistics
3| 2 |7480 8982.0 Multiple R 0.9175 =CORREL($B$2:$B$27,$A%$2:$A$27) 0.9175 =SQRT(F4)  Correlation Coefficient
4 3 18220 9401.3 R Square 0.8418 =RSQ($B$2:3B$27,$A$2:$A$27) r 0.8418 =F3"2 Coefficient of Determination
5| 4 19480 9820.5 Adjusted R Squar 0.8352 b0 8143.60 =INTERCEPT($B$2:$B$27,5A52:$A$27)
6 | 5 [9650 10239.7 Standard Error 1418.51 =STEYX(B2:B27,A2:A27) bl 419.22 =SLOPE($B%$2:$B%$27,$A$2:5A$27)
7 | 6 [10630 | 10658.9 Observations 26 =COUNT(B2:B27) R-Square 0.8418 =RSQ($B52:3B527,$A$2:5A527)
8 | 7 [11810 | 110781 ANOVA StdError 1418.51 =STEYX(B2:B27,A2:A27)
9 | 8 [13100 11497.4 df SS MS F Significance F
10| 9 [14190 11916.6 Regression 1 257028288.6 257028289 127.7369 4.27614E-11
11| 10 [15760 | 123358 Residual 24 48292065.23 2012169
12 | 11 |15670 12755.0 Total 25 305320353.8
13| 12 |14340 13174.2 Cocfficients Standard Error t Stat P-value Lower 95%  Upper 95%
14| 13 [11810 13593.5 Intercept (b0) 8143.60 572.83 1422 3.47169E-13 6961.33 9325.87
15| 14 |14100 14012.7 X Variable 1 (b1) 419.22 37.09 11.30  4.27614E-11 342.67 495.78
16 | 15 [14000 144319 F16 =INTERCEPT($B$2:$B%$27,$A$2:3A%527) Zero is NOT Covered
17 | 16 [14120 14851.1 F17 =SLOPE($B$2:$B$27,$A$2:$A$27)
18 | 17 |14600 15270.3 C19 =$F$14+$F$15*A19
19| 18 [15160 15689.6
20| 19 [15350 | 16108.8 | 2%00° oo eime 23000
21/ 20 [15630 | 16528.0 R oghis
22| 21 |16400 16947.2 20000 20000
23| 22 (17550 | 17366.5
24| 23 16970 17785.7 15000 15000
25| 24 (17300 | 18204.9
26| 25 |20060 | 18624.1 | 10000 10000
27| 26 (19040 | 19043.3
28| 27 19462.6 5000 5000
29| 28 19881.8
30 29 20301.0 0 o
e 30 20720.2 0 5 10 15 2 pe % 0 5 10 15 0 % %0 3
33 —&— At e Linear (At) —e—At —@—Yhat (Reg)
34
B 4 » ...| 4.AlMetricsUsing.ES 5.AddConstant | 6.Reg.Line.AddIns.Functions

5.2. Trend Adjusted Exponential Smoothing.

Trend-adjusted exponential smoothing is defined as Fi1 = Lt + T, where Lt and T: are the level and
trend in period t as defined in Chopra (2019) based on Holt (1957).

Li+1 = aAt(1-a)(Le+Ty)
Te1 = P(Len -Ly) +(1- B) Tk

Trend-adjusted exponential smoothing, or double exponential smoothing, smooths out the level and
trend of this period based on the level and trend of the previous period and the actual observation in
this period.
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Starting Lo and To can be computed in two ways. We may set Lo as the demand in the first period
and Ty as the demand of the last period minus the demand of the first period divided by (N-1). In
our case, Lo =A1= 6460, and To=(A2-A1)/(26-1)= 503.2 (proposed in Iravani, 2021). Alternatively, we
may set Lo as the intercept of the regression line and Tb as its slope. Lo = bo= 8143.6, and To=b; =419.2
(proposed in Chopra 2019). We follow the first approach. We start from a = 0.5 and p = 0.5 and then
use SOLVER or a two-dimensional Data Table to find the optimal values of a = 0.87 and p =0, as
shown in Table 8. Compared to simple exponential smoothing, the MSE and other metrics are lower,
and the extension to future periods carries a trend and is not a straight line. Compared to regression,
we have a smooth curve going up and down instead of a straight line.

We can also combine linear regression and trend-adjusted exponential smoothing in the form of F; =
YFTrend-Adjusted.Es + (1-Y)FLinear-Regression. The optimal y value minimizing the MSE of the forecasts from
the actual values can then be obtained using SOLVER or Data Table.

