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Abstract: The combined ports of Los Angeles and Long Beach (LA/LB) ports 
are among the world’s top ten busiest container ports. Approximately 1/3 of US 
waterborne containers move through the LA/LB ports. The data on the volume 
of containerised activities in these ports provide an excellent dataset to teach 
time series and regression analysis. We use 26 years of data on these ports’ 
activities to teach moving averages, exponential smoothing, trend-adjusted 
exponential smoothing, and regression analysis. We also use 312 monthly data 
for teaching seasonality-enhanced regression, multivariate seasonality 
regression using dummy variables, and trend and seasonality-adjusted 
exponential smoothing. This manuscript can be used as teaching material, or as 
a case study in a business analytics foundations or a supply chain management 
course. A set of useful Excel functions and formulas have been brought 
together and are fully embedded in the models. 
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1 Introduction 

Competitive firms need forecasting to develop integrated resources and processes, 
nourish multi-dimensional and structurally integrated capabilities, understand the 
revolving business eco-system, create value, and reshape the business organisation 
towards achieving the plans of the enterprises. Marketing, finance, and operations are the 
three key building blocks of manufacturing, service, and distribution systems. Planning, 
organising, budgeting, executing, and controlling are the primary responsibilities of the 
three key managers. Operations managers need forecasting for capacity planning, 
inventory management, and scheduling. Financial managers need forecasting for 
investment analysis, revenue and cost analysis, and cash flow planning. Marketing 
managers need forecasting for pricing, sales force planning, and promotions. Good 
forecasting facilitates matching customer value propositions with product attributes, and 
product attributes with process competencies in the four-dimensional space of cost, 
quality, time, and variety. While marketing, finance, and operation managers may be 
interested in forecasting different variables, they have a common interest in the volume of 
activities, investment plans, operating costs, and revenues. They are all interested in  
long-term and short-term forecasts for strategic, tactical, and operational decisions. 

Approximately 1/3 of US seaborne containers move through the LA/LB ports. The 
value of two-way trade in Southern California customs exceeds 10% of total US 
international trade in goods. Around 75% of this value passes through to LA/LB ports. 
Around 125,000 firms consider the LA/LB ports their export hub, and 175,000 firms 
consider these ports their import hubs. One out of 10 jobs in Southern California is 
associated with LA/LB ports. 

The inbound and outbound volumes of the loaded and empty containers in the LA/LB 
ports provide an excellent data set to teach the basics of time series and regression 
analytics. 

Teaching-focused business schools (TFBSs) make up close to 50% of all AACSB 
(Association to Advance Collegiate Schools of Business) accredited institutions.  
State-funded teaching-focused business schools (SFTFBSs) are a large subset of 
(TFBSs). Many of these lower-funded SFTFBSs educate a nontraditional and  
low-income mixture of first-generation high school or community college graduates. 
SFTFBS students are often self-supporting and work 20–60 hours per week. With less 
time dedicated to education, these students require more educational resources and 
streamlined learning processes than traditional university students. 

By fully implementing time series and regression analysis in Excel, we provide a 
platform where students can learn the basic, intermediate, and advanced Excel functions 
and formulas. Excel is among the three fundamental skills (communications and time 
management) employers seek in SFTFBS graduates. We have tried to bring well-known 
time series and regression techniques under one roof, link them with well-thought-of 
Excel functions, formulas, and vitalisation tools, and combine them in well-integrated 
and easy-to-follow Excel sheets. Our spreadsheet models can also serve as templates for 
other real-life applications students may encounter in their early employment years. 

Competitive emphasis on globalisation in today’s education and developing case 
studies in international trade provide suitable teaching material in this direction. Articles 
of this kind facilitate continuing education and lifelong learning on information and 
operations management subjects. Manuscripts of this type may also constitute a bridge 
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between port administrations looking for employees with good analytical skills and 
academic institutions training workforces to apply their skills in modern ports. 

This manuscript can be used as teaching material or as a case study to enhance 
teaching materials. We have used it as teaching material in an undergraduate course in 
business analytics foundations and as a case study in a supply chain analytics graduate 
course. 

We will have a short literature review in Section 2. Historical LA/LB ports container 
handling data are presented in Section 3. In Section 4, we estimate yearly ports 
throughput levels using moving averages and exponential smoothing. Measures of 
forecast accuracy and variability are discussed in Section 5. The level and trend for 
yearly data are covered in Section 6 using linear regression and trend-adjusted 
exponential smoothing. Section 7 estimates monthly data’s level, trend, and seasonality 
using seasonality-enhanced regression, multivariate regression using seasonal dummy 
variables, and trend and seasonality-adjusted exponential smoothing. Conclusions follow 
in Section 8. In Appendix A, we implement Excel’s functional and visualisation 
capabilities by examining a general any-period moving average and its dynamic tables 
and graphs. In Appendix B, we review the basic mathematics behind exponential 
smoothing. Appendix C explains the foundations of the computation of regression 
metrics in Excel and provides insight for piecewise regression analysis. The Excel 
workbooks can be obtained by contacting the author. 

2 Literature review 

Forecasting methods are partitioned into qualitative and quantitative techniques. 
Qualitative techniques are based on expert opinions and intuitions, such as subjective 
judgment, surveys, salesforce polling, historical analogies, and the Delphi method. 

Time series and regression analysis are among the quantitative forecasting tools. They 
form one or more chapters in Operations and Supply Chain Management and business 
analytics foundations books. 

For Operations Management and Supply Chain Management books, the reader is 
referred to Cachon and Terwiesch (2020), Chase et al. (2000), Heizer et al. (2023), 
Stevenson (2014), Venkataraman and Pino (2018), and especially Chopra (2019) and 
Iravani (2021). For Business Analytics Foundations books, the reader is referred to 
Hillier and Hillier (2023), Albright and Winston (2015), Powel and Baker (2017), 
Ragsdale (2018), Camm et al. (2020), Jaggia et al. (2023), and Krajewski et al. (2016), 
and Winston (2022). For time series and forecasting specifics, the reader is referred to 
Holt (1957) and Vandeput (2023). 

To limit the length of this manuscript, we do not cover autoregressive models. An 
autoregressive model is a regression model where the forecasts are based on previous 
periods. The reader is referred to Chapter 3, Iravani (2021), for a simple introduction to 
an autoregressive model. The moving average in the autoregressive moving average 
model (ARMA) differs from the moving average we discuss in this manuscript. In 
ARMA’s moving average model, the forecasts are based on deviations from past 
forecasts (a taste of exponential smoothing). This means a part of the forecast is based on 
the past observations (AR part), and another part is based on the deviations from the past 
observations (MA part). The AR part can be obtained using regression, while the MA 
part follows a stationary distribution. The integration part is the difference between 
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ARMA and ARIMA (autoregressive integrated moving average). It identifies the number 
of time intervals to make the time series stationary. For an in-depth review of ARMA and 
ARIMA and more advanced techniques, the reader is referred to Box et al. (2015), 
Brockwell and Davis (2016), and Keating and Wilson (2019). 

3 Historical data in la/lb ports and forecasting characteristics 

Time series analyse past data to extract systematic and random components, extend 
systematic components into the future, and provide measures of variability for the 
random components. We use 26 years of data on the total inbound and outbound volume 
of loaded and empty containers in LA/LB ports to learn moving averages, simple 
exponential smoothing, trend-adjusted exponential smoothing (Holt’s method), and 
regression analysis. We also use 312 monthly data records for seasonality-enhanced 
regression, multivariate regression using seasonality dummy variables, and trend and 
seasonality-adjusted exponential smoothing (Winters’ method). Excel functions and 
formulas are fully embedded in these computations. 

3.1 Historical data at LA/LB ports 

Figure 1 presents parts of 312 monthly data records, including loaded inbound, loaded 
outbound, empty inbound, and empty outbound for the Los Angeles and Long Beach 
(LA/LB) ports (Port of Long Beach Statistics and Port of Los Angeles Statistics). The 
data is presented in TEUs (20 equivalent units), which are the size of a 20-foot container. 

Figure 1 312 months TEUs handling in LA/LB ports 
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3 1997 1 Jan 115,349 11,716 72,537 36,438 127,065 108,975 187,886 48,154 236,040.15 123,456 8,349 78,965 33,135 131,805 112,100 202,421 41,484 243,905 238,805 20,065 151,502 69,573 258,870 221,075 390,307 89,638 479,945
4 1997 2 Feb 100,957 11,776 71,376 33,185 112,732 104,561 172,332 44,961 217,293.05 126,804 8,452 87,586 27,432 135,256 115,018 214,390 35,884 250,274 227,761 20,228 158,962 60,617 247,989 219,579 386,723 80,845 467,568
5 1997 3 Mar 102,389 10,673 83,446 33,654 113,062 117,100 185,835 44,327 230,162.10 125,040 11,819 106,556 30,493 136,859 137,049 231,596 42,312 273,908 227,429 22,492 190,002 64,147 249,921 254,149 417,431 86,639 504,070
6 1997 4 Apr 117,035 12,761 77,211 34,513 129,796 111,724 194,246 47,274 241,520.55 146,110 9,216 92,893 28,615 155,326 121,508 239,003 37,831 276,834 263,145 21,977 170,104 63,128 285,122 233,232 433,249 85,105 518,354
7 1997 5 May 123,100 13,611 76,327 38,165 136,711 114,492 199,428 51,776 251,203.15 143,330 8,927 91,734 34,026 152,257 125,760 235,064 42,953 278,017 266,430 22,538 168,061 72,191 288,968 240,252 434,491 94,729 529,220
8 1997 6 Jun 127,693 12,526 73,399 32,659 140,219 106,058 201,093 45,185 246,277.20 165,763 8,524 100,262 35,080 174,287 135,342 266,025 43,604 309,629 293,456 21,050 173,661 67,739 314,506 241,400 467,117 88,789 555,906
9 1997 7 Jul 130,481 13,274 71,623 37,187 143,755 108,809 202,103 50,461 252,564.40 169,964 5,866 96,244 42,926 175,830 139,170 266,208 48,792 315,000 300,445 19,140 167,867 80,113 319,585 247,980 468,312 99,253 567,565

