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ABSTRACT 

 

The combined ports of Los Angeles and Long Beach (LA/LB ports) in California are among the 
world's top ten busiest container ports. Approximately 1/3 of US waterborne containers move through 
the LA/LB ports. The value of two-way trade in these ports exceeds 7% of total US trade in goods. The 
data on the volume of containerized activities in these ports provide an excellent dataset to teach time 
series and regression analysis. We use 26 years of data on the activities of these ports to teach 
forecasting models, including moving averages, exponential smoothing, trend-adjusted exponential 
smoothing, and regression analysis. We also use 312 monthly data for teaching seasonality-enhanced 
regression, multivariate seasonality regression using dummy variables, and trend and seasonality-
adjusted exponential smoothing. We have learned that when theoretical concepts are taught through 
real-life applications, they positively impact students' mental presence and intellectual engagement 
inside the classroom. This manuscript can be used as teaching material or a case study in a business 
analytics foundation or a supply chain analytics course. A set of useful Excel functions and formulas 
have been brought together and are fully embedded in the models we develop. Our spreadsheet 
models can serve as templates for other real-life applications the students may encounter in their early 
employment years. 
 
Keywords: freight transportation; ports of Los Angeles and Long Beach; predictive analytics; time 
series analysis; moving average; trend and seasonality adjusted exponential smoothing; seasonality 
enhanced regression. 

 
1. INTRODUCTION 

Competitive firms need forecasting to develop integrated resources and processes, nourish multi-
dimensional and structurally integrated capabilities, understand the revolving business eco-system, 
create value, and reshape the business organization towards achieving the plans of the enterprises. 
Marketing, finance, and operations are the three key building blocks of manufacturing, service, and 
distribution systems. Planning, organizing, budgeting, executing, and controlling are the primary 
responsibilities of the three key managers. Operations Managers need forecasting for capacity 
planning, inventory management, and scheduling. Financial Managers need forecasting for 
investment analysis, revenue and cost analysis, and cash flow planning. Marketing Managers need 
forecasting for pricing, sales force planning, and promotions. Good forecasting facilitates matching 
customer value propositions with product attributes, and product attributes with process 
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competencies in the four-dimensional space of cost, quality, time, and variety. While marketing, 
finance, and operation managers may be interested in forecasting different variables, they have a 
common interest in the volume of activities, investment plans, operating costs, and revenues. They 
are all interested in long-term and short-term forecasts for strategic, tactical, and operational 
decisions. 

Approximately 1/3 of US seaborne containers move through the LA/LB ports. The value of two-
way trade in Southern California customs exceeds 10% of total US international trade in goods. 
Around 75% of this value passes through to LA/LB ports. Around 125,000 firms consider the LA/LB 
ports their export hub, and 175,000 firms consider these ports their import hubs. One out of 10 jobs in 
Southern California is associated with LA/LB ports. 

The inbound and outbound volumes of the loaded and empty containers in LA/LB ports provide an 
attractive data set to teach the basics of time series and regression analytics. This manuscript is a 
complete teaching material for time series and regression analysis.  

Teaching-focused business schools (TFBSs) form close to 50% of all AACSB (Association to Advance 
Collegiate Schools of Business) accredited institutions. State-funded teaching-focused business 
schools (SFTFBSs) are a large subset of (TFBSs). Many of these lower-funded SFTFBSs educate 
nontraditional, low-income, a mixture of first-generation high school or community college 
graduates. SFTFBS students are often self-supporting and work 20-60 hours per week. With less time 
dedicated to education, these students require more educational resources and streamlined learning 
processes than traditional university students. This manuscript provides a streamlined approach to 
learning time series and regression methods.  

By fully implementing time series and regression analysis in Excel, we provide a platform where 
students can learn the basic, intermediate, and some advanced Excel functions and formulas.   Excel 
is among the three fundamental skills (communication skills and time management) employers seek 
in SFTFBS graduates. We have tried to bring well-known forecasting techniques under one roof, link 
them with well-thought-of Excel functions and formulas, and combine them in well-integrated and 
easy-to-follow Excel sheets. Our spreadsheet models can also serve as templates for other real-life 
applications students may encounter in their early employment years.  

Competitive the emphasis on globalization in today's education, developing case studies in 
international trade provides suitable teaching material in this direction. Articles of this kind facilitate 
continuing education and lifetime learning on information and operations management subjects. 
Manuscripts of this type may also constitute a bridge between port administrations looking for 
employees with good analytical skills and academic institutions training workforces to apply their 
skills in modern ports.  