Table 8. Trend Adjusted Exponential Smoothing Computations

A B = D E G H | J K L I N o P
10t At Lt Tt  Ft MAD-= 2695 o = 0.8678347 0.500 0.010 aalpha=0.87; beta=0
2 6460  503.2 MSE= 29537423 B= 0  0.000 0.100
31 6460 65265 5032 6963.2
42 7480 74205 503.2 7029.7 TIT =SUM(ABS(B3 B25-C3.C28)) 29537423  0.00000 = 0.10000 0.20000 0.30000 0.40000 0.50000 0.60000
53 8220 §180.8 5032 79237 H2 =SUMI((B3:B28-E3:E285)"2) 0.8000 29647247 32131980 33956412 35553849 37201225 38998973 40975023
6 |4 9450 93745 5032 56840 C2 =B3 0.5100 29616827 32096745 33938971 35569738 37236137 39102127 41130049
75 9650 9680.1 503.2 9875.0 D2 =(B25-B3)/(A25-A3) 0.5200 29591459 32068057 33929191 35594056 39215407 41296395
8 6 10630 10571.0 503.2 10183.3 E3 =C2+D2 0.8300 29571056 32045790 33926925 33626659 3 39338704 41473933
9 |7 11810 117127 503.2 110742 C3 =(1-§]51)'E3+§]51°B3 0.5400 29355536 32029826 33932031 35667412 3 39471916 41662618
10 8 13100 129832 503.2 122159 D3 =(1-§]$2]"D2+5J527C3-C2) 0.5500 29544524 32020055 33944352 35716193 3 7 39614945 41862295
119 14190 14097.0 503.2 13486.4 E4 =C3+D3 0.5600 29538845 32016372 33963855 35772885 3 39767712 42072895
12 10 15760 15606.7 503.2 14600.2 HI =SUM(ABS(B3:B25-C3:C28)) 0.5700 32018679 33990335 35837352 3 39930131 42294339
13 11 15670 15728.1 503.2 16109.9 H2 =SUM((B3:B28-E3:E25)"2) 0.5500 29540819 32026883 34023726 35909388 40102136 42526560
14 12 14340 14590.0 503.2 162313 E29 =C28+D28 0.5900 29548647 32040900 34063923 35959415 40283667 42769507
15 13 11810 12243.9 503.2 15093.2 E30 =E20+5DS28 0.9000 29560959 32060650 34110839 36076752 35170360 40474679 43023147
16 14 14100 139212 503.2 12747.1 E32 =E31+5D$28 Min 29337532
17 15 14000 14056.1 503.2 144244 25000
18 16 14120 141781 503.2 14559.3 =12 - aalpha=0.87; beta=0
19 17 14600 14610.7 503.2 146813 15 =K1
20 18 15160 15153.9 503.2 15113.9 16 =I5+5L51 20000
2119 15350 15390.6 503.2 15657.1 J4 =K2
22 20 15630 156649 503.2 15893.8 K4 =J4+5152
23 21 16400 16369.3 503.2 16165.1 J16 =MIN(5.T15) 15000
24 22 17550 17460.5 503.2 168725
25 23 16970 171013 503.2 17963.7 G6 —PROPER(CHAR(06+ COLUMN(C2) |
26 24 17300 17340.2 503.2 176045 H6 =FORMULATEXT(INDIRECT(G6)) 10000
27 25 20060 19767.0 503.2 178434
28 26 19040 192026 503.2 20270.2 500
29 27 19705.8
30 28 20209.0
3129 207122 0
32 30 212154 0 5 10 135 20 25 30
33 A
34 —=— At ——TFt
35
36
37
38
39
40
41
42
43

« » ..| 4AllMetricsUsing.ES 5.AddConstant 6.Reg.Line.AddIns.Functions | 7.TrendAdjES

6. LEVEL, TREND, AND SEASONALITY

In this section, we review (i) seasonality-enhanced bi-variable linear regression, (ii) seasonality-
enhanced multi-variable regression using dummy variables, and (iii) trend and seasonality-adjusted
exponential smoothing.

6.1. Seasonality Enhanced Bi-Variable Linear Regression.
Our approach is recognized as Winter's Model (Chopra 2019). The monthly data shown in Table 2
for 12(26) months (in 1000 TEUs) are copied into Table 9. We consider a periodicity of 12, where
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periods repeat every 12 months. One may add three months of data and consider the periodicity of
four seasons, periodicity of 7 days over a week, or periodicity of 24 hours a day.

Table 9. Computations for Static Seasonality Enhanced Bi-Variate Linear Regression

A B C D E F G H I J K
1 |Per. Monthly Data Centered MA Deseas.Reg SeasIndex Seas Seaslnd SeasIndAdj Ft(StatReg) b0= 702.82
2o bl= 290
31 480 1 5 = 0.83
42 1468 2 iodicity= 12
5|3 504 3
6| 4 518 4 c9 =(AVERAGE(B3:B14)+AVERAGE(B4:B15))/2
715 529 5 K1 =INTERCEPT($C59:5C5308,$A59:3A5308)
8|6 556 6 K2 =SLOPE($C$9:5C5308,$A$9:5A5308)
9|7 568 7 K3 =RSQ($C$9:$C$H308,$A59:5A5308)
10/ 8 557 8 D3 =5K$1+$K$2*A3
1|9 589 9 E3 =B3/D3
12 | 10 583 10 F3 =IF(MOD(A3,5K54)>0MOD(A3,$K34),$K34)
13|11 556 1 G3 =AVERAGEIF($F$3:5F5314,F3,3E5$3:3E5314)
14 | 12 556 12 Gl15 =AVERAGE(G3:G14)
15 | 13 527 1 H3 =G3/$G$15
16 | 14 512 2 1317 =($K$1+5K$2*A317)*VLOOKUP(F317,5F$3:$H$14,3,0)
17 | 15 608 600 3
18| 16 611 4
19 | 17 632 5
A A e PR SR ee S N
cc|owd) 1541
303|301 1,667 1
304|302 1654 2
305|303 1,822 3
306|304 1,708 4
307|305 1,859 5
308|306 1,712 6
309|307 1721 7
310|308 1612 8
311|309 1,452 9
312|310 1,337 10
313|311 1,228 11
314|312 1,273 12
315|313 1
316|314 2
317|315 3 30.95
e TV ,/"H_A - - P T O Y R e I VS
323(321 :
324|322 1738.39
325|323 1661.09
326|324 y 1602.82

When we compute the average of 12 months, it is pure of seasonality since high and low seasons
cross each other out. This is true for any other periodicity; the average of all seasons does not contain
seasonality. Instead of placing the moving average of n seasons in front of the last season (as we did
in our moving average computations), we place it at the center of the data incorporated in each
moving average; centered moving average.