Port of Los Angeles Port of Long Beach LA/LB Ports

 
28 1999 2 Feb 134,281 7,799 61,074 60,625 142,080 121,698 195,355 68,424 263,778.40 172,482 3,905 80,000 67,743 176,387 147,743 252,482 71,648 324,130 306,763 11,704 141,074 128,368 318,467 269,442 447,837 140,072 587,909
29 1999 3 Mar 133,887 8,039 68,857 64,907 141,925 133,764 202,744 72,945 275,689.25 171,913 4,659 88,699 82,704 176,572 171,403 260,612 87,363 347,975 305,800 12,698 157,556 147,611 318,498 305,167 463,356 160,309 623,665
30 1999 4 Apr 146,258 7,300 63,470 65,718 153,558 129,188 209,729 73,017 282,746.10 181,575 3,584 77,040 60,622 185,159 137,662 258,615 64,206 322,821 327,833 10,884 140,510 126,340 338,717 266,850 468,343 137,224 605,567
31 1999 5 May 175,535 7,439 70,211 82,775 182,975 152,986 245,746 90,215 335,960.70 205,640 4,958 87,553 96,317 210,598 183,870 293,193 101,275 394,468 381,175 12,397 157,764 179,092 393,572 336,856 538,939 191,489 730,428
32 1999 6 Jun 161,751 7,931 67,377 80,109 169,681 147,486 229,127 88,040 317,167.10 194,410 7,196 78,962 93,408 201,606 172,370 273,372 100,604 373,976 356,161 15,127 146,339 173,517 371,288 319,856 502,500 188,644 691,144
33 1999 7 Jul 176,445 8,572 66,948 78,281 185,016 145,229 243,393 86,852 330,245.00 188,586 7,013 74,155 78,207 195,599 152,362 262,741 85,220 347,961 365,031 15,585 141,103 156,488 380,616 297,591 506,134 172,073 678,207
34 1999 8 Aug 180,685 7,596 68,901 90,878 188,281 159,779 249,586 98,474 348,059.95 214,709 3,304 80,581 100,711 218,013 181,292 295,290 104,015 399,305 395,394 10,900 149,482 191,589 406,294 341,071 544,876 202,489 747,365
35 1999 9 Sep 180,796 6,285 66,207 83,648 187,081 149,855 247,003 89,933 336,935.70 219,080 2,890 82,308 98,433 221,970 180,741 301,388 101,323 402,711 399,876 9,175 148,515 182,081 409,051 330,596 548,391 191,256 739,647
36 1999 10 Oct 198,681 9,481 75,968 103,035 208,162 179,003 274,649 112,516 387,165.45 204,242 6,483 84,349 101,345 210,725 185,694 288,591 107,828 396,419 402,923 15,964 160,317 204,380 418,887 364,697 563,240 220,344 783,584
37 1999 11 Nov 174,939 9,723 77,653 85,502 184,662 163,155 252,592 95,225 347,816.25 209,444 5,508 91,201 91,150 214,952 182,351 300,645 96,658 397,303 384,383 15,231 168,854 176,652 399,614 345,506 553,237 191,883 745,120  
63 2002 1 Jan 210,394 10,415 83,123 104,305 220,809 187,427 293,517 114,720 408,236.45 180,528 5,896 70,944 87,276 186,424 158,220 251,472 93,172 344,644 390,922 16,311 154,067 191,581 407,233 345,648 544,989 207,892 752,881
64 2002 2 Feb 234,405 9,762 92,401 98,440 244,167 190,841 326,806 108,202 435,007.70 202,276 4,303 83,333 73,070 206,579 156,403 285,609 77,373 362,982 436,681 14,065 175,734 171,510 450,746 347,244 612,415 185,575 797,990
65 2002 3 Mar 218,698 11,256 92,662 113,950 229,954 206,612 311,360 125,206 436,565.70 171,874 5,525 87,845 78,362 177,399 166,207 259,719 83,887 343,606 390,572 16,781 180,507 192,312 407,353 372,819 571,079 209,093 780,172
66 2002 4 Apr 258,026 9,346 91,114 125,812 267,373 216,927 349,141 135,159 484,299.25 227,953 4,373 87,960 89,914 232,326 177,874 315,913 94,287 410,200 485,979 13,719 179,074 215,726 499,698 394,800 665,053 229,445 894,498
67 2002 5 May 274,449 9,935 96,685 150,145 284,385 246,830 371,134 160,080 531,214.20 231,382 4,971 84,062 107,783 236,353 191,845 315,444 112,754 428,198 505,831 14,906 180,747 257,928 520,737 438,675 686,578 272,834 959,412
68 2002 6 Jun 291,966 9,481 95,285 139,729 301,447 235,015 387,251 149,210 536,461.50 236,112 3,043 75,814 104,009 239,155 179,823 311,926 107,052 418,978 528,078 12,524 171,099 243,738 540,602 414,837 699,177 256,262 955,439
69 2002 7 Jul 260,811 11,121 83,740 140,019 271,932 223,758 344,551 151,140 495,690.45 249,618 4,254 70,500 127,546 253,872 198,046 320,118 131,800 451,918 510,429 15,375 154,240 267,565 525,804 421,805 664,669 282,940 947,609
70 2002 8 Aug 327,472 12,217 91,421 174,383 339,689 265,805 418,893 186,601 605,493.80 234,592 3,217 71,086 118,341 237,809 189,427 305,678 121,558 427,236 562,064 15,434 162,507 292,724 577,498 455,231 724,571 308,158 1,032,729
71 2002 9 Sep 320,578 10,389 89,503 168,772 330,966 258,276 410,081 179,161 589,242.15 188,874 1,745 53,924 95,796 190,619 149,720 242,798 97,541 340,339 509,452 12,134 143,427 264,568 521,586 407,995 652,879 276,702 929,581
72 2002 10 Oct 252,910 12,308 70,208 135,545 265,217 205,753 323,118 147,853 470,970.60 163,776 1,137 40,608 95,797 164,913 136,405 204,384 96,934 301,318 416,686 13,445 110,816 231,342 430,131 342,158 527,502 244,787 772,289
73 2002 11 Nov 291,571 9,761 95,772 148,925 301,332 244,697 387,344 158,686 546,029.50 179,463 2,307 64,946 87,419 181,770 152,365 244,409 89,726 334,135 471,034 12,068 160,718 236,344 483,102 397,062 631,752 248,412 880,164  
166 2010 8 Aug 399,151 7,541 147,609 209,537 406,691 357,146 546,759 217,078 763,837.20 311,240 7,802 126,039 165,922 319,042 291,961 437,279 173,724 611,003 710,391 15,343 273,648 375,459 725,734 649,107 984,039 390,802 1,374,841
167 2010 9 Sep 373,249 6,535 139,800 192,028 379,784 331,829 513,050 198,563 711,613.00 288,905 6,744 124,021 155,119 295,649 279,140 412,926 161,863 574,789 662,154 13,279 263,821 347,147 675,433 610,968 925,975 360,426 1,286,401
168 2010 10 Oct 349,545 8,695 151,049 173,095 358,241 324,144 500,594 181,790 682,384.50 303,168 8,334 150,581 151,538 311,502 302,119 453,749 159,872 613,621 652,713 17,029 301,630 324,633 669,742 626,263 954,343 341,662 1,296,005
169 2010 11 Nov 333,710 10,614 170,319 152,327 344,324 322,646 504,029 162,941 666,970.50 274,480 10,750 142,628 130,449 285,230 273,077 417,108 141,199 558,307 608,190 21,364 312,947 282,776 629,554 595,723 921,137 304,140 1,225,277
170 2010 12 Dec 299,304 13,556 161,625 138,166 312,861 299,791 460,929 151,722 612,651.70 256,889 10,353 141,140 114,929 267,242 256,069 398,029 125,282 523,311 556,193 23,909 302,765 253,095 580,102 555,860 858,958 277,004 1,135,962
171 2011 1 Jan 338,607 16,513 159,051 146,348 355,119 305,399 497,657 162,860 660,517.80 242,445 8,092 127,546 96,876 250,537 224,422 369,991 104,968 474,959 581,052 24,605 286,597 243,224 605,657 529,821 867,649 267,829 1,135,478
172 2011 2 Feb 275,887 13,277 150,357 115,393 289,163 265,750 426,244 128,669 554,912.80 233,660 8,396 121,929 94,351 242,056 216,280 355,589 102,747 458,336 509,547 21,673 272,286 209,744 531,220 482,030 781,833 231,417 1,013,250
173 2011 3 Mar 297,023 15,780 192,849 95,144 312,803 287,993 489,872 110,924 600,796.00 191,211 10,916 131,761 78,348 202,127 210,109 322,972 89,264 412,236 488,234 26,696 324,610 173,492 514,930 498,102 812,844 200,188 1,013,032
174 2011 4 Apr 312,360 14,486 167,448 122,978 326,846 290,426 479,808 137,464 617,272.50 270,107 11,518 143,683 105,781 281,625 249,464 413,790 117,299 531,089 582,467 26,004 311,131 228,759 608,471 539,890 893,598 254,763 1,148,361
175 2011 5 May 360,969 14,159 184,275 133,531 375,128 317,806 545,244 147,690 692,933.70 275,100 7,335 130,161 124,086 282,435 254,247 405,261 131,421 536,682 636,069 21,494 314,436 257,617 657,563 572,053 950,505 279,111 1,229,616
176 2011 6 Jun 333,894 15,529 163,137 128,234 349,423 291,371 497,032 143,763 640,794.60 271,113 8,058 126,588 148,510 279,171 275,098 397,701 156,568 554,269 605,007 23,587 289,725 276,744 628,594 566,469 894,732 300,331 1,195,063
177 2011 7 Jul 357,668 17,632 165,135 147,891 375,300 313,026 522,803 165,523 688,325.55 290,314 9,701 126,968 145,944 300,015 272,912 417,282 155,645 572,927 647,982 27,333 292,103 293,835 675,315 585,938 940,085 321,168 1,261,253  
302 2021 12 Dec 385,251 2,272 70,872 328,194 387,523 399,066 456,122 330,466 786,588.75 358,687 12,525 113,918 269,184 371,212 383,102 472,605 281,709 754,314 743,938 14,797 184,790 597,378 758,735 782,168 928,728 612,175 1,540,903
303 2022 1 Jan 427,208 1,267 100,185 336,936 428,474 437,121 527,393 338,202 865,595.35 389,334 12,492 123,060 276,058 401,826 399,118 512,394 288,550 800,944 816,542 13,759 223,245 612,994 830,301 836,239 1,039,787 626,753 1,666,540
304 2022 2 Feb 424,073 2,740 95,441 335,511 426,812 430,952 519,514 338,251 857,764.40 390,335 11,617 117,935 276,673 401,952 394,608 508,270 288,290 796,560 814,408 14,357 213,376 612,184 828,765 825,560 1,027,784 626,541 1,654,325
305 2022 3 Mar 495,196 2,580 111,781 349,117 497,776 460,898 606,977 351,697 958,674.05 427,280 11,597 114,185 310,094 438,877 424,279 541,465 321,691 863,156 922,476 14,177 225,966 659,211 936,653 885,177 1,148,442 673,388 1,821,830
306 2022 4 Apr 456,670 1,595 99,878 329,215 458,264 429,093 556,548 330,810 887,357.35 400,803 12,895 121,876 285,145 413,698 407,021 522,679 298,040 820,719 857,473 14,490 221,754 614,360 871,963 836,114 1,079,227 628,850 1,708,077
307 2022 5 May 499,960 1,719 125,656 340,565 501,679 466,221 625,616 342,285 967,900.15 436,977 10,673 118,234 325,105 447,650 443,339 555,211 335,778 890,989 936,937 12,392 243,890 665,670 949,329 909,560 1,180,827 678,062 1,858,889
308 2022 6 Jun 444,680 3,587 93,890 334,454 448,267 428,344 538,570 338,041 876,611.30 415,677 14,644 115,303 289,788 430,321 405,091 530,980 304,432 835,412 860,357 18,231 209,193 624,242 878,588 833,435 1,069,550 642,473 1,712,023
309 2022 7 Jul 485,452 5,257 103,899 340,816 490,709 444,715 589,351 346,073 935,423.80 376,175 14,887 109,411 285,370 391,062 394,781 485,586 300,257 785,843 861,627 20,144 213,310 626,186 881,771 839,496 1,074,937 646,330 1,721,267
310 2022 8 Aug 403,602 2,065 102,319 297,329 405,667 399,648 505,921 299,394 805,314.70 384,530 12,444 121,408 288,558 396,974 409,966 505,938 301,002 806,940 788,132 14,509 223,727 585,887 802,641 809,614 1,011,859 600,396 1,612,255
311 2022 9 Sep 343,462 2,113 77,680 286,618 345,575 364,298 421,142 288,731 709,873.30 342,671 16,693 112,940 269,519 359,364 382,459 455,611 286,212 741,823 686,133 18,806 190,620 556,137 704,939 746,757 876,753 574,943 1,451,696
312 2022 10 Oct 336,307 4,357 89,722 248,044 340,664 337,766 426,029 252,401 678,429.45 293,924 16,518 119,761 228,225 310,442 347,986 413,685 244,743 658,428 630,231 20,875 209,483 476,269 651,106 685,752 839,714 497,144 1,336,858
313 2022 11 Nov 307,080 4,476 90,116 237,672 311,556 327,788 397,196 242,148 639,343.50 259,442 17,767 124,988 186,546 277,209 311,534 384,430 204,313 588,743 566,522 22,243 215,104 424,218 588,765 639,322 781,626 446,461 1,228,087
314 2022 12 Dec 352,046 7,826 96,518 272,481 359,872 368,999 448,564 280,307 728,871.50 241,643 15,982 115,782 170,698 257,625 286,480 357,425 186,680 544,105 593,689 23,808 212,300 443,179 617,497 655,479 805,989 466,987 1,272,976  
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Using the Excel SUMIF function, the monthly data are summarised and visualised in 
Figure 2. The data are in 1,000 TEUs; the last digits were rounded to zero. 

Figure 2 26-year TEUs handling at LA/LB ports (see online version for colours) 

Year Year

Loaded 
Inbound

Empty 
Inbound

Loaded 
Outbound

Empty 
Outbound

Total 
Inbound

Total 
Outbound

Total 
Loaded

Total 
Empties Total

1997 1 3270 230 1980 980 3500 2960 5250 1220 6460 B2 =A2-1996

1998 2 3810 230 1770 1660 4050 3430 5580 1900 7480 C2 =ROUND(SUMIF(Table1.Data312M!$B$3:$B$314,Table2.Data26Y!$A2,Table1.Data312M!Y$3:Y$314)/1000,-1)

1999 3 4280 160 1810 1970 4440 3780 6090 2130 8220 D2 =ROUND(SUMIF(Table1.Data312M!$B$3:$B$314,Table2.Data26Y!$A2,Table1.Data312M!Z$3:Z$314)/1000,-1)

2000 4 4950 170 2030 2330 5120 4360 6980 2500 9480 E2 =ROUND(SUMIF(Table1.Data312M!$B$3:$B$314,Table2.Data26Y!$A2,Table1.Data312M!AA$3:AA$314)/1000,-1)

2001 5 5100 150 1990 2400 5260 4390 7090 2550 9650 F2 =ROUND(SUMIF(Table1.Data312M!$B$3:$B$314,Table2.Data26Y!$A2,Table1.Data312M!AB$3:AB$314)/1000,-1)

2002 6 5690 170 1950 2820 5860 4770 7630 3000 10630 K2 =ROUND(SUMIF(Table1.Data312M!$B$3:$B$314,Table2.Data26Y!$A2,Table1.Data312M!AG$3:AG$314)/1000,-1)

2003 7 6220 180 2070 3330 6410 5400 8290 3520 11810
2004 8 6930 190 2140 3850 7120 5990 9070 4040 13100
2005 9 7230 210 2390 4370 7440 6760 9620 4570 14190
2006 10 8130 180 2710 4740 8310 7450 10840 4920 15760
2007 11 8110 170 3180 4200 8290 7380 11300 4370 15670
2008 12 7330 190 3470 3350 7510 6820 10800 3540 14340
2009 13 6060 120 3020 2610 6180 5630 9080 2730 11810
2010 14 7100 200 3400 3390 7300 6790 10510 3590 14100
2011 15 7090 280 3620 3010 7370 6630 10710 3290 14000
2012 16 7150 200 3580 3190 7350 6770 10740 3390 14120
2013 17 7430 210 3630 3340 7640 6960 11060 3540 14600
2014 18 7790 250 3540 3590 8040 7120 11320 3840 15160
2015 19 7780 220 3180 4160 8010 7350 10970 4390 15350
2016 20 7990 230 3350 4070 8210 7420 11340 4300 15630
2017 21 8410 200 3290 4500 8610 7790 11700 4700 16400
2018 22 8970 260 3430 4900 9220 8330 12400 5150 17550
2019 23 8470 220 3230 5040 8700 8270 11700 5270 16970
2020 24 8830 200 3010 5270 9020 8280 11830 5460 17300
2021 25 10100 180 2620 7160 10280 9790 12720 7340 20060
2022 26 9330 210 2600 6900 9540 9500 11940 7110 19040
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10000

12000

Loaded Inbound Empty Inbound Loaded Outbound Empty Outbound  

3.2 Characteristics of forecasting techniques 

All forecasting techniques have three key characteristics. 

1 Forecasts always deviate from actual observations. Since the world is not 
deterministic – at least to us – all forecasts are almost always inaccurate. Forecasts 
provide the average value for a variable of interest such as sales or demand. Demand 
is a random variable usually following Poisson distribution estimated by Normal 
distribution. Thus, besides the average demand, we need a measure of variability – 
standard deviation, variance, or coefficient of variation. If the average forecast for 
the next period is F, and the standard deviation of F is S, the coefficient of variation 
CV = S/F provides a measure of variability; the lower the coefficient of variation, the 
more confident we are with the forecast. 

2 Forecasts of aggregate items are more accurate than forecasts of individual items. 
Aggregate forecasts reduce variability. The forecast for all container terminals in all 
ports in the world is more accurate than the forecast for US ports, the forecast for US 
ports is more accurate than the forecast for California’s ports, and the forecast for 
California’s ports is more accurate than the forecast for the port of Hueneme in 
Channel Island, North-East of Los Angeles. Aggregate forecasts reduce the relative 
variability with respect to the average forecast. One can intuitively understand that 
the forecast for the summation of two products is more accurate than the forecast for 
each product because the high demand for one product may compensate for the low 
demand for the other. From a mathematical point of view, the variance of the sum of 
two variables is equal to the sum of the variances of the two variables. Therefore, the 
standard deviation of the summation of the two variables (the numerator of CV) is 
less than the sum of the two standard deviations. If the standard deviations of the 
following year’s volume of activities in each of the LA and LB ports are equal and 
represented by σ, then the variance for the volume of activities in the combined port 
is 2σ2. Therefore, the following year’s activities volume standard deviation for the 
combined LA/LB ports is not 2σ. It is SQRT(2)σ ≈ 1.41σ < 2σ. 
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3 Long-term forecasts are less accurate than short-term forecasts. Forecast accuracy 
diminishes as we look further into the future. We benefit from more accurate 
information and make better predictions as we get closer to the demand time. Next 
year’s LA/LB activities forecast is more accurate than the ten-year forecast. 

3.3 Impact of characteristics of forecasting techniques on LA/LB ports 
throughput 

Figure 3 shows the world’s container port throughput in ten countries and ten ports. The 
combined LA/LB ports are ranked 10th in the world. They comprise the largest port 
complex in the Western Hemisphere. 

Figure 3 Container port and country rankings 

Rank Port Country MTEUs Rank Country MTEUs % to World

1 Shanghai China 43.5 1 China 245.1 31.2%

2 Singapore Singapore 36.6 2 United States 55.0 7.0%

3 Ningbo-Zhoushan China 28.7 3 Singapore 36.9 4.7%

4 Shenzhen China 26.6 4 Korea 28.4 3.6%

5 Guangzhou Harbor China 23.2 5 Malaysia 26.7 3.4%

6 Busan  South Korea 21.6 6 Japan 21.4 2.7%

7 Qingdao China 22.0 7 United Arab Emirates 19.3 2.5%

8 Hong Kong, S.A.R China 18.0 8 Germany 18.0 2.3%

9 Tianjin China 18.4 9 Hong Kong SAR, China 18.0 2.3%

10 SPB (LA/LB) USA 17.3 10 Spain 17.4 2.2%

(a) Top 10 ports: 33% (b) Top 10 countries: 62%

Source: American Association of Port Authorities, 2020.

(Million TEU) (Million TEU)

Container Throughput (Port Ranking) Container Throughput (Country Ranking)

 

What are the competing edges of the LA/LB ports? Deepwater facilities with a depth of 
60 feet for Post-Panama ships with 18,000 TEUs? Seventy miles of waterfront and about 
16,000 acres, about half water, half land area? Fourteen container terminals with  
150 ship-to-shore container cranes? State-of-the-art on-dock facilities to transfer 
containers between ships and trains? Intermodal transfer between sea, rail, and road? 
Consolidation and distribution facilities for trans-loading from 20- and 40-foot containers 
to 56-foot containers allowed on California roads? According to Leachman (2010), the 
characteristics of forecasting techniques are the key reason behind the attractiveness of 
the LA/LB ports. 

As pictorially shown in Figure 4, shipping containers from the Far East to the East 
Coast may take four weeks. This shipment takes two weeks to the west coast. For 
shipments from the Far East to the East Coast, one needs to forecast the demand for the 
East Coast four weeks in advance. However, the demand forecast two weeks in advance 
is enough for shipping to the West Coast. According to forecasting characteristics (III), 
the forecast for two weeks in the future is more accurate than the forecast for four weeks 
in the future. In addition, forecasting the east-cost demand when the commodity is in 
west-cost will be more accurate than in East Asia. 
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Figure 4 Forecasting-based competing edges of LA/LB ports (see online version for colours) 

 

 

 

Furthermore, according to forecasting characteristic (II), forecasting the US aggregate 
demand is more accurate than forecasting demand for any smaller region in the US. 
Therefore, instead of forecasting for the three regions 14, 21, and 28 days ahead, one may 
forecast the total US aggregate demand 14 days ahead when the product is in the LA/LB 
ports. It will take 1–3 days to drayage the containers to the final regions. Instead of 
estimating the demand of the East Coast alone, which is less accurate than the demand for 
the whole US, and instead of forecasting it four weeks ahead, one can forecast for  
14 + 3 days ahead with more accuracy. 
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4 Current level and forecast for the next period 

In this section, we estimate the level of demand using moving averages and exponential 
smoothing. Using these two techniques, we can forecast the average and standard 
deviation of the next period’s activities. The forecast for all future periods is assumed to 
be the same as the next period as a straight line. The forecasts are updated when the 
actual data for the next period becomes available. In Section 5, we include trends, and in 
Section 6, we include seasonality in the levels estimated in this section. 

Details of all Excel formulas in all tables and all sections are summarised in a set of 
cells with grey backgrounds or in red fonts. 

4.1 Moving average forecasts 

Given the annual volume of container handling at the LA/LB ports, a progressive (or 
naïve) analyst may assume last year’s demand as the demand forecast for this year;  
F27 = A26. A conservative analyst may consider the average of all years as the demand 
forecast for next year; F27 = AVERAGE (A26 + A25 + … + A2 + A1). 

A more rational analyst, however, may stay between these two extremes and estimate 
the demand for the next period based on the observations in the past n-periods. An  
n-period moving average in period 26 is defined as MA26 = AVERAGE(A26, A25, …,  
A26 – n + 1). The forecast for period 27 is then defined as the n-period moving average in 
year 26. The four-period moving average forecast in year 27 equals the four-period 
moving average in year 26; F27 = MA426 = (A26 + A25 + A24 + A23)/4. Generally, Ft+1 = 
MAnt = (At + At–1 + … + At–n + 1)/n. Note that the n-period moving averages do not exist 
until period n, and n-period moving average forecasts do not exist until period n + 1. 

Moving average formulas for one-period, all-period, and four-period moving 
averages are shown in Figure 16 columns C to E. In Appendix A, we develop a general 
dynamic formula adaptable to every n-period moving average, along with its dynamic 
tables and graphs. It provides a playground to practice advanced Excel functions and 
formulas. 

4.2 Exponential smoothing 

In exponential smoothing, the forecast for the next period equals the forecast for this 
period plus a fraction of the gap between the actual and forecast values in this period.  
Ft+1 = Ft + α(At – Ft), where 0 ≤ α ≤ 1. It has an autoregressive taste. A minor 
manipulation can restate the formula as Ft+1 = (1 – α) Ft + αAt. That is, the forecast for 
the next period is the weighted average of the forecast and actual for this period. It 
smooths the gap between the actual demand and its forecast. 

To start, we need to have a forecast for period 1. There are at least three ways to 
compute the forecast for the first period: F1 = A1; F1 = average of all existing actual 
values; F1 = interpret of the linear regression line (discussed later). 

We follow the first approach and set F1 = A1. 
For α = 0.5, the formula is transformed into Ft+1 = 0.5Ft + 0.5At = (Ft + At)/2. The 

forecast for the next period is equal to the average of the actual and the forecast for this 
period. For α = 1, the formula is transformed into Ft+1 = At; the forecast for the next 
period is equal to the actual for this period. For α = 0, the formula is transformed into  
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Ft 1 = Ft; the forecast for the next period is equal to the forecast for this period and 
remains the same in all the coming periods. 

We usually start with α = 0.5 and use an optimisation tool, such as Excel’s standard 
SOLVER add-ins or DataTable, to find the optimal α minimising one of the forecast 
accuracies measured, discussed in the next section. In Appendix B, we show that 
exponential smoothing is the weighted average of all pieces of data where the weights 
continually get smaller on the older data. Exponential smoothing forecasts using α = 0.5 
are in column F of Figure 5. This figure also shows the graph for alternative forecasting 
techniques discussed up to this point that can be made using Excel’s scatter graph or line 
chart. 

Figure 5 Alternative moving average and exponential smoothing forecasts (see online version  
for colours) 

n= 4 α= 0.5
Year Actual (1000 TEUs) Ft+1=At Ave-All-At MA-S-4p ES

1 6460 6460 C8 =B7

2 7480 6460 6460 6460 D8 =AVERAGE(B$3:B8)
3 8220 7480 6970 6970 E8 =AVERAGE(B5:B8)
4 9480 8220 7387 7595 F8 =(1-$F$1)*F8+$F$1*B8

5 9650 9480 7910 7910.0 8537.5
6 10630 9650 8258 8707.5 9093.75
7 11810 10630 8653 9495.0 9861.875
8 13100 11810 9104 10392.5 10835.94
9 14190 13100 9604 11297.5 11967.97

10 15760 14190 10113 12432.5 13078.98
11 15670 15760 10678 13715.0 14419.49
12 14340 15670 11132 14680.0 15044.75
13 11810 14340 11399 14990.0 14692.37
14 14100 11810 11431 14395.0 13251.19
15 14000 14100 11621 13980.0 13675.59
16 14120 14000 11780 13562.5 13837.8
17 14600 14120 11926 13507.5 13978.9
18 15160 14600 12084 14205.0 14289.45
19 15350 15160 12254 14470.0 14724.72
20 15630 15350 12417 14807.5 15037.36
21 16400 15630 12578 15185.0 15333.68
22 17550 16400 12760 15635.0 15866.84
23 16970 17550 12978 16232.5 16708.42
24 17300 16970 13151 16637.5 16839.21
25 20060 17300 13324 17055.0 17069.61
26 19040 20060 13594 17970.0 18564.8
27 19040 13803 18342.5 18802.4
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4.3 Age of data in moving average and exponential smoothing 

A four-period moving average forecast can be computed only after period 4, and then it is 
set as the forecast for period 5; F5 = MA4. The newest piece of data in F5 belongs to 
period 4 and is 1 period old. The oldest data belongs to period 1 and is 4 periods old. 
Therefore, in a four-period moving average, the average age of data is (1 + 4)/2 = 2.5 
periods. In an n-period moving average, the age of data is (n + 1)/2 periods. It is proved 
in Appendix B that the age of data in exponential smoothing is 1/α. Given 2.5 as the age 
of data in a four-period moving average, the data in an exponential smoothing with  
1/α = 2.5, i.e., α = 0.4, has the same age. An exponential smoothing forecast with  
α = 0.6667 has an age equivalent to a two-period moving average forecast. An 
exponential smoothing forecast with α = 0.1 has an age equivalent to a 19-period moving 
average forecast. 
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A smaller α in exponential smoothing plays the same role as a larger number of 
periods in moving averages in smoothing out the recent fluctuations. Larger values for α 
in exponential smoothing, similar to the smaller number of periods in the moving 
average, result in higher responsiveness to recent fluctuations. An α = 1 has the same role 
as a one-period moving average where the forecast for the next period is equal to the 
actual in this period. 

5 Measuring forecast accuracy and variability 

In this section, we answer two questions. How do we measure the suitability of a 
forecasting technique for a specific dataset? How can one compare the quality of several 
forecasting techniques for a specific dataset? 

5.1 A basic forecast accuracy and variability measure 

Given the actual data and forecast (At and Ft) and error (Et = At – Ft), we define the sum 
of forecast error SFE = SUM(Et) and average error BIAS = AVERAGE(Et). Since the 
error values are positive or negative, they cross each other out if they are added or 
averaged. SFE and BIAS are expected to be small and close to zero. A forecasting 
approach may be considered of high quality on the foundations of SFE and BIAS. Still, 
there may be significant gaps between actual and forecast values in both positive and 
negative directions. This problem can be resolved by considering the absolute value of 
the gaps. Mean Absolute Deviation (MAD) is defined as MAD = AVERAGE(ABS(Et)). 