Step 1. Removing Seasonality. If we were considering seasonality over 7 days of weeks since 7 is
odd, we could have placed the average in front of period 4, compared the actual period 4 with the
centered moving average, and estimated the seasonality of period 4. But there is no middle period
for even periodicity. Therefore (and the procedure is the same for all other even periodicities), we
first compute the average of the 12 months and assume it is placed at the boundary of months 6 and
7. We also compute the period 2 to period 13 average and assume it is at the boundary of months 7
and 8. Next, we compute the average of these two centered moving averages and place it in front of
period 7, representing the unseasonal activity volume at period 7. We then copy this formula down
to 6 months to the last months. We will generally have the centered moving average for all periods
minus periodicity.
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Step 2. Trend in the Deseasonalized Data. We apply linear regression on months 7 to 306 to find
the level and trend of the data pure of seasonality. It leads to b, b1, and R?, as shown in columns K of
Table 9. The Excel worksheet also shows the formulas for all other computations (as they follow).

Step 3. Seasonality Indices. We divide the actual data of each month by the value obtained from the
regression line applied to the deseasonalized data (A:/Y:). The ratios are estimates of the seasonality
index in all 12(26) months. By averaging all seasonality indices of each month, the average
seasonality index of January (S1) to December (S12) is computed. The average of the average
seasonality indices for all 12 months must equal 1; therefore, to normalize, we divide the average
seasonality index of each month by the average of the averages. These computations are in columns
Gand H.

Step 4. Trend and Seasonality Adjusted Forecasting. Finally, we put seasonality back on the
deseasonalized regression line and forecast the future. Fi = (bo+b1t)*S; where S;has the same monthly
value over all years. All formulas are clearly explained in Table 9. The results of the four steps of this
process are schematically represented in Figure 3. The above analysis shows that the monthly
seasonality is from a minimum of 0.87 to a maximum of 1.09. In a similar analysis, one may study
daily seasonality (periodicity of 30) or hourly seasonality (periodicity of 24).

Figure 3. Four Key Steps in Static Seasonality Enhanced Bi-Variable Linear Regression.
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6.2. Seasonality Enhanced Multiple Regression Using Dummy Variables.

By implementing a set of binary dummy variables, we use multi-variable regression for another
version of static seasonality analysis. For each month, we define a binary variable, which is 1 if we
are in that month and 0 otherwise. For periodicity of n periods, we need n-1 dummy binary
variables. We compare other periods with a period of choice, where our choice does not affect the
analysis outcomes. Since we analyze monthly data over the years, periodicity is 12. We define 11
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binary variables for January to November. We will have our Y variable as the volume of activity in

the corresponding month, our X variable as the month counter (from 1 to 312), and 11 dummy
binary variables. Excel's Data Analysis Add-ins require the independent variables to be in

contiguous cells. We, therefore, copy the month variables adjacent to the dummy variables. We can

have them before or after the dummy variables. Compared to bi-variable regression, instead of a

single column for X variables, we select 12 columns. The output and all the essential formulas are

shown in Table 10. The reader may pay attention to the formula to generate Os and 1 for the dummy
variables in each month and, more importantly, to multiply the row of the decision variables by the
column of regression coefficients (by using dynamic arrays and transposing one of the two vectors).

A B

1 |Per. Monthly Data
2|0

3|1 480
4|2 468
513 504
6| 4 518
715 529
8| 6 556
9|7 568
10| 8 557
1|9 589
12|10 583
13|11 556
14| 12 556
15|13 527
16 | 14 512
17|15 608
18| 16 611
19|17 632
20| 18 640
21|19 658
22|20 686
23|21 663
24|22 659
25|23 667
26| 24 614
27|25 588
28| 26 588
29| 27 624
30| 28 606
31|29 730
22|30 691
33|31 678
34| 32 747
35|33 740
36| 34 784
37|35 745
38| 36 699
39|37 697
40 | 38 672
41|39 708
42 | 40 773
43|41 815
44 | 42 777
45140

311|309 1452
312|310 1,337
313|311 1228
314|312 1,273
315|313

316/314

324|322

325/323

326|324

Table 10. Seasonality Enhanced Multi-Variable Regression Computations.
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6.3. Trend and Seasonality Adjusted Exponential Smoothing.

100

R s T u \% w X
3 =IF(MOD($A3,$N$1)=C$1,1,0)
3 =IF(MOD($A3,$N51)=D51,1,0)
=55530+55543"03+SUM(C3:N3*TRANSPOSE(55531:55542))
Regression
Input

Input ¥ Range: $B$3:$B%314

Input X Range: $AE3:5A5314,5CH3:5N
SUMMARY OUTPUT

Regression Statistics E] Labels D Constant is Zero

Multiple R 0.88 ) -
R Square 078 E] Confidence Level: 95 %
Adjusted R Square 0.77
Standard Error 146.70 Output options
Observations 312

© output Range: $R$14‘
ANOVA

df 55 MS F Significance F
Regression 13 23171341 1782411 8282 1.07483E-90
Residual 298 6413244 21521
Total 311 29584585
Coefficients _itandard Erro, ___t Stat P-value Lower 95% __ Upper 95%

Intercept 668.29 32.42 20612 0.000 604.489 732.101
X Variable 1 -21.07 40.70 0.518 0.605 101.166 59.026
X Variable 2 112.05 40.70 2.778 0.006 193.139 -32.956
X Variable 3 69.73 40.70 1713 0.088 149.816 10.359
X Variable 4 -8.09 40.69 0.199 0.843 88.175 71.993
X Variable 5 65.19 40.69 1.602 0.110 14.893 145.269
X Variable 6 41.09 40.69 1.010 0313 38.992 121.165
X Variable 7 89.12 40.69 2.190 0.029 9.042 169.195
X Variable 8 125.69 40.69 3.089 0.002 45.618 205.766
X Variable 9 77.33 40.69 1.901 0.058 2.742 157.403
X Variable 10 94.38 40.69 2320 0.021 14.309 174.452
X Variable 11 34.85 an /o naca naas Az 295 111017
X Variable 12 0.00 S Multi-Variable Dummy Regression
X Variable 13 2.91 2500

150 200 250 300

In the two previous approaches, we used the term static seasonality. Static means we estimate
seasonality for all months and keep them as they are; seasonality indexes and all other model
parameters remain unchanged. In this third approach, we update seasonality indices (as well as
level and trend) as we move forward. It extends the trend-adjusted exponential smoothing (Winter,
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1960, Chopra, 2021). The reader may look into the graphs of the three approaches' output to
visualize the dynamism inside this third approach.