MAD serves two essential purposes. First, it compares two or more forecasting 
techniques and identifies the best based on the lowest MAD value. Second, 1.25MAD 
provides an estimate of the standard deviation of the demand forecast. A forecasting 
method provides Ft+1 as the estimated average demand in the next period. In addition, 
1.25 times the most recent MAD is the standard deviation of the next period forecast. In 
other words, At + 1 ~ N(Ft+1, 1.25MADt). The demand for the next period follows a normal 
distribution with an average of Ft+1 and a standard deviation of 1.25MADt. 

The tracking signal is defined as TS = SFE/MAD. It is a positive or negative number 
divided by a positive number. In an accurate forecasting method, the summation of all 
errors is expected to be zero. TS can jump up and down on the positive and negative sides 
due to randomness in the actual data, but in an unbiased forecasting method, it should 
remain close to zero. We also define the upper control limit (UCL) and lower control 
limit (LCL). In some textbooks, it is stated that TS moves between LCL = –4 and  
UCL = + 4. In Appendix B, we will mathematically prove that the limits of + 4 are 
inaccurate. 

TS serves two essential purposes. First, we expect it to stay within UCL and LCL. 
Second, we do not expect to see a pattern over time. For example, we do not expect  
to see an always positive or consistently negative TS. Since we have the summation of  
Et = At – Ft in the numerator, in the first case, the forecasting technique underestimates 
the demand. In the second case, it overestimates the demand. We also do not expect to 
see a cyclic pattern since, in that case, there may be seasonality in the actual data not 
incorporated into our forecasting. 
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We may assign a higher weight to positive gaps than to a negative gap. In the second 
case, we have overstock; in the first case, we lost sales. Usually, the cost of overstock is 
less than the cost of lost sales. We may assign a coefficient greater than 1 to positive Et 
values. We may also benefit from the newsvendor problem (Arrow et al., 1951; 
Schweitzer and Cachon, 2000; Iravani, 2021) to find a good tradeoff coefficient of 
underestimating and overestimating demand. 

5.2 Alternative forecast accuracy and variability measures 

An alternative approach to removing negative signs is to square the errors and replace 
MAD with mean squared error (MSE) = AVERAGE(Et2). MSE prevents large gaps 
between forecast and actual values since the errors are squared. MAD computation was 
more straightforward when implemented long before calculators and sliding rulers. 
However, working with an absolute value in mathematical expressions, for example, 
computing the derivative of an expression containing an absolute value, is difficult. It 
becomes easy if the squared values replace absolute values. In addition to 1.25MAD, the 
square root of MSE provides another estimate for the standard deviation of the forecast: 
that is At+1 ~ N(Ft+1, SQRT(MSEt)). 

Figure 6 All metrics for forecast accuracy and reliability (see online version for colours) 
α= 0.5 ExpoSmoo alpha = 0.5
t At Ft E |E| E2 |E|/A MAD MSE MARD SFE TS BIAS 0

0.1 MAD MSE MARD
1 6460 6460.0 0.0 0.0 0 0.00 0 0 0.00 0 0.0 1225 2206887 0.09
2 7480 6460.0 1020.0 1020.0 1040400 0.14 510 520200 0.07 1020 2.0 510.0 0.00 7343.1 65663869 0.49306 R5 =R2

3 8220 6970.0 1250.0 1250.0 1562500 0.15 757 867633 0.10 2270 3.0 756.7 0.10 3415.7 14002305 0.24137 R6 =R5+$R$3

4 9480 7595.0 1885.0 1885.0 3553225 0.20 1039 1539031 0.12 4155 4.0 1038.8 0.20 2165.5 6163943 0.15851 S4 =H29

5 9650 8537.5 1112.5 1112.5 1237656 0.12 1054 1478756 0.12 5268 5.0 1053.5 0.30 1654.5 3820964 0.12404 T4 =I29

6 10630 9093.8 1536.3 1536.3 2360064 0.14 1134 1625641 0.12 6804 6.0 1134.0 0.40 1383.3 2775230 0.10523 U4 =J29

7 11810 9861.9 1948.1 1948.1 3795191 0.16 1250 1935577 0.13 8752 7.0 1250.3 0.50 1225.3 2206887 0.09398 S17 =MIN(S5:S15)

8 13100 10835.9 2264.1 2264.1 5125979 0.17 1377 2334377 0.14 11016 8.0 1377.0 0.60 1104.6 1866304 0.08520 T17 =MIN(T5:T15)

9 14190 11968.0 2222.0 2222.0 4937423 0.16 1471 2623604 0.14 13238 9.0 1470.9 0.70 1030.5 1652045 0.07930 U17 =MIN(U5:U15)

10 15760 13079.0 2681.0 2681.0 7187845 0.17 1592 3080028 0.14 15919 10.0 1591.9 0.80 980.9 1515529 0.07493
11 15670 14419.5 1250.5 1250.5 1563770 0.08 1561 2942187 0.14 17169 11.0 1560.9 0.90 939.4 1431130 0.07119
12 14340 15044.7 -704.7 704.7 496667 0.05 1490 2738393 0.13 16465 11.1 1372.1 1.00 918.5 1384538.5 0.06891
13 11810 14692.4 -2882.4 2882.4 8308074 0.24 1597 3166830 0.14 13582 8.5 1044.8
14 14100 13251.2 848.8 848.8 720484 0.06 1543 2992091 0.13 14431 9.4 1030.8 918.5 1384538.5 0.06891
15 14000 13675.6 324.4 324.4 105240 0.02 1462 2799635 0.12 14756 10.1 983.7
16 14120 13837.8 282.2 282.2 79639 0.02 1388 2629635 0.12 15038 10.8 939.9
17 14600 13978.9 621.1 621.1 385767 0.04 1343 2497643 0.11 15659 11.7 921.1 α= 1214.46 2086889.5 0.09752
18 15160 14289.4 870.6 870.6 757859 0.06 1317 2400988 0.11 16529 12.6 918.3 0 7.99 47.43 7.16 S21 =S5/S$17

19 15350 14724.7 625.3 625.3 390969 0.04 1280 2295197 0.11 17155 13.4 902.9 0.1 3.72 10.11 3.50 T21 =T5/T$17

20 15630 15037.4 592.6 592.6 351219 0.04 1246 2197999 0.10 17747 14.2 887.4 0.2 2.36 4.45 2.30 U21 =U5/U$17

21 16400 15333.7 1066.3 1066.3 1137036 0.07 1238 2147477 0.10 18814 15.2 895.9 0.3 1.80 2.76 1.80
22 17550 15866.8 1683.2 1683.2 2833026 0.10 1258 2178638 0.10 20497 16.3 931.7 0.4 1.51 2.00 1.53
23 16970 16708.4 261.6 261.6 68424 0.02 1214 2086889 0.10 20758 17.1 902.5 0.5 1.33 1.59 1.36
24 17300 16839.2 460.8 460.8 212327 0.03 1183 2008783 0.09 21219 17.9 884.1 0.6 1.20 1.35 1.24
25 20060 17069.6 2990.4 2990.4 8942462 0.15 1255 2286130 0.10 24210 19.3 968.4 0.7 1.12 1.19 1.15
26 19040 18564.8 475.2 475.2 225813 0.02 1225 2206887 0.09 24685 20.1 949.4 0.8 1.07 1.09 1.09
27 18802.4 0.9 1.02 1.03 1.03 26

1 1 1 1

C6 =(1-$B$1)*C5+$B$1*B5

D6 =IF(ISNUMBER($C6),B6-C6,NA())

E6 =ABS(D6)

F6 =D6^2

G6 =E6/B6

G7 =E7/B7

I7 =AVERAGE(F$4:F7)

J6 =AVERAGE(G$4:G6)

K6 =K5+D6

L6 =IFERROR(K6/H6,"")

M6 =AVERAGE(D$4:D6)
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There is a third method that we refer to as mean absolute relative deviation (MARD). It is 
also called mean absolute percentage error (MAPE) when multiplied by 100. Instead of 
averaging | Et | values, we average | Et | / At values. For example, | Et | = 10 states that 
there were 10 units of deviations between At and Ft. If At = 200, then 10 relative to 200 is 
a 0.05 (or 5%) gap. In MARD, the relative absolute gaps (relative to the demand) are 
computed instead of the absolute gaps. There are still other methods. For example, we 
may minimise the maximum absolute deviation between actual and forecast. 



   

 

   

   
 

   

   

 

   

    Teaching time series and regression analysis 385    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 6 shows the computations of error (E), the sum of forecast error (SFE), 
average error (BIAS), absolute error, MAD, TS, MSE, and MARD for exponential 
smoothing with α = 0.5. Besides the actual vs. forecast and the tracking signal curves, the 
third curve shows the MAD, MSE, and MARD ratio to their minimum value as α 
changes from 0 to 1. 

5.3 Optimal α value 

The optimal α value can be computed in at least two ways; SOLVER and DataTable. 

For SOLVER, the objective function is to set one of the three measures of MAD, MSE, 
or MARD (in cells H29, I29, and J29) to be minimised, and α, cell B1, is the changing 
cell to minimise the objective function value. For the DataTable, we set cells P4, Q4, and 
R4 equal to cells H29, I29, and J29, respectively. The α values start from a cell one 
column to the left and one row below MAD. Using a formula, we can find the value of α 
in the DataTable with as many decimal points as the value obtained by SOLVER. This is 
done by typing the starting α value of 0 and the increment in two arbitrary cells (such as 
cells R2 and R3 in this example). We then set R5 = R2 and R6 = R2 + $R$3 and copy 
down from 0 to 1. We will then mark R4 to U15, select Data tab, What-if Analysis, and 
DataTable. Since alternative α values are typed in a column (not in a row), inside the 
column input cell, point to B1, where the α value is placed (this should be the same cell 
used as α in the exponential smoothing formula). We then find the α value corresponding 
to the minimal MAD (or MSE or MARD) value. Suppose the α value for the minimal 
MAD is 0.7. To estimate α with more decimal points), we can set cell R2 to 0.65 and R3 
to 0.001 and find the minimum (in the range of 0.65 to 0.74). We can continue this 
procedure to as many decimal points as we wish to find answers as precisely as SOLVER 
with the DataTable. 

Optimal α computations using both SOLVER and DataTable for all three metrics and 
their normalisation (divide each by the minimal value in that column) are shown in  
Figure 6. The reader is encouraged to look into all the formulas in grey cells. We have 
also used conditional formatting to highlight the minimal values. 

The reason for an upward tracking signal is the positive overall trend of actual data. 
That is why the moving average recommends n = 1, and exponential smoothing 
recommends α = 1. When the tracking signal shows a continual or increasing positive 
trend, we may add a constant to the forecast value. In Figure 7, we implemented a  
two-dimensional DataTable to find the optimal value for α = 0.66 plus a constant of 495 
to be added to the forecast to minimise MAD. The computations for exponential 
smoothing and the essential formulas are shown in Figure 7. 

5.4 Stationary vs. non-stationary data 

In our dataset, the optimal α for all three metrics is equal (this is not the case most of the 
time) and is equal to 1 (this is also not the case most of the time). Since we have an 
upward trend almost in all years, an α = 1, and therefore Ft+1 = At is the best solution. 
Moving average and exponential smoothing are appropriate for stationary data. We can 
draw the Cumt = SUM(At) function to check if a data set is stationary. The data is 
stationary if Cumt is close to a straight line. Figure 8 shows Cumt for our data is distant 
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from a line. We will later discuss trend-adjusted exponential smoothing and regression 
for data with a trend. 

Figure 7 Forecasting measures under optimal α and a constant for exponential smoothing  
(see online version for colours) 

α= 0.66 Constant= 495 MAD Constant 480 5
t At Ft E |E| MAD SFE TS BIAS 755 480 485 490 495 500 505

0.6 764.3 763.5 762.8 762.0 761.3 760.7
1 6460 6460.0 0.0 0.0 0 0 0.0 0.61 761.2 760.4 759.7 759.5 759.4 759.3
2 7480 6955.0 525.0 525.0 263 525 2.0 262.5 alpha 0.62 758.9 758.4 758.3 758.2 758.1 758.0
3 8220 7796.5 423.5 423.5 316 949 3.0 316.2 0.6 0.63 758.1 757.4 757.1 757.0 756.9 756.7
4 9480 8571.0 909.0 909.0 464 1857 4.0 464.4 0.01 0.64 757.4 756.6 756.0 755.9 755.8 756.3
5 9650 9665.9 -15.9 15.9 375 1842 4.9 368.3 0.65 756.7 756.0 755.2 755.2 755.6 756.1
6 10630 10150.4 479.6 479.6 392 2321 5.9 386.9 0.66 756.1 755.4 755.3 755.1 755.5 755.9
7 11810 10961.9 848.1 848.1 457 3169 6.9 452.7 0.67 755.9 755.7 755.6 755.4 755.5 755.9
8 13100 12016.7 1083.3 1083.3 536 4253 7.9 531.6 0.68 756.2 756.1 755.9 755.8 755.6 755.9
9 14190 13226.7 963.3 963.3 583 5216 8.9 579.5 0.69 756.7 756.5 756.3 756.2 756.0 756.0

10 15760 14357.5 1402.5 1402.5 665 6618 10.0 661.8 0.7 757.1 756.9 756.8 756.6 756.5 756.3
11 15670 15778.1 -108.1 108.1 614 6510 10.6 591.8
12 14340 16201.8 -1861.8 1861.8 718 4648 6.5 387.4 Min= 755.1
13 11810 15468.0 -3658.0 3658.0 944 990 1.0 76.2
14 14100 13548.7 551.3 551.3 916 1542 1.7 110.1 C6 =$D$1+(1-$B$1)*C5+$B$1*B5
15 14000 14407.6 -407.6 407.6 882 1134 1.3 75.6 K3 =J6
16 14120 14633.6 -513.6 513.6 859 621 0.7 38.8 K4 =K3+$J$7
17 14600 14789.6 -189.6 189.6 820 431 0.5 25.4 K2 =F29
18 15160 15159.5 0.5 0.5 774 432 0.6 24.0 L15 =MIN(L3:Q13)
19 15350 15654.8 -304.8 304.8 750 127 0.2 6.7 B1 =XLOOKUP(O9,O3:O13,K3:K13)
20 15630 15948.6 -318.6 318.6 728 -192 -0.3 -9.6 D1 =XLOOKUP(L15,L9:Q9,L2:Q2)
21 16400 16233.3 166.7 166.7 701 -25 0.0 -1.2
22 17550 16838.3 711.7 711.7 702 686 1.0 31.2
23 16970 17803.0 -833.0 833.0 708 -147 -0.2 -6.4
24 17300 17748.2 -448.2 448.2 697 -595 -0.9 -24.8
25 20060 17947.4 2112.6 2112.6 753 1518 2.0 60.7
26 19040 19836.7 -796.7 796.7 755 721 1.0 27.7
27 19805.9
28 19805.9
29 19805.9
30 19805.9
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Figure 8 Stationary vs. non-stationary data (see online version for colours) 

 
 

6 Level and trend 

This section reviews: 

1 bivariate linear regression 

2 trend-adjusted exponential smoothing. 

6.1 Bivariable linear regression 

The bivariable linear regression is generally stated as y = b0 + b1x. Our time series case 
can be stated as Ft = b0 + b1t. While we could have continued with the actual years, we set 
t equal to the current year minus 1996 for simplicity. No matter how we enumerate the 
years, while we will have different values for b0 and b1, all the analyses and the shape of 
the regression line remain the same. Alternative linear regression tools are explained 
below and are summarised in Figure 9. Unlike moving average and exponential 
smoothing, where the forecast for all future periods is equal to the forecast for the next 
period, regression’s forecast for any period t can be computed as Ft = b0 + b1t. 

• Procedure-1. Add trend line: after presenting the data in a scatter graph, we can 
right-click on the graph and choose to add a trendline. Options of exponential, linear, 
logarithmic, polynomial, power, and moving average will appear. We chose linear. 
We also check the display equation and display the R-squared value boxes. The 
scatter graph shows the regression equation y = 419.22x + 8143.6 and R2 = 0.8418. 
The larger the R-square value (0 ≤ R2 ≤ 1), the more reliable the regression line. 
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• Procedure-2. Data analysis add-ins: choose data tab, data analysis, then regression. 
In the next table, enter the Y variable (At), then X variables (t), check the output 
range, and select a cell to be the east-north of the table (we select cell E1). You may 
also choose new worksheet to have a table in a new worksheet. 

Figure 9 Alternative linear regression computations (see online version for colours) 
t At Yhat (Reg) SUMMARY OUTPUT

1 6460 8562.8 Regression Statistics

2 7480 8982.0 Multiple R 0.9175 =CORREL($B$2:$B$27,$A$2:$A$27 0.9175 =SQRT(F4) Correlation Coefficient
3 8220 9401.3 R Square 0.8418 =RSQ($B$2:$B$27,$A$2:$A$27) 0.8418 =F3^2 Coefficient of Determination

4 9480 9820.5 Adjusted R Squa 0.8352 b0 8143.60 =INTERCEPT($B$2:$B$27,$A$2:$A$27)

5 9650 10239.7 Standard Error 1418.51 =STEYX(B2:B27,A2:A27) b1 419.22 =SLOPE($B$2:$B$27,$A$2:$A$27)
6 10630 10658.9 Observations 26 =COUNT(B2:B27) R-Square 0.8418 =RSQ($B$2:$B$27,$A$2:$A$27)

7 11810 11078.1 ANOVA StdError 1418.51 =STEYX(B2:B27,A2:A27)

8 13100 11497.4 df SS MS F Significance F
9 14190 11916.6 Regression 1 257028288.6 257028289 127.7369 4.2761E-11

10 15760 12335.8 Residual 24 48292065.23 2012169
11 15670 12755.0 Total 25 305320353.8

12 14340 13174.2 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
13 11810 13593.5 Intercept (b0) 8143.60 572.83 14.22 3.47169E-13 6961.33 9325.87
14 14100 14012.7 X Variable 1 (b1) 419.22 37.09 11.30 4.27614E-11 342.67 495.78
15 14000 14431.9 F16 =INTERCEPT($B$2:$B$27,$A$2:$A$27) Zero is NOT Covered
16 14120 14851.1 F17 =SLOPE($B$2:$B$27,$A$2:$A$27)
17 14600 15270.3 C19 =$F$14+$F$15*A19

18 15160 15689.6
19 15350 16108.8
20 15630 16528.0
21 16400 16947.2
22 17550 17366.5
23 16970 17785.7
24 17300 18204.9
25 20060 18624.1
26 19040 19043.3
27 19462.6
28 19881.8
29 20301.0
30 20720.2

y = 419.22x + 8143.6
R² = 0.8418
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If the range between the two blue numbers in the bottom part of Figure 9 (confidence 
interval under Lower 95% and Upper 95% for b1) does not cover zero, there is a 
relationship between Y and X (b1 ≠ 0). Otherwise, we cannot claim a relationship. If 
the blue number in the top part of the table (under significance F) is less than 0.05, 
with more than 95% confidence, b0 and b1 are not both zero. 

This approach is not recommended for bivariable linear regression if we do not need 
all the information this add-ins provides. That is because: 
1 we must reproduce the table if a Y or X value changes 
2 it also occupies a portion of the worksheet. 
As shown in the seasonality-enhanced multivariate regression, using regression in 
data analysis add-ins is a good choice for bivariable nonlinear and multivariate linear 
and nonlinear cases. 

• Procedure-3. Excel functions: as shown in Figure 9, we can compute most of the 
data analysis add-ins output using Excel functions such as INTERCEPT, SLOPE, 
RSQ, STEYX, CORREL, CONFIDENCE.NORM, CONFIDENCE.T, and additional 
formulas. It is the preferred method since all the metrics are already in the Excel 
cells (do not need to be read from a graph as in Procedure-1) and are updated 
continually (as is not the case in Procedure-2). 
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• Procedure 4. Using more fundamental computations in Excel: in Appendix C, we 
will provide fundamental insight into the computation of regression metrics from 
computing SST, SSE, and SSR, as well as a piecewise regression. 

6.2 Trend-adjusted exponential smoothing 

Trend-adjusted exponential smoothing is defined as Ft+1 = Lt + Tt, where Lt and Tt are the 
level and trend in period t defined in Chopra (2019) based on Holt (1957). 

t+1 t t tL (1 ) (L T ) A= − α + + α  

( )t 1 t t+1 tT (1 ) T L L+ = − β + β −  

Trend-adjusted exponential smoothing, or double exponential smoothing, smooths out the 
level and trend of this period based on the level and trend of the previous period and the 
actual observation in this period. 

Starting L0 and T0 can be computed in two ways. We may set L0 as the demand in the 
first period and T0 as the demand of the last period minus the demand of the first period 
divided by (N – 1). In our case, L0 = A1 = 6,460, and T0 = (A26 – A1)/(26–1) = 503.2 
[based on Iravani (2021)]. Alternatively, we may set L0 as the intercept of the regression 
line and T0 as its slope. L0 = b0 = 8,143.6, and T0 = b1 = 419.2 [based on Chopra (2019)]. 
We follow the first approach. We start from α = 0.5 and β = 0.5 and then use SOLVER 
or a two-dimensional DataTable to find the optimal values of α = 0.87 and β = 0, as 
shown in Figure 10. Compared to simple exponential smoothing, the MSE and other 
metrics are lower, and the extension to future periods carries a trend and is not a straight 
line. Compared to regression, we have a smooth curve going up and down instead of a 
straight line. 

We can also combine linear regression and trend-adjusted exponential smoothing in 
the form of Ft = γFTrend-Adjusted.ES + (1–γ)FLinear-Regression. The optimal γ value minimising the 
MSE of the forecasts from the actual values can then be obtained using SOLVER or  
DataTable. 

Figure 10 Trend-adjusted exponential smoothing computations (see online version for colours) 
t At Lt Tt Ft MAD=2695 α = 0.867835 0.800 0.010 aalpha=0.87; beta=0

6460 503.2 MSE= 29537423 β = 0 0.000 0.100
1 6460 6526.5 503.2 6963.2
2 7480 7420.5 503.2 7029.7 H1 =SUM(ABS(B3:B28-C3:C28)) 29537423 0.00000 0.10000 0.20000 0.30000 0.40000 0.50000 0.60000 0.70000 0.80000 0.90000 1.00000
3 8220 8180.8 503.2 7923.7 H2 =SUM((B3:B28-E3:E28)^2) 0.8000 29647247 32131980 33956412 35553849 37201228 38998973 40975023 43140173 45507397 48096556 50932241
4 9480 9374.8 503.2 8684.0 C2 =B3 0.8100 29616827 32096745 33938971 35569738 37258137 39102127 41130049 43354090 45788692 48454528 51375645
5 9650 9680.1 503.2 9878.0 D2 =(B28-B3)/(A28-A3) 0.8200 29591459 32068057 33929191 35594056 37324229 39215407 41296395 43580732 46084173 48827930 51835157
6 10630 10571.0 503.2 10183.3 E3 =C2+D2 0.8300 29571056 32045790 33926925 35626659 37399380 39338704 41473953 43819961 46393633 49216447 52310370
7 11810 11712.7 503.2 11074.2 C3 =(1-$J$1)*E3+$J$1*B3 0.8400 29555536 32029826 33932031 35667412 37483472 39471916 41662618 44071645 46716876 49619802 52800967
8 13100 12983.2 503.2 12215.9 D3 =(1-$J$2)*D2+$J$2*(C3-C2) 0.8500 29544824 32020055 33944382 35716193 37576397 39614948 41862295 44335661 47053725 50037768 53306749
9 14190 14097.0 503.2 13486.4 E4 =C3+D3 0.8600 29538845 32016372 33963855 35772885 37678056 39767712 42072895 44611896 47404032 50470181 53827654
10 15760 15606.7 503.2 14600.2 H1 =SUM(ABS(B3:B28-C3:C28)) 0.8700 29537532 32018679 33990338 35837382 37788359 39930131 42294339 44900257 47767685 50916959 54363782
11 15670 15728.1 503.2 16109.9 H2 =SUM((B3:B28-E3:E28)^2) 0.8800 29540819 32026883 34023726 35909588 37907224 40102136 42526560 45200670 48144616 51378113 54915418
12 14340 14590.0 503.2 16231.3 E29 =C28+D28 0.8900 29548647 32040900 34063923 35989415 38034578 40283667 42769507 45513090 48534816 51853769 55483059
13 11810 12243.9 503.2 15093.2 E30 =E29+$D$28 0.9000 29560959 32060650 34110839 36076782 38170360 40474679 43023147 45837506 48938340 52344178 56067434
14 14100 13921.2 503.2 12747.1 E32 =E31+$D$28 Min 29537532
15 14000 14056.1 503.2 14424.4
16 14120 14178.1 503.2 14559.3 I4 =H2
17 14600 14610.7 503.2 14681.3 I5 =K1
18 15160 15153.9 503.2 15113.9 I6 =I5+$L$1 α
19 15350 15390.6 503.2 15657.1 J4 =K2
20 15630 15664.9 503.2 15893.8 K4 =J4+$L$2
21 16400 16369.3 503.2 16168.1 J16 =MIN(J5:T15)
22 17550 17460.5 503.2 16872.5
23 16970 17101.3 503.2 17963.7 G6 =PROPER(CHAR(96+COLUMN(C2)))&ROW(C2)
24 17300 17340.2 503.2 17604.5 H6 =FORMULATEXT(INDIRECT(G6))
25 20060 19767.0 503.2 17843.4
26 19040 19202.6 503.2 20270.2
27 19705.8
28 20209.0
29 20712.2
30 21215.4
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7 Level, trend, and seasonality 

In this section, we review: 

1 seasonality-enhanced bivariable linear regression 

2 seasonality-enhanced multivariate regression using dummy variables 

3 trend and seasonality-adjusted exponential smoothing. 

7.1 Seasonality enhanced bivariable linear regression 

The monthly data shown in Figure 2 for 12(26) months (in 1,000 TEUs) are copied into 
Figure 11. Periodicity is 12 (seasonality repeats every 12 months). One may add three 
months of data and consider the periodicity of four seasons, provide daily data and the 
periodicity of a week, or provide hourly data with a periodicity of 24 hours. 