By applying linear regression on the 12-month centered moving average implemented in
seasonality-enhanced bi-variable linear regression, we first estimate the level (Lo =INTERCEPT) and
trend (To=SLOPE) in month zero. We also use static seasonality indexes computed in seasonality-
enhanced bi-variable linear regression (Chopra 2021). Alternatively, we may set Lo equal to the
average demand in the first 12 months. Given Ly as the average of the last 12 months, we set To=(Lx-
Lo)/ (12(N-1)). For seasonality, we may divide the demand of each of the first 12 months by the
average of these months and assume them as the seasonality indexes for the first 12 months (Iravani
2021). While the second approach is easier with fewer computations to estimate the starting
parameters, since we already have the results as described in the seasonality-enhanced bi-variable
linear regression section, we follow the first approach and copy Lo, To, Sy, ....S12 from Table 9 into
Table 11. We first set a=0.5, f=0.5, and y=0.5.

Step 1. Compute L:. Given Lo = 702.82, To= 2.9, and S1= 0.95; F1 =( Lo + To)S1 = (702.82+ 2.9)* 0.95 =
670.74. We now move forward to compute Ly, T1, F2, and Si3, then Lo, T, F3, and S14, and so on. In all
exponential smoothing models, we always have one component multiplied by a parameter (o, B, or
Y), added to another component multiplied by 1 minus «, 8, or y. The 1 minus part is always easier to
compute. We have Lo = 702.82, To= 2.9. Our forecast for level in month 1 is L1= Lo + To= 705.71. This
needs to be multiplied by (1-a). That is, L1=(1-0.5)* 705.71. But what is the part that had to be
multiplied by a? It is not 480. That is why the computation of the component multiplied by 1 minus
o, B, or y is easier. The actual month 1 data of 480 contains seasonality. We need to remove
seasonality. Since S;= 0.95, month 1 is a low season. We must divide the actual data by S; to remove
seasonality; 480/0.95 =504.97. Therefore, L1 =(1-o)(Lo+To)+ a(A1/S1) = (1-0.5)(702.82+2.9)+
0.(480/0.95) = 605.34.

Step 2. Compute T:. Our forecast for Ti is To. It is multiplied by (1-B) to form the first component of
Ti. What is the actual T1? It is the difference between Lo and L; and should be multiplied by p.
Therefore T1=(1-p) To+p(L1- Lo) = (1-0.5)* 2.90+0.5(605.34-702.82)=-47.29.

Step 3. Compute Fi.1. The forecast for the next period is simply Fi1=(Li+T:)*Sw+1. For month 2, it is
Fo=(L1+T1)*S2 = (605.34-47.29)0.872 = 486.78.

Step 4. Compute Si.p. Since periodicity is 12 (p=12), we need to compute Si+12. We first have (1-y)
times forecast. Our forecast for period 13 is the same as period 1; $1=0.96. What is the actual
seasonality in period 1? It is the actual data divided by Li= Lo +To. That is A;/L;=480/705.71 =0.68.
Therefore, S13=(1-y)*S1+y(A1/L1) = (1-0.5)(0.96)+0.5(0.68) = 0.82.

Table 11 shows all the key formulas and curves related to trend and seasonality-adjusted
exponential smoothing components.
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Table 11. Seasonality Enhanced Multi-Variable Regression Computations.

A B C D E F G H I J K L M N o P Q
1t At L T S Ft(TreSeasES) p=4 Periodicity
20 a= 0.50 Alpha
31 b= 0.5 Beta
4 2 &= 0.50 Gamma
5|3
6| 4 c2 ='1.SeasRegChopraMineEvenpl2'/K1
75 D2 ='1.SeasRegChopraMineEvenp12'K2
8| 6 E3 ='1.SeasRegChopraMineEvenpl12''H3
9|7 F3 =(C2+D2)*E3
10 8 [} =(1-SHS$2)*(C2+D2)+SHS2*B3/E3
1) 9 D3 =(1-SHS$3)*D2+5HS3*(C3-C2)
12 10 F3 =(C2+D2)*E3
31 E15 =(1-SHS4)*E3+GHS4* (B3/ (C2+D2))
14| 12
& fl Actual Data Level
17| 15 2,000 2000.0
18| 16
19| 17 1,600
20| 18 1500.0
21, 19 1,200
22| 20 10000
23 21 800
24| 22
25| 23 100 500.0
26 24
27| 25
28| 26 0 0.0

0 50 100 150 200 250 300 0 50 100 150 200 250 300

29| 27
30| 28
31 29 .
2] 30 Seasonality Ft (TreSeasES)

324|322
325|323
326/ 324

7. CONCLUSIONS.

We reviewed and integrated several time series and regression analysis techniques. This manuscript
can be used as teaching material or as a case study to enforce the teaching material. While we had
our analysis on total loaded and empty for both inbound and outbound throughput, all the data are
available to repeat the combination for four combinations of inbound, outbound, loaded, and empty
volumes. The same is true for applying these procedures - and the Excel templates - on other data
sets.

Appendix A. Computation of Metrics and Drawing the Graphs for an Any-Period Moving
Average.
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We may develop a general formula applicable to any number of periods in a moving average
computation. Consider a 4-period moving average forecast in periods 25 and 26 and examine the
differences.

Fas = MAjs = (Aost Aot Ant Ax)/4 = (AstAxut Ax)/4+ Axn/4
Fa7 = MAgs = (Aot Ast Ayt Azs)/4 = Azs/4 + (Axst Aoy +Ax) /4.