Figure 11 Computations for static seasonality enhanced bivariate linear regression (see online 
version for colours) 

Per. Monthly Data Centered.MA Deseas.Reg Seas.Index Seas SeasInd SeasIndAdj Ft (Stat.Reg) b0= 702.82

0 0.992 1.000 b1= 2.90
1 480 705.71 0.680 1 0.942 0.95 670.74 R2= 0.83
2 468 708.61 0.660 2 0.865 0.87 618.11 Periodicity= 12

3 504 711.50 0.708 3 0.909 0.92 652.43

4 518 714.40 0.726 4 0.964 0.97 694.16 C9 =(AVERAGE(B3:B14)+AVERAGE(B4:B15))/2
5 529 717.30 0.738 5 1.024 1.03 740.59 L1 =INTERCEPT($C$9:$C$308,$A$9:$A$308)
6 556 720.19 0.772 6 1.006 1.01 730.67 L2 =SLOPE($C$9:$C$308,$A$9:$A$308)
7 568 541 723.09 0.785 7 1.045 1.05 762.28 L3 =RSQ($C$9:$C$308,$A$9:$A$308)
8 557 544 725.98 0.768 8 1.078 1.09 789.49 D3 =$L$1+$L$2*A3
9 589 551 728.88 0.808 9 1.037 1.05 762.59 E3 =B3/D3

10 583 559 731.78 0.797 10 1.054 1.06 777.90 F3 =IF(MOD(A3,$L$4)>0,MOD(A3,$L$4),$L$4)
11 556 567 734.67 0.757 11 1.005 1.01 744.93 G3 =AVERAGEIF($F$3:$F$314,F3,$E$3:$E$314)
12 556 575 737.57 0.753 12 0.968 0.98 720.36 G2 =AVERAGE(G3:G14)
13 527 582 740.46 0.711 1 0.95 703.77 H3 =G3/$G$2
14 512 591 743.36 0.689 2 0.87 648.42 I317 =($L$1+$L$2*A317)*VLOOKUP(F317,$F$3:$H$14,3,0)

15 608 600 746.26 0.815 3 0.92 684.29
16 611 606 749.15 0.815 4 0.97 727.93
17 632 614 752.05 0.841 5 1.03 776.47

296 1,762 1681 1560.02 1.130 8 1.09 1696.49
297 1,652 1685 1562.91 1.057 9 1.05 1635.21
298 1,692 1687 1565.81 1.081 10 1.06 1664.51
299 1,557 1685 1568.71 0.993 11 1.01 1590.62
300 1,541 1687 1571.60 0.980 12 0.98 1534.93
301 1,667 1694 1574.50 1.058 1 0.95 1496.47
302 1,654 1689 1577.39 1.049 2 0.87 1375.93
303 1,822 1675 1580.29 1.153 3 0.92 1449.08
304 1,708 1652 1583.19 1.079 4 0.97 1538.33
305 1,859 1623 1586.08 1.172 5 1.03 1637.59
306 1,712 1598 1588.98 1.077 6 1.01 1612.10
307 1,721 1591.87 1.081 7 1.05 1678.17
308 1,612 1594.77 1.011 8 1.09 1734.28
309 1,452 1597.67 0.909 9 1.05 1671.56
310 1,337 1600.56 0.835 10 1.06 1701.45
311 1,228 1603.46 0.766 11 1.01 1625.86
312 1,273 1606.35 0.792 12 0.98 1568.88
313 1 0.95 1529.50
314 2 0.87 1406.24
315 3 0.92 1480.95
316 4 0.97 1572.10
317 5 1.03 1673.47
318 6 1.01 1647.35
319 7 1.05 1714.80
320 8 1.09 1772.07
321 9 1.05 1707.92
322 10 1.06 1738.39
323 11 1.01 1661.09
324 12 0.98 1602.82  

Step 1 Removing seasonality: when we compute the average of 12 months, it is pure of 
seasonality since high and low seasons cross each other out. This is true for any 
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other periodicity. The average of all seasons does not contain seasonality. 
Unlike with the moving average, where we placed the average of n periods in 
front of the last period, we implement the centred moving average and place the 
average of the n periods at the centre of the n periods. 

 If we were considering seasonality over 7 days of a week, since 7 is odd, we 
could have placed the average in front of period 4, compared the actual period 4 
with the centred moving average, and estimated the seasonality of period 4. But 
there is no middle period for even periodicity. Therefore, for the 12-period 
centred moving average, we compute the average of the first 12 periods and 
assume it is on the boundary of periods 6 and 7. Then, compute the average of 
periods 2 to 13 and assume it is on the boundary of periods 7 and 8. (In general, 
for even periodicity of n, we compute the average of periods 1 to n and assume 
it’s on the boundary of periods n/2 and n/2 + 1. Then, compute the average of 
periods 2 to n + 1 and assume it’s on the boundary of periods n/2 + 1 and  
n/2 + 2.) Next, we compute the average of these two centred moving averages 
and place it in front of period 7, representing the unseasonal activity volume at 
period 7. We then copy this formula to 6 months before the last months (month 
N – n/2). We will generally have the centred moving average for all periods 
minus periodicity. 

Step 2 Trend in the deseasonalised data: we apply linear regression on months 7 (six 
months after 1) to 306 (six months before 312) to find the level and trend of the 
data pure of seasonality. It leads to b0, b1, and R2, as shown in columns K and L 
of Figure 11. The Excel worksheet also shows the formulas for all other 
computations, as discussed below. 

Step 3 Seasonality indices: we divide the actual data of each month by the value 
obtained from the regression line applied to the deseasonalised data (At / Yt). 
The ratios are estimates of the seasonality index in all 12(26) months. By 
averaging all seasonality indices of each month, the average seasonality index of 
January (S1) to December (S12) is computed. The average of the average 
seasonality indices for all 12 months must equal 1; therefore, to normalise, we 
divide the average seasonality index of each month by the average of the 
averages. These computations are in columns E–H. These seasonality indices 
remain fixed for all the past and future months. That is why Chopra (2019) 
refers to it as a Static method compared to the trend and seasonality-adjusted 
exponential smoothing, discussed later – as an adaptive method. 

Step 4 Seasonality enhanced regression: finally, we put seasonality back on the 
deseasonalised regression line and forecast the future. Ft = (b0 + b1t) * St, where 
St has the same monthly value over all years. All formulas are clearly explained 
in Figure 11. The results of the four steps of this process are schematically 
represented in Figure 12. The above analysis shows that the monthly seasonality 
is from a minimum of 0.87 to a maximum of 1.09. In a similar analysis, one may 
study daily seasonality (periodicity of 30) or hourly seasonality (periodicity of 
24) if the data is available. 
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Figure 12 Four key steps in static seasonality enhanced bivariable linear regression (see online 
version for colours) 
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7.2 Seasonality enhanced multivariate regression using dummy variables 

We use multivariate regression as another Static seasonality analysis approach by 
implementing a set of binary dummy variables. For each month, we define a binary 
variable, which is 1 if we are in that month and 0 otherwise. For periodicity of n, we need  
n – 1 dummy binary variables. Other periods are compared with the period with no binary 
variable. The period of choice does not affect the outcomes of the analysis. For a 
periodicity of 12, we define 11 binary variables from January to November. The 
dependent variable Y is the volume of activity in the corresponding month, and our X 
variables are the month counter (from 1 to 312) and 11 dummy binary variables. Excel’s 
Data Analysis Add-ins require the independent variables to be in contiguous cells. 
Therefore, we copy the month variables adjacent to the dummy variables. They can be in 
the first column to the left or right of the dummy variables. Compared to bivariable 
regression, when we select a single column as X or our month variable, we select  
12 adjacent columns here. One column is associated with the month, and 11 are 
associated with 11 dummy variables. The output and all the essential formulas are shown 
in Figure 13. The reader may pay attention to the formula to generate 0s and 1s for the 
dummy variables in each month and, more importantly, to multiply the row of the 
decision variables by the column of regression coefficients (by using dynamic arrays and 
transposing one of the two vectors). 
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Figure 13 Seasonality enhanced multivariate regression computations (see online version  
for colours) 

Per. Monthly Data 1 2 3 4 5 6 7 8 9 10 11 12 t Ft

0

1 480 1 0 0 0 0 0 0 0 0 0 0 0 1 650 C3 =IF(MOD($A3,$N$1)=C$1,1,0)
2 468 0 1 0 0 0 0 0 0 0 0 0 0 2 561 D3 =IF(MOD($A3,$N$1)=D$1,1,0)
3 504 0 0 1 0 0 0 0 0 0 0 0 0 3 607 P3 =$S$30+$S$43*O3+SUM(C3:N3*TRANSPOSE($S$31:$S$42))

4 518 0 0 0 1 0 0 0 0 0 0 0 0 4 672
5 529 0 0 0 0 1 0 0 0 0 0 0 0 5 748
6 556 0 0 0 0 0 1 0 0 0 0 0 0 6 727
7 568 0 0 0 0 0 0 1 0 0 0 0 0 7 778
8 557 0 0 0 0 0 0 0 1 0 0 0 0 8 817
9 589 0 0 0 0 0 0 0 0 1 0 0 0 9 772

10 583 0 0 0 0 0 0 0 0 0 1 0 0 10 792
11 556 0 0 0 0 0 0 0 0 0 0 1 0 11 735
12 556 0 0 0 0 0 0 0 0 0 0 0 0 12 703 SUMMARY OUTPUT
13 527 1 0 0 0 0 0 0 0 0 0 0 0 13 685

14 512 0 1 0 0 0 0 0 0 0 0 0 0 14 596 Regression Statistics
15 608 0 0 1 0 0 0 0 0 0 0 0 0 15 642 Multiple R 0.88
16 611 0 0 0 1 0 0 0 0 0 0 0 0 16 707 R Square 0.78
17 632 0 0 0 0 1 0 0 0 0 0 0 0 17 783 Adjusted R Square 0.77
18 640 0 0 0 0 0 1 0 0 0 0 0 0 18 762 Standard Error 146.70
19 658 0 0 0 0 0 0 1 0 0 0 0 0 19 813 Observations 312

20 686 0 0 0 0 0 0 0 1 0 0 0 0 20 852
21 663 0 0 0 0 0 0 0 0 1 0 0 0 21 807 ANOVA

22 659 0 0 0 0 0 0 0 0 0 1 0 0 22 827 df SS MS F Significance F
23 667 0 0 0 0 0 0 0 0 0 0 1 0 23 770 Regression 13 23171341 1782411 82.82 1.0748E-90
24 614 0 0 0 0 0 0 0 0 0 0 0 0 24 738 Residual 298 6413244 21521
25 588 1 0 0 0 0 0 0 0 0 0 0 0 25 720 Total 311 29584585

26 588 0 1 0 0 0 0 0 0 0 0 0 0 26 631

27 624 0 0 1 0 0 0 0 0 0 0 0 0 27 677 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
28 606 0 0 0 1 0 0 0 0 0 0 0 0 28 742 Intercept 668.29 32.42 20.612 0.000 604.489 732.101
29 730 0 0 0 0 1 0 0 0 0 0 0 0 29 818 X Variable 1 -21.07 40.70 -0.518 0.605 -101.166 59.026
30 691 0 0 0 0 0 1 0 0 0 0 0 0 30 797 X Variable 2 -113.05 40.70 -2.778 0.006 -193.139 -32.956
31 678 0 0 0 0 0 0 1 0 0 0 0 0 31 848 X Variable 3 -69.73 40.70 -1.713 0.088 -149.816 10.359
32 747 0 0 0 0 0 0 0 1 0 0 0 0 32 887 X Variable 4 -8.09 40.69 -0.199 0.843 -88.175 71.993
33 740 0 0 0 0 0 0 0 0 1 0 0 0 33 842 X Variable 5 65.19 40.69 1.602 0.110 -14.893 145.269
34 784 0 0 0 0 0 0 0 0 0 1 0 0 34 862 X Variable 6 41.09 40.69 1.010 0.313 -38.992 121.165
35 745 0 0 0 0 0 0 0 0 0 0 1 0 35 805 X Variable 7 89.12 40.69 2.190 0.029 9.043 169.195
36 699 0 0 0 0 0 0 0 0 0 0 0 0 36 773 X Variable 8 125.69 40.69 3.089 0.002 45.618 205.766
37 697 1 0 0 0 0 0 0 0 0 0 0 0 37 755 X Variable 9 77.33 40.69 1.901 0.058 -2.742 157.403
38 672 0 1 0 0 0 0 0 0 0 0 0 0 38 666 X Variable 10 94.38 40.69 2.320 0.021 14.309 174.452
39 708 0 0 1 0 0 0 0 0 0 0 0 0 39 712 X Variable 11 34.85 40.69 0.856 0.392 -45.225 114.917
40 773 0 0 0 1 0 0 0 0 0 0 0 0 40 777 X Variable 12 0.00 0.00 65535 #NUM! 0.000 0.000
41 815 0 0 0 0 1 0 0 0 0 0 0 0 41 853 X Variable 13 2.91 0.09 31.553 #NUM! 2.730 3.093

313 1 0 0 0 0 0 0 0 0 0 0 0 313 1,559
314 0 1 0 0 0 0 0 0 0 0 0 0 314 1,470
315 0 0 1 0 0 0 0 0 0 0 0 0 315 1,516
323 0 0 0 0 0 0 0 0 0 0 1 0 323 1,644
324 0 0 0 0 0 0 0 0 0 0 0 0 324 1,612
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7.3 Trend and seasonality adjusted exponential smoothing 

A crucial difference between regression and trend-adjusted exponential smoothing is that 
regression has a static trend, while the trend is adaptive in trend-adjusted exponential 
smoothing. Also, for the two previous seasonality-adjusted approaches discussed in this 
section, we used the term static seasonality since seasonality indexes and all other 
coefficients remain unchanged yearly. You can observe unchanged seasonality indices in 
the two charts at the bottom of Figure 12 and the chart in Figure 13. 

In this third approach, we update seasonality indices – along with level and  
trend – from one period to the next. It extends the trend-adjusted exponential smoothing 
(Winters, 1960; Chopra, 2019). The reader may look into seasonality in Figure 12 and 
Figure 13 and compare them with the graphs in Figure 14 to visualise the dynamism of 
this third approach. 

By applying linear regression on the 12-month centred moving average implemented 
in seasonality-enhanced bivariable linear regression, we first estimate the level  
(L0 = INTERCEPT) and trend (T0 = SLOPE) in month zero. We use static seasonality 
indexes computed in seasonality-enhanced bivariable linear regression [implemented in 
Chopra (2019)]. Alternatively, we may set L0 equal to the average demand in the first  
12 months. We also compute LN as the average of the last 12 months, and set T0 = (LN – 
L0)/(12(N – 1)). For seasonality, we may divide the demand of each of the first 12 months 
by L0 and set them as the seasonality indexes for the first 12 months [implemented in 
Iravani (2021)]. While the second approach is easier with fewer computations to estimate 
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the starting parameters, since we already have the results for seasonality-enhanced 
bivariable linear regression, we follow the first approach and copy L0, T0, S1, …, S12 from 
Figure 11 into Figure 14. We first set α = 0.5, β = 0.5, and γ = 0.5. 

Figure 14 Seasonality enhanced multivariate regression computations (see online version  
for colours) 

t At L T S Ft (TreSeasES) p= 4

0 702.82 2.90 α= 0.50
1 480 605 -47.29 0.950 670.74 β= 0.5
2 468 547 -52.80 0.872 486.78 γ= 0.50

3 504 522 -38.93 0.917 453.21

4 518 508 -26.32 0.972 469.37 C2 =Table9.SeasRegChopraMineEvenp12!L1
5 529 497 -18.66 1.032 497.59 D2 =Table9.SeasRegChopraMineEvenp12!L2
6 556 513 -1.33 1.015 485.55 E3 =Table9.SeasRegChopraMineEvenp12!H3
7 568 525 5.28 1.054 539.68 F3 =(C2+D2)*E3
8 557 522 0.82 1.087 576.84 C3 =(1-$I$2)*(C2+D2)+$I$2*B3/E3
9 589 543 10.99 1.046 546.48 D3 =(1-$I$3)*D2+$I$3*(C3-C2)

10 583 551 9.76 1.063 588.55 F3 =(C2+D2)*E3
11 556 555 6.66 1.014 568.79 E15 =(1-$I$4)*E3+$I$4*(B3/(C2+D2))

12 556 565 8.55 0.977 548.31
13 527 582 12.69 0.815 467.75
14 512 591 10.91 0.855 508.52
15 608 600 9.66 0.968 583.04
16 611 606 7.94 1.022 622.86
17 632 614 7.85 1.065 653.78
18 640 621 7.44 1.088 676.10
19 658 626 6.22 1.081 679.17
20 686 631 5.98 1.069 675.48
21 663 635 4.89 1.087 692.73
22 659 636 2.66 1.058 677.33
23 667 639 3.26 1.003 639.95
24 614 646 4.75 0.983 631.90
25 588 649 3.86 0.867 563.67
26 588 652 3.63 0.858 559.74
27 624 658 4.70 0.989 648.70
28 606 666 6.55 1.013 670.83
29 730 675 7.50 1.048 704.85
30 691 681 7.16 1.059 722.22
31 678 690 7.64 1.065 733.21
32 747 698 7.84 1.077 751.10
33 740 705 7.43 1.063 750.24
34 784 715 8.97 1.044 743.27
35 745 726 9.74 1.024 741.59
36 699 733 8.43 0.969 712.66
37 697 744 9.61 0.886 656.51
38 672 757 11.55 0.879 662.38
39 708 766 10.39 0.970 745.80
40 773 775 9.38 0.963 748.20
41 815 783 9.08 1.067 836.36
42 777 788 7.01 1.036 821.03
43 851 792 5.44 1.025 815.14

310 1,337 1534 -19.73 1.056 1629.71
311 1,228 1500 -26.92 0.963 1459.29
312 1,273 1457 -35.23 0.975 1437.17
313 0.988 1404.18
323 0.887 948.56
324 0.920 951.01
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Step 1 Compute Lt. Given L0 = 702.82, T0 = 2.9, and S1 = 0.95; F1 = (L0 + T0)  
S1 = (702.82 + 2.9) × 0.95 = 670.74. We now move forward to compute L1, T1, 
F2, and S13, then L2, T2, F3, and S14, and so on. In all exponential smoothing 
models, we always have one component multiplied by a parameter (α, β, or γ), 
added to another component multiplied by 1 minus α, β, or γ. The ‘1 minus’ 
part is always easier to compute. We have L0 = 702.82, T0 = 2.9. Our forecast 
for level in month 1 is L1 = L0 + T0 = 705.72. This needs to be multiplied by  
(1 – α). That is, L1 = (1 – 0.5)×705.71. But what is the part that had to be 
multiplied by α? It is not 480. That is why the computation of the component 
multiplied by 1 – α, 1 – β, and 1 –  γ is easier. The month 1 actual data of 480 
contains seasonality. We need to remove seasonality. Since S1 = 0.95 (month 1 
is a low season), we divide the actual data by S1 to remove seasonality; 
480/0.95 = 504.97. This is the unseasoned value of the actual data in month 1. 
Accordingly, L1 = (1 – α)( L0 + T0) + α (A1/ S1) = (1 – 0.5)×(702.82 + 2.9) + 
0.5×(480/0.95) = 605.34. 
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Step 2 Compute Tt. Our forecast for T1 is T0. It is multiplied by (1 – β) to form the first 
component of T1. What is the actual T1? It is the difference between L0 and L1 
to be multiplied by β. Therefore T1 = (1 – β) T0 + β (L1 –  L0) = (1 – 0.5 ) ×2.90 
+ 0.5(605.34 – 702.82) =  –47.29. 

Step 3 Compute Ft+1. The forecast for the next period is simply Ft+1 = (Lt + Tt) *  
St+1. For month 2, it is F2 = (L1 + T1) × S2 = (605.34 – 47.29) × 0.872 = 486.78. 

Step 4 Compute St+p. Since periodicity is 12 (p = 12), we compute S1+12. We first have 
(1 –  γ) times forecast forecast. Our forecast for period 13 is the same as  
period 1; S1 = 0.96. What is the actual seasonality in period 1? The actual data 
is divided by L1 = L0 + T0. That is A1/ L1 = 480/705.71 = 0.68. Therefore,  
S13 = (1 –  γ) ×  S1 + γ ( A1 / L1) = (1 – 0.5) × 0.96 + 0.5(0.68) = 0.82. 

Figure 14 shows all the key formulas and curves related to trend and seasonality-adjusted 
exponential smoothing components. 

Figure 16 The results of the three seasonality enhanced/adjusted methods, (a) static regression  
(b) dummy-multivariate regression (c) trend and seasonality adjusted exponential 
smoothing (see online version for colours) 
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8 Conclusions 

We have learned that when theoretical concepts are taught through real-life applications, 
they positively impact students’ mental presence and intellectual engagement inside the 
classroom. 

In this study, we tried to streamline the learning process by applying time series and 
regression analysis to a significant real-life application. 

We reviewed and integrated alternative time series and regression analysis 
techniques. This manuscript can be used as teaching material or as a case study to 
enhance the teaching material. While we had our analysis on total loaded and empty for 
both inbound and outbound throughput, all the data are available to repeat the 
combination for four combinations of inbound, outbound, loaded, and empty volumes. 

We handpicked a set of intermediate to advanced Excel functions and formulas for 
step-by-step improvement of Excel skills and side-by-side enrichment of time series and 
regression knowledge of undergraduate and graduate students at teaching-focused 
business schools. The approach is tailored to the student population’s knowledge, skills, 
and abilities in teaching-focused business schools. The Excel sheets designed in this 
manuscript could serve as templates for other real-life applications the students may 
encounter in their early employment years. 
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Appendix A 

Computation of metrics and drawing the graphs for an any-period moving 
average 

Computational considerations. Consider a four-period moving average forecast in 
periods 25 and 26 and examine the differences. 

( ) ( )26 25 25 24 23 22 25 22F MA A A A A / 4 A A24 A23 4 A 4= = + + + = + + +  

( ) ( )27 26 26 25 24 23 25 24 23F MA A +A +A +A 4 A26 4+ A +A +A 4.= = =  

Therefore, F27 = F26 + A26/4 – A22/4. 
Given this fundamental insight, we develop a general formula applicable to any 

number of periods in a moving average computation as F(t + 1) = Ft + (At – At–n)/n. This 
formula directly computes the next period’s forecast to be equal to the forecast for this 
period (the moving average of the previous period) plus this period’s actual data (the 
newest piece of data) minus the oldest piece of data used for this period’ forecast. They 
(the newest and oldest data) are divided by n. 

In Figure A1, we enter the number of periods in the moving average in cell A1 using 
the RANDBETWEEN(2, 12) function. Let’s say it generates 4. Now, consider the 
formula in row C9, which is the forecast for period 6. We have both the previous forecast 
and the actual in row 8. The newest piece of data is in A8, but how do we access the 
oldest piece of data used in the previous forecast? This data is in the row t–n of the actual 
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data, which in our example is row 8–4 = 4 on the Excel sheet. We can use the Excel 
INDEX function to find the element in a specific row of a vector. IF(A8<$A$1,”“,IF(A8 
= $A$1,AVERAGE(B$4:B8),C8 + B8/$A$1-INDEX(B$4:B8,A8-$A$1)/$A$1)) is the 
forecast formula in cell C9. 

If the previous year (referenced by A8) is less than 4 (the number of periods in the 
moving average), a blank space (“ “) is entered in the corresponding forecast cell (C9) to 
leave it empty. If the previous year is before year 4, a “ “ is entered to leave the Excel cell 
blank. If the previous year is year 4, the average of the actual data for the first four years 
(from rows 4 to 8) is computed and set to the forecast for year 5 (in row 8 of the Excel 
sheet). For cell C9, which corresponds to year 6>4, we have C8 + B8/$A$1-
INDEX(B$4:B8,A8-$A$1)/$A$1. Where INDEX(B$4:B8, A8-$A$1). It will find the 
oldest piece of data used in the forecast: INDEX(B$4:B8,5-4) = INDEX(B$4:B8,1) =  
B4 = 6,460. The actual for the previous period is B8 = 9,650, and the forecast for the 
previous period is C8 = 7,910. Therefore, the forecast for this period C9 = 7,910 + 
(9,650–6,460)/4 = 8,707.5. The figure is adjusted for any number less than 26 that may 
appear in cell A1. 

Figure A1 Computation and evaluation of an any-period moving average (see online version  
for colours) 

8 8-Period MA Forecast
t At Ft Ft E |E| E2 |E|/A MAD MSE MARD SFE TS BIAS

MAD MSE MARD
1 6460 1981.0 6167272 0.124
2 7480 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 1 955.2 1439920 0.072
3 8220 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 2 1146.3 1987246 0.086
4 9480 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 3 1367.2 2651752 0.100
5 9650 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 4 1527.6 3325370 0.108
6 10630 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 5 1719.0 4243650 0.118
7 11810 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 6 1869.5 5105986 0.124
8 13100 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 7 1955.3 5783801 0.126
9 14190 9603.8 9603.8 4586.3 4586 2.1E+07 0.3232 4586 21033689 0.323 4586.3 1 4586 8 1981.0 6167272 0.124