Therefore, Fo7 = Fas + Axs/4 - Axn/4. Generally, Fu+1) = Fi + (A~ Awn)/n. Our forecast for the next
period is equal to the forecast for this period (the moving average of the previous period) plus this
period's actual data minus the oldest piece of data used on the forecast for the previous period

divided by n.

Suppose we enter the number of periods in the moving average is in cell Al and set it to any number
between 2 and 25. Suppose we set it =RANDBETWEEN(2,12); the result is 4 when entered. We now
look into the formula in period 6 in row 9 in Table A1. We have the previous forecast and previous
actual in row 8, but what is the oldest data in the previous forecast? It is in the row t-n of the actual
data. In our example is the data in row 8-4=4 of the Excel sheet. We can use the Excel INDEX
function to find the element in a specific row of a vector.

IF(A8<$A%$1,"" IF(A8=$A%1,AVERAGE(B$4:B8),C8+B8/$A$1-INDEX(B$4:B8,A8-$A$1)/$A$1)) is the
forecast formula in cell CO. If the previous year is before year 4, a " " is entered to leave the Excel cell
blank. If the previous year is year 4, the average of the actual data for the first four years (from row 4
to 8) is computed and set to the forecast for year 5 (in row 8 of the Excel sheet). For cell C9 which
corresponds to year 6>4, we have C8+B8/$A$1-INDEX(B$4:B8,A8-$A%$1)/$A$1. Where
INDEX(B$4:B8, A8-$A%$1) will find the oldest piece of data used in the forecast; INDEX(B$4:B8,5-4) =
INDEX(B$4:B8,1) = B4 = 6460. The actual for the previous period is B8 = 9650, and the forecast for
the previous period is C8 = 7910. Therefore, the forecast for this period C9= 7910+ (9650-6460) /4
=8707.5. The table is adjusted for any number less than 26 that may appear in cell Al.

Since we draw the curves related to some of the columns in Table A1, a " " for the starting years that
are less than or equal to the random year that appears in cell A1 will show a Y-value of zero while it
is empty and not zero. To resolve this, we replace " " with NA(). To avoid #NA appearing in the
table, we use formula-based conditional formatting and switch the font color to white using the
IFERROR function for #NA cells. Accordingly, Table A1l and Figure A1 are adjusted automatically
no matter what random numbers between 2 and 25 appear in cell Al. Alternatively, we could have
the fonts of these columns colored white and switch the font color to black using the ISNUMBER
function in conditional formatting.
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Table Al. Computation and Evaluation of an Any-Period Moving Average.

A B C ] E F G H I ] K L M N O P o] R s
1 1 4-Period MA Forecast
2|t At Ft Ft E |E|  E2 |E|/AMAD MSE MARL SFE TS  BLAS
3 n MAD MSE MARD
4 1 6460 15276 3325370 0108
5 2 7480 1 1439920 72
& 3 §220 2 11463 1987246 0086
T 4 9480 3 13672 2651752 0100
a3 5 9550 7910 7910 1740 1740 3027600 018 1740 3E+060 018 1740 1 1740 4 15276 3325370 0108
9 6 10630 87075 87075 19225 1923 3696000 0181 1831 3E+06 0181 36625 2 1831 5 17190 4243650 0118
10| 7 11810 9495 9495 2315 2315 5359225 0195 1993 4E+00 0186 59775 3 1993 o 18095 5105980 0124
Bl 3 |13100| 1porcol —sooolomoorl soenlooonccel Aol oaoal ceorl () 01]  RARH 4 217 7 | 10RRA  RYR3SM  N174
12| 9 14190 1; 25000 01 T [
13| 10 15760 1 4 Period MA Forecast 01116 ;
14| 11 15670 1, 20000 01ie ;
15 | 12 14340 1 01 1
6] 13 11s10 1. 00 01" |
17 | 14 14100 1: 0.1/10 )
18 15 12000 1. °°° 01 s )
19 16 14120 L 0.1, |
20| 17 14600 1. 0.1 ]
21| 18 15160 1. 01 * '
22| 19 15350 1 o 5 10 15 20 25 3p 012 H
23| 20 15630 1: 01, i
24| 21 16400 1! —S-ar Tt 01 5 10 1 20 - w !
25 | 22 17550 1bwow 1owvoo LY¥LD L¥10 SUUs 20 waus rows oovoo 011 o o ——— — I ——
26| 23 10970 16233 16233 7375 7375 543006 0043 1519 3E+06 0112 21240 139§ 1118 22 4p4588 22450494 0252
27| 24 17300 10638 10035 0025 0625 438900 00358 1477 3E+060 0109 21903 1483 1095 23 51522 27457000 0272
28 | 25 20000 17055 17055 3005 3005 9030025 015 1549 3E+00 0111 24905 1008 1150 24 59425 35042p84 0.303
26 | 26 19040 17970 17970 1070 1070 1144900 0056 1528 3E+00 0108 25975 1701 1181 25 54dbd 200083273 0280
30| 27 17970 Min 9552 1439920 00717
3| 28 17970
32| 20 17970
33| 30 17970
34
35 | Al =RANDEBETWEEN(2,12) Q4 =129
36 | C9 =IF(A8<$ASL,"" IF(AS=5ASLAVERAGE(B34:E8),C8+B§/SASL- INDEX(BS4:BS,AS-SAS1)/SASL)) R4 =]J29
37 | D9 =IF[A8<SASL " AVERAGE(BSINDEX(BS4:BS A8-5A51+1))) Alternative formula for Ft 54 =K29
33 | E9 =IF(ISNUMBER(5C9)B9-C9,"") Q5 |=TAB'L'E(,A’J'.]|
39 | F9 =IF[ISNUMBER(5E9),AB5(3E9),"") Q30 =MIN(Q5:Q29)
40 | G9 =IF(ISNUMBER($E9),5E9"2,"") R30 =MIN(R5:R29)
41 | H9 =IF(ISNUMEER(SE9),F%E9,"") 530 =MIN(55:529)