10 15760 10570 10570 5190 5190 2.7E+07 0.3293 4888 23984895 0.326 9776.3 2 4888 9 2002.2 6251843 0.123
11 15670 11605 11605 4065 4065 1.7E+07 0.2594 4614 21498005 0.304 13841 3 4614 10 1935.1 5422733 0.118
12 14340 12536 12536 1803.8 1804 3253514 0.1258 3911 16936882 0.259 15645 4 3911 11 1883.4 4750157 0.114
13 11810 13144 13144 -1334 1334 1778889 0.1129 3396 13905283 0.23 14311 4.21446 2862 12 1988.2 5019616 0.120
14 14100 13414 13414 686.25 686.3 470939 0.0487 2944 11666226 0.2 14998 5.09397 2500 13 2312.2 6199787 0.140
15 14000 13848 13848 152.5 152.5 23256.3 0.0109 2545 10002945 0.173 15150 5.95201 2164 14 2473.0 6860163 0.149
16 14120 14121 14121 -1.25 1.25 1.5625 9E-05 2227 8752576.8 0.151 15149 6.80126 1894 15 2678.1 7812002 0.160
17 14600 14249 14249 351.25 351.3 123377 0.0241 2019 7793776.7 0.137 15500 7.67749 1722 16 2925.4 9136685 0.172
18 15160 14300 14300 860 860 739600 0.0567 1903 7088359.1 0.129 16360 8.59695 1636 17 3187.8 10720558 0.186
19 15350 14225 14225 1125 1125 1265625 0.0733 1832 6559019.6 0.124 17485 9.54279 1590 18 3450.7 12474581 0.198
20 15630 14185 14185 1445 1445 2088025 0.0925 1800 6186436.7 0.121 18930 10.5167 1578 19 3762.4 14754591 0.213
21 16400 14346 14346 2053.8 2054 4217889 0.1252 1820 6035010 0.122 20984 11.5326 1614 20 4123.0 17631550 0.229
22 17550 14920 14920 2630 2630 6916900 0.1499 1877 6098002.1 0.124 23614 12.5778 1687 21 4456.7 20576203 0.244
23 16970 15351 15351 1618.8 1619 2620352 0.0954 1860 5866158.8 0.122 25233 13.5646 1682 22 4648.8 22450494 0.252
24 17300 15723 15723 1577.5 1578 2488506 0.0912 1843 5655055.5 0.12 26810 14.5509 1676 23 5152.2 27457606 0.272
25 20060 16120 16120 3940 3940 1.6E+07 0.1964 1966 6235558.1 0.124 30750 15.6418 1809 24 5942.5 35942684 0.303
26 19040 16803 16803 2237.5 2238 5006406 0.1175 1981 6167271.9 0.124 32988 16.6522 1833 25 5446.4 29663273 0.286
27 Min 955.2 1439920 0.07167
28
29
30

A1 =RANDBETWEEN(2,12) Q4 =I29
C9 =IF(A8<$A$1,NA(),IF(A8=$A$1,AVERAGE(B$4:B8),C8+B8/$A$1-INDEX(B$4:B8,A8-$A$1)/$A$1)) R4 =J29
D9 =IF(A8<$A$1,NA(),AVERAGE(B8:INDEX(B$4:B8,A8-$A$1+1))) Alternative formula for Ft S4 =K29
E9 =IF(ISNUMBER($C9),B9-C9,NA()) Q5 {=TABLE(,A1)}
F9 =IF(ISNUMBER($E9),ABS($E9),NA()) Q30 =MIN(Q5:Q29)
G9 =IF(ISNUMBER($E9),$E9^2,NA()) R30 =MIN(R5:R29)
H9 =IF(ISNUMBER($E9),F9/B9,NA()) S30 =MIN(S5:S29)
I9 =IF(ISNUMBER($E9),AVERAGE(F9:INDEX(F$4:F9,$A$1+1)),NA())
J9 =IF(ISNUMBER($E9),AVERAGE(G9:INDEX(G$4:G9,$A$1+1)),NA())
K9 =IF(ISNUMBER($E9),AVERAGE(H9:INDEX(H$4:H9,$A$1+1)),NA())
L9 =IF(ISNUMBER($E9),SUM(E9:INDEX(E$4:E9,$A$1+1)),NA())
M9 =IF(ISNUMBER($E9),L9/I9,NA())
N9 =IF(ISNUMBER($E9),AVERAGE(E9:INDEX(E$4:E9,$A$1+1)),NA())
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15000

20000

25000
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• Combined excel function considerations: Column D provides an alternative formula 
for an any-period moving average as follows D9 = IF(A6> = $A$1, 
AVERAGE(B6:INDEX($B$4:$B$30,A6-$A$1 + 1)),NA()). That is due to the magic 
inside the AVERAGE(B6:INDEX(B$4:B6,A6-$A$1 + 1) formula. We benefit from 
this formula in columns E to M to compute the metrics only when the data exist and 
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do not show anything for other years in the graphs. All the key formulas of  
Figure A1 are re-emphasized in the cells with the grey background. 

• Visualization considerations: since we draw curves for some of the columns in  
Figure A1, a blank space (“ “) for starting years less than or equal to the random 
number that appears in cell A1 will result in a Y-value equal to 0 even though it is 
empty (not zero). To resolve this, we replace the blank space (“ “) with the NA() 
function. In that case, the curves will not draw anything when encountering a #NA. 
However, to avoid #NA appearing in the table, we use formula-based conditional 
formatting with the IFERROR function and switch the font colour of these cells to 
white. Accordingly, Figure A1 are adjusted automatically no matter what random 
numbers between 2 and 25 appear in cell A1. Alternatively, we could have the fonts 
of these columns coloured white and switch the font colour to black using the 
ISNUMBER function in conditional formatting. This way, Figure A1 automatically 
adjust regardless of the random number between 2 and 25 in cell A1. Alternatively, 
we could initially set the font colour of these columns to white and then use 
conditional formatting with the ISNUMBER function to switch the font colour back 
to black for valid numbers. 

Appendix B 

Exponential smoothing basic mathematics 

In this appendix, we show that: 

1 exponential smoothing is a weighted moving average 

2 the age of data is 1/α. 

B.1 Exponential smoothing a weighted moving average 

The following analytical manipulations show that exponential smoothing is a weighted 
moving average. 

1 1F A=  

2 1 1 2 1 1 2 1F (1 )F A F (1 )A A F A= − α + α → = − α + α → =  

3 2 2 3 1 2F (1 )F A F (1 )A A= − α + α → = − α + α  

( )4 3 3 4 1 2 3

2
4 1 2 3

F (1 )F A F (1 ) (1 )A A A
F (1 ) A (1 )A A

= − α + α → = − α − α + α + α

→ = − α + α − α + α
 

3 2
4 4 5 1 2 3 4F5 (1 )F A F (1 ) A (1 ) A (1 )A A= − α + α → = − α + α − α + α − α + α  

2
t 1 t t –1 t –2

3 4 t 1
t –3 t –4 1

F A (1– )A (1– ) A
(1– ) A (1– ) A ... (1– ) A

+

−

= α + α α + α α
+α α + α α + α α

 

The sum of the weights are 
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( )

2 3 4 t 1

2 3 4 t

t t t

S (1– ) (1– ) (1– ) (1– ) ... (1– )  
 (1– ) (1– ) (1– ) (1– ) ... (1– )
S (1 )S (1– ) S 1 (1– ) S 1 (1– )

−= α + α α + α α + α α + α α + α α
= α α + α α + α α + α α + α α

− − α = α − α α → α = α − α → = − α

 

When t increases, (1 – α)t goes to 0, and the sum of the weights S = 1. 

B.2 Age of data in exponential smoothing 

Through the following analytical manipulations, we show that the age of data in 
exponential smoothing is 1/α. 

2 3 4 t 1Weights ,  (1– ),  (1– ) ,  (1– ) ,  (1– ) , ...,  (1– ) −= α α α α α α α α α α α  

Ages 1,  2,  3,  4, ..., t=  

2 3

4 t 1

Weights Ages 1 2 (1– ) 3 (1– ) 4 (1– )
5 (1– ) ... t (1– ) −

× = α + α α + α α + α α
+ α α + + α α

 

( )2 3 4 t 1Weights Ages 1 2(1– ) 3(1– ) 4(1– ) 5(1– ) ... t(1– ) −× = α + α + α + α + α + + α  

( )2 3 4 t 1We have shown S 1 (1– ) (1– ) (1– ) (1– ) ... (1– ) 1−= α + α + α + α + α + + α =  

2 3 4 t 11 (1– ) (1– ) (1– ) (1– ) ... (1– ) 1−+ α + α + α + α + + α = α  

Derivation with respect to α 
1 2 3 t 2 20 1 2(1– ) 3(1– ) 4(1– ) ... (t 1)(1– ) 1−− − α − α − α − − − α = − α  

( )1 2 3 t 21 2(1– ) 3(1– ) 4(1– ) ... (t 1)(1– ) 1−α + α + α + α + + − α = α  

B.3 UCL and LCL in tracking signal are larger than + 4 

Forecast error Et = At – Ft is a random variable with a mean of 0. MAD estimates the 
error forecast’s standard deviation. StdDev(Et) = 1.25MAD [for example, Duncan 
(2007)]. 

( )[ ] ( )

( ) ( )
( ) ( )

( )

t

t t

t

t

t

t

E Normal (0, 1.25MAD)
If x Normal(µ, σ) Sum (x) Normal(µ, SQRT(N)σ)
StdDev Sum E SQRT(N)StdDev E
E Normal (0, 1.25MAD)
Sum E N ~ 0,  SQRT(N)1.25MAD

3 E 0 SQRT(N)1.25MAD 3.

 3SQRT(N)1.25 E 0 MAD 3SQRT(N)1.25

=
= → =

=
=

=

≥ − ≥ −

+ ≥ − ≥ −




( )t

.

  3.75SQRT(N) E 0 MAD  3.75SQRT(N)+ ≥ − ≥ −
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Therefore, tracking signal TS = tE MAD  with samples of size N is normally 
distributed around 0, and UCL = 3.75 SQRT(N) and LCL = –3.75 SQRT(N). 

Appendix C 

Foundations of computation of regression metrics in Excel (b0, b1, SST, SSE, 
SSR) 

Regression lines can be designed by minimizing various error measures, including MAD, 
MSE, MAX(| Et |), or any other measure. Conventionally, regression equations are 
designed based on MSE minimization (least-square method). However, the conventional 
approach uses the least-squares method, which uses MSE or SSE (Sum of Squared 
Errors). We use SOLVER to find the optimal b0 and b1 (in cells J16 and J17 in  
Figure A1) for the minimal value for SSE (cell D28). After computing the forecasts in 
column C using arbitrary but reasonable b0 and b1 (in cells J16 and J17), we form column 
D (the square of the error in each row) and add them to compute SSE in cell D26. 
SOLVER is then used (DataTable is another option) to find optimal b0 and b1 values 
minimizing SSE (or MSE). These optimal values in cells J16 and J17 are the same as 
those found using the three regression tools mentioned in this manuscript. It highlights 
the significant power of dynamic arrays, as shown by the formula in cell J19 for direct 
SSE calculations. 

Quantitative foundations of regression metrics 

We usually compute three SST, SSE, and SSR metrics in regression analysis. SST (total 
squared deviations from the mean) is the summation of the squares of the gaps between 
each pair of points on the green (actual data) and the red (average of all data) lines. SSE 
(total squared deviations from the regression line) represents the summation of the 
squares of the gaps between each pair of points on the green and the blue curve 
(regression) lines. SSR = SST-SSE represents how well the regression line could replace 
the average data line. The reader may compare the computations in cells D28, F28, and 
G28 with those of J19, J20, and J21 to better understand the efficiency of dynamic arrays 
(and may delete columns D, E, F, and G). 
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Figure C1 Direct computation of regression coefficients and key metrics (see online version  
for colours) 

Ybar SE SR

13803.1 4421854 49498925
13803.1 2256127 37725175
13803.1 1395379 29775369
13803.1 115928 18573066
13803.1 347749 16900299
13803.1 837 10067581
13803.1 535614 3436742
13803.1 2568442 -2074125
13803.1 5168418 -5018708
13803.1 11725111 -7895563
13803.1 8497076 -5011674
13803.1 1358982 -1070696
13803.1 3180753 791602
13803.1 7624 80540 Y1 8562.82 =J16+J17*A2
13803.1 186544 -147766 b0 8143.60
13803.1 534548 -434108 b1 419.22
13803.1 449367 185719 Ybar 13803 =AVERAGE(B2:B27)

13803.1 280444 1560797 SST 305320354 =SUM((B2:B27-J18)^2)

13803.1 575762 1817209 SSE 48292065 =SUM((B2:B27-C2:C27)^2)

13803.1 806422 2531226 SSR 257028289 =J19-J20

13803.1 299462 6444548 R-Squared 0.8418315 =J21/J19
13803.1 33690 14005742 MSE 2012169 =J20/(COUNT(B2:B27)-2)
13803.1 665320 9364081 StdErr 1418.51 =SQRT(J23)
13803.1 818830 11409641
13803.1 2061772 37087314
13803.1 11 27425352

48292065 257028289

6000

9000

12000

15000

18000

21000

1 6 11 16 21 26

At Yhat (Reg) Ybar

 

R-squared, calculated as SSR/SST, reflects the proportion of variance explained by the 
regression model. It provides the same value as the RSQ function. While MSE is 
traditionally viewed as SSE divided by the number of data points, we must include 
degrees of freedom in regression analysis. We lose degrees of freedom when we benefit 
from one statistic extracted from the same data set to compute another statistic. In the 
computation of SSE, we have used two parameters b0 and b1. Therefore, we lose two 
degrees of freedom when we average SSE over n years (26 in this example). Therefore, 
MSE is not SSE/26 but SSE/(26-2). 

Piecewise regression 

Leveraging the background provided in this Appendix, we can employ piecewise 
regression to estimate b01, b11, b02, and b12 as the parameters for the first and second 
segments of the regression line and T as the year to switch from the first regression line 
to the second. These five changing cells, and MSE as the objective function to be 
minimized, lead to the piecewise regression line visualized in Figure C2. 
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Figure C2 Piecewise regression on la/lb ports annual data (see online version for colours) 
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Appendix D 

All worksheets used in this study 

Due to the extensive calculations across multiple worksheets, recalculating the entire 
workbook can slow down the computations of the metrics of interest. Splitting the 
worksheets you need into separate files can significantly improve performance. Please 
contact the author for the entire workbook used in preparing this manuscript. 