42| 19 =IF(ISNUMBER($E9),AVERAGE(F9:INDEX(FSLF9,$AS1+1)),")
43| ]9 =IF(ISNUMBER($E9),AVERAGE(G9:INDEX(GS4:G9,5A51+1)),"")
44| K9 =IF(ISNUMBER($E9),AVERAGE(H9:INDEX({HS4:H9,SA51+1)),"")
45| 19 =IF(ISNUMBER(SE9),SUM(E9:INDEX(ESL:E9,SAS1+1)),"™)

46 | M9 =IF(ISNUMBER($E9),19/19,"")

47 | M9 =IF(ISNUMBER(SE9),19/19,"")

4 v .. | 10TreSeasExpoSmoo 11.MAD.GenPurp.MA

Column D provides an alternative formula for an any-period moving average as follows
D9=IF(A6>=$A%1, AVERAGE(B6:INDEX($B$4:$B$30,A6-$A$1+1)),NA()). That is due to the magic
inside the AVERAGE(B6:INDEX($B$4:$B$30,A6-$A$1+1) formula. We benefit from this formula in
columns E to M to compute the metrics only when the data exist and do not show anything for other
years in the graphs, as shown in Figure A1l. All the key formulas of Table A1 are re-emphasized by
the green and red cells with white backgrounds.
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Figure Al. Flexible Graphs for Computation and Evaluation of an Any-Period Moving Average.
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Given the new any-period moving average formulas, selecting the number of periods and adding a
constant may reduce the gap between the actual data and forecasts. Table A2 shows computations

for adding a constant and the number of periods in the moving average using a two-dimensional
Data Table for MAD minimization (n= 12, K=220). It can be similarly applied to MSE and MARD
minimization.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

- >

O 00N O Ul 03 PO =

150
At

6460
7480
8220
9480
9650
10630
11810
13100
14190
15760
15670
14340
11810
14100
14000
14120
14600
15160
15350
15630
16400
17550
16970
17300
20060
19040

Ft

8060
9007.5
9945
10992.5
12047.5
133325
14765
15880
16340
15895
15630
15362.5
15457.5
16305
16720
17207.5
17735
18335
19082.5
19637.5
20205
21270
21792.5

1590
1622.5
1865
2107.5
2142.5
24275
905
-1540
-4530
-1795
-1630

-12425

-857.5
-1145
-1370

-15377.5

-1335
-785

-21125
-2337.5

-145
-2230

1590
1622.5
1865
2107.5
2142.5
24275
905
1540
4530
1795
1630
12425
857.5
1145
1370
1577.5
1335
785
21125
2337.5
145
2230

E2

2528100
2632506
3478225
4441556
4390306
5892756
819025
2371600
20520900
3222025
2656900
1543806
735306
1511025
1876900
2488506
1782225
616225
4462656
5463906
21025
4972900

IEI/A

0.1648
0.1526
0.1579
0.1609
0.1510
0.1540
0.0578
0.1074
0.3836
0.1273
0.1164
0.0880
0.0587
0.0755
0.0893
0.1009
0.0814
0.0447
0.1245
0.1351
0.0072
0.1171

1590
1606
1693
1796
1866
1959
1809
1775
2081
2053
2014

MSE MARD

2528100
2580303
287910
3270097
3534139
3927242
3483211
3344239
5252775
5049700
4832173

0.1e048
0.1587
0.1584

0.139
0.1574
0.1569
0.1427
0.1383
0.1635
0.1e17
0.1576

1950 4558142 0.1518

1866
1814
1785
1772
1746
1693
1715
1746
1670
1695

4264078
4053146
3908063
3819340
3699510
3528216
3577397
3671723
3497880
3564926

0.1446
0.1397
0.1363
0.1341

0.131
0.1262
0.1261
0.1266
0.1209
0.1207

SFE TS

1590
32125
5077.5

7185
9327.5

11755
12660
11120

6390

4795

3165
19225

1065

-80
-1450

-3027.5
-4362.5
-5147.5

-7260

-9597.5
-9742.5

-11973

BIAS

1590
1606.3
1692.5
1796.3
1865.5
1959.2
1808.6

1390
732.22

479.5
287.73
160.21
81.923
-5.714
-96.67
-189.2
-256.6

-286
-382.1
-479.9
-463.9
-544.2

Period

1

MAD

1695

Min

P Q
Constant 200
200 205
1643.5 1676.0
1400.5 14219
1041.8 1063.1
606.4 684.4
581.3 571.8
912.2 884.9
1173.0 1140.5
1478.1 1448.1
18254 1797.9
2187.8  2162.8
2550.7 25282
29624 29424
3423.0 34055

560.0
O4 =H29
03 =N10

O6 =05+3N$11

o

210
1708.5
1443.4
1084.3

702.4

567.9

866.0
1108.0
1418.1
1770.4
2137.8
2505.7
29224
3388.0

P5 {=TABLE(B1,A1)}
P4 =02
Q4 {=TABLE(B1,A1)}

215
1741.0
1464.9
1105.6

7204

563.9

851.7
1075.5
1388.1
1742.9
2112.8
2483.2
2902.4
3370.5

220
1773.5
1486.3
1126.8

738.4

560.0

838.3
1043.7
1358.1
1715.4
2087.8
2460.7
2882.4
3353.0

225
1806.0
1510.2
1148.1

756.4

562.7

8248
1019.5
1328.1
1687.9
2062.8
2438.2
2862.4
3335.5

Table A2. Two-Dimensional Data Table to Add a Constant to an Any-Period Moving Average.

230
1838.5
1536.3
1169.3

7744
568.8
8114
996.3
1298.1
1660.4
2037.8
2415.7
28424
3318.0

Furthermore, we can add flexibility to our table and graphs by updating them as soon as new data is
available. We first put column A in a dynamic form by using

=IF(OR(ISNUMBER(B5),ISNUMBER(C5)),A4+1,NA()). If we have actual or forecast value in the

corresponding row, the year number will appear otherwise NA(). We then add flexible graphs using
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the OFFSET function to define dynamic name ranges and then use dynamic name ranges as X and Y
of scatter graphs. We define a dynamic range name for the actual data as =OFFSET(click on
B4,,,count(B4:B53)). Note that we need to do this in the range name window (not copy and paste
from elsewhere) to have =OFFSET('11c. MAD.GenPurp.MA-

B'1$B$4,,COUNT('11c. MAD.GenPurp.MA-B'I$B$4:5B$53)). Fortunately, we can copy this and paste
it for other dynamic ranges in other columns. The only change needed is to replace $B%$4, and only
$B%4, by $AS4, $AS4, $D$4, $HS4, $M$4 in t, Ft, E, BIAS, and TS columns. There is no need to change
COUNT('11c.MAD.GenPurp.MA-B'$B$4:$B$53) since it counts the rows containing data and is the
same for all columns. Note that we must also type in t, Ft, E, BIAS, and TS as the names of the
corresponding name ranges referred to by OFFSET functions.

We then need to go to each Ft vs. At, E, BIAS, TS, and any other chart we may need and replace the
static reference with a dynamic reference. For example, we have ='"11c regarding Ft vs. At

chart. MAD.GenPurp.MA-B!$A$4:$A$30, ='11c. MAD.GenPurp.MA-B!$B$4:$B$30, and
="11c.MAD.GenPurp.MA-B!$C$4:3C$30 for series X and two Y values. We replace them with
='11c.MAD.GenPurp.MA-B!t, =11c. MAD.GenPurp.MA-B!At, and ='11c. MAD.GenPurp.MA-B!Ft,
respectively. As new actual data is entered into the table, the table and all its graphs are updated
dynamically.

Appendix B. Exponential Smoothing Basic Mathematics.

In this Appendix, we show that (i) exponential smoothing is a weighted moving average and (ii) the
age of datais1/a.

B.1. Exponential Smoothing a Weighted Moving Average.

The following analytical manipulations show that Exponential Smoothing is a Weighted Moving
Average.

Fi=A
Fo= (1-a)F1 +0A; = F2= (1-a) A1 oA Fo= Ay
(1-a)F2 +a A2 = F3= (1-a)A1 +oA>
(1-a)F3 +aAs = Fi= (1-a)((1-a)A1 +aAz) +aAs = Fi= (1-a)2A1 +a (1-a)AxtoAs
(1-a)Fs +aAy = Fs = (1-a)3A1 +o ( (1-a)2Az+o( (1-0)As+ oAy
Fi1 = 0Ac+a(l - a)Aer ol - a)2Ax + ol - )P A + o (1 - a)*Aes ...t a (1 - o)A

1-
1-

Fs
Fs4 o
Fs

The sum of the weights are
S=ato(l-a)ta(l-a)2+o(l-a)P+a(l-a)...+al-a)t!
=a(l-a)tal-a)2+al-a)+a(l-a)...+oa(l-a)
S-1-a)S=o-a(l-a)t=2aS=0(l-(1-a)) >S=1- (1 - a)t

When t increases, (1 - o)t goes to 0, and the sum of the weights S=1.
B.2. Age of Data in Exponential Smoothing.

Through the following analytical manipulations, we show that the age of Data in Exponential
Smoothing is 1/ a.
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Weights = o, a(1 - ), a(1 - )2 o (1 - )3, a(1 - a)?,...... , ol - o)t
Ages=1,2,3,4,.......... t

Weights x Ages = 1o+ 2a(1 - o)+ 3o(1 - )2+ 4o (1 - )3+ S (1 - o) +...... + to(l - a)tt
Weights x Ages = a(1+ 2(1 - o)+ 3(1 - o0)2+ 4(1 - o)+ 5(1 - o)t +...... +t(1 - o))

We have shown S = a(1+ (1 - a)+(1 - o)2+(1 - a)3+(1 - a)* +...... +(1-a)tt)=1

1+ (1-o)+(1 - a)2+(1 - a)>+(1 -a)*+...... +t(l-a)t=1/a

Derivation with respect to a

0-1-2(1 - a)1-3(1 - a)2-4(1 - a)3-...... -(t1) (1 -o)2=-1/a2

o(1+2(1 - o)1 +3(1 - a)2+4(1 - )3 +...... +(t-1) (1 - a)+2)=1/0

B.3. UCL and LCL in Tracking Signal are larger than +4

Forecast error E; =AF; is a random variable with a mean of 0. MAD estimates the error forecast's
standard deviation. StdDev(E;) =1.25MAD (for example, Duncan, 2007}.

E: = Normal (0,1.25MAD)

If x = Normal(p,0) = Sum (x) = Normal(p, SQORT(N)o)
StdDev [Sum(E;)] = SQRT(N)StdDev (E)

E: = Normal (0,1.25MAD)

Sum (Er) = N~(0, SORT(N)1.25MAD)

3> (2E:-0)/(SQRT(N)1.25MAD)) = -3.

+ 3SQRT(N)1.25 = (2E:-0)/MAD = - 3SQRT(N)1.25.

+ 3.755QRT(N) = (2E:-0)/ MAD = - 3.75 SQRT(N)

Therefore, Tracking Signal TS= 2 E;/ MAD with samples of size N is normally distributed around 0,
and UCL =3.75 SQRT(N) and LCL =-3.75 SQRT(N).

Appendix C. Foundations of Computation of Regression Metrix in Excel (bo, B;, SST, SSE, SSR).

One may design a regression line by minimizing MAD, MSE, MAX(ABS(Error)), or any other
measure. Conventionally, regression equations are designed based on MSE minimization (least-
square method). We compute MSE or SSE (Sum of Squared Errors) and use SOLVER to find the
optimal bo and by (which are in cells J16 and J17 in Table A1) to find the optimal values for the SSE (
cell D28) objective function. After computing the forecasts in column C using arbitrary but
reasonable bo and b (in cells J16 and J17), we form column D (the square of the error in each row)
and add them to form SSE in cell D26. We then use SOLVER (we can use DataTable too) to find
optimal bp and b: to minimize SSE (or MSE). These optimal values (in cells J16 and J17) are the same
as we found using the first three approaches in the regression section. It provides insight into least-
squared computations and other regression metrics. Cell D26 can also be computed using dynamic
arrays without referencing any values in column D (we can even delete column D). Look at the
significant power of dynamic arrays in cell J19 for direct SSE computations.

Table Al. Direct Computation of Regression Coefficients and Key Metrics.
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A B C D E F G H | J K L M
1 t At | Yhat (Reg) ST Ybar SE SR 21000
2| 1 |6460 | 85628 | 53920779 | 13803.1 | 4421854 | 49498925
3| 2 (7480 | 8982.0 | 39981302 | 13803.1 2256127 | 37725175 00
4 3 |8220 | 94013 | 31170748 | 13803.1 1395379 | 29775369
5| 4 (9480 | 98205 | 18688994 | 13803.1 115928 18573066
6| 5 [9650 | 10239.7 | 17248048 | 13803.1 347749 16900299 15000
7 | 6 [10630| 10658.9 | 10068417 | 13803.1 837 10067581
8 | 7 [11810] 11078.1 | 3972356 | 13803.1 535614 3436742 12000
9 | 8 [13100| 114974 | 494317 13803.1 2568442 | 2074125
10| 9 14190 119166 149709 13803.1 5168418 | -5018708
11| 10 |15760| 123358 | 3829548 | 13803.1 | 11725111 | 7895563 9000
12| 11 |15670| 12755.0 | 3485402 | 13803.1 8497076 | -5011674
13| 12 |14340| 131742 288286 13803.1 1358982 | -1070696 6000 —+—At —8—Yhat(Reg) —e—Ybar
14| 13 |11810| 135935 | 3972336 | 13803.1 3180753 791602 1 6 1 16 2 %
15| 14 |14100| 140127 88163 13803.1 7624 80540 Y1 8362.8205 =J16+J17*A2
16| 15 |14000| 144319 38779 13803.1 186544 -147766 b0 8143.6
17 | 16 |14120| 148511 100440 13803.1 534548 -434108 bl 419.22051
18| 17 |14600| 152703 635086 13803.1 449367 185719 Ybar 13803 =AVERAGE(B2:B27)
19| 18 |15160| 15689.6 | 1841240 | 13803.1 280444 1560797 SST 305320354 |=SUM((B2:B27-]18)"2)
20| 19 [15350| 161088 | 2392971 | 13803.1 575762 1817209 SSE 48292065 |=SUM((B2:B27-C2:C27)"2)
21| 20 [15630| 165280 | 3337648 | 13803.1 806422 2531226 SSR 257028289 |=J19-]20
22| 21 [16400| 169472 | 6744009 | 13803.1 299462 6444548 MSE 2012169  =J20/(COUNT(B2:B27)-2)
23| 22 [17550| 173665 | 14039433 | 13803.1 33690 14005742 StdErr 141851  =SQRT(J22)
24| 23 [16970| 17785.7 | 10029402 | 13803.1 665320 9364081
25| 24 [17300| 182049 | 12228471 | 13803.1 818830 11409641
26| 25 [20060| 186241 | 39149086 | 13803.1 2061772 | 37087314
27| 26 [19040| 190433 | 27423363 | 13803.1 11 27425352 Set Objective: $D$28
28| 27 19462.6 | 305320354 48292065| 257028289
29 To: ) Max O min () value OFf: 0
30

By Changing Variable Cells:
$J$16:$1817

w
=

< » .. 5ReglineAddinsForm | 5.2.RegreSSE&SST _

In Regression Analysis, we usually compute three SST, SSE, and SSR metrics. SST is the summation
of the squares of the gap between each piece of data with the average. Table C1 shows the gap
between the green curve (actual data) and the red curve (average of all data). The total squared error
measures how each data element differs from the average. We then have SSE, the squared gap
between the green curve (actual data) and the blue curve (regression data). The total squared error
measures how each data element differs from the value obtained on the regression line. The
difference between these two (SSR) represents how well the regression line could replace the
average line representing the data. The reader may compare the computations in cells D28, F28, and
G28 with those of J19, J20, and J21 to better understand dynamic arrays (and may delete columns D,
E, F, and G).

R-squared is computed as SSR/SST, reaching the same value as computed directly using the RSQ
function. The MSE (and Standard Error) computations in regression slightly differ from what we
discussed earlier. When you benefit from other statistics extracted from the same data set in the
computation of an average, you use degrees of freedom. In the computation of SSE, we have used
two parameters bp and bi. Therefore, we lose two degrees of freedom when we average SSE over n
years (26 in this example). Therefore, MSE is not SSE/26 but SSE/ (26-2).

Given the background provided in this Appendix, we can apply a piecewise regression to find bos,
b1, bz, and bz for the first and second piece of the regression line and T as the year to switch from
the first regression line to the second. The above five items form the changing cells, and MSE is the
objective function to be minimized. The result is shown in Figure Al.
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Figure Al. Piecewise Regression on LA/LB ports Annual Data.
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Appendix D. All Worksheets Used in This Study. Since there are many computations in different
worksheets of this workbook, recalculating all elements on all pages slows down the process. It is
recommended to move each worksheet to an individual workbook.
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