This manuscript can be used as teaching material or as a case study to enhance teaching materials. 
We have used it as teaching material in an undergraduate course in business analytics foundations 
and as a case study in a supply chain analytics graduate course.  

We will have a short literature review in Section 2. In Section 3, we estimate yearly port throughput 
levels using moving averages and exponential smoothing. Measures of forecast accuracy and 
variability are discussed in Section 4. The level and trend for yearly data are discussed in Section 5 
using linear Regression and trend-adjusted exponential smoothing. Section 6 estimates monthly 
data's level, trend, and seasonality using seasonality-enhanced regression analysis, multivariate 
seasonality regression using seasonal dummy variables, and trend and exponential seasonality 
smoothing. Conclusions follow in Section 7. In Appendix A, we implement Excel's functional and 
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visualization capabilities by examining a general any-period moving average and its dynamic tables 
and graphs. In Appendix B, we review the basic mathematics of Exponential Smoothing. Appendix 
C explains the foundations of the computation of Regression metrics in Excel and provides insight 
for piecewise regression analysis. All our Excel worksheets are in Appendix D.   

2. LITERATURE REVIEW 

Forecasting methods are partitioned into qualitative and quantitative techniques. Qualitative 
techniques are based on expert opinions and intuition, such as subjective judgment, surveys, 
salesforce polling, historical analogies, and the Delphi method.  

Time series and regression analysis are among the quantitative forecasting tools. They form one or 
more chapters in (i) Operations and Supply Chain Management and (ii) Business Analytics 
Foundations books. For Operations Management and Supply Chain Management books, the reader 
is referred to Cachon and Terwiesch (2020), Chase, Aquilano, and Jacobs (2000), Heizer, Render, and 
Munson (2023), Stevenson (2014), Venkataraman and  Pino (2018), and especially Chopra (2019) and 
Iravani (2021). For Business Analytics Foundations books, the reader is referred to Albright and 
Winston (2015), Camm, Cochran, Fry, and Ohlmann (2020),  Jaggia, Kelly, Lertwachara, and Chen 
(2023), and Krajewski,  Malhotra, and Ritzman (2016), and Winston (2022). 

To limit the length of this manuscript, we do not cover autoregressive models. An autoregressive 
model is a regression model where the forecasts are based on previous periods. The reader is referred 
to Chapter 3, Iravani (2021), for a simple introduction to an autoregressive model. The moving 
average in the autoregressive moving average model (ARMA) differs from what we discuss in this 
manuscript. In ARMA's moving average model, the forecasts are based on deviations from past 
forecasts (a taste of Exponential Smoothing). That means a part of the forecast is based on the past 
observations (AR part), and another part is based on the deviations from the past observations (MA 
part). The AR part can be obtained using Regression, while the MA part follows a stationary 
distribution. The integration part is the difference between ARMA and ARIMA (autoregressive 
integrated moving average). It identifies the number of time differences to make the time series 
stationary. For an in-depth review of ARMA and ARIMA and more advanced techniques,  the reader 
is referred to Box, Jenkins, Reinsel, and Ljung (2015), Brockwell, Davis, and Calder (2002), and 
Keating and Wilson (2019).  

3. HISTORICAL DATA IN LA/LB PORTS AND FORECASTING CHARACTERISTICS 

Time series analyzes past data to identify and separate systematic and random components, extend 
systematic components into the future, and provide measures of variability. We use 26 years of data 
on the total inbound and outbound volume of loaded and empty containers in LA/LB ports to 
experience moving averages, simple exponential smoothing, trend-adjusted exponential smoothing 
(Holt's method), and regression analysis. We also use 312 monthly data for seasonality-enhanced 
Regression, multivariate seasonality regression using dummy variables, and trend and seasonality-
adjusted exponential smoothing (Winters' method). Excel functions and formulas are fully 
embedded in these computations.  

3.1 Historical Data at LA/LB Ports 

Table 1 presents parts of 26 years of monthly data for LA and LB, including loaded inbound, loaded 
outbound, empty inbound, and empty outbound - 312 records with 2496 fields.  
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Table 1. 26-Years Monthly TEUs Handling in LA/LB Ports.  

 
Using the Excel SUMIF function, the monthly data are summarized and pictorially presented in 
Table 2. The data are in 1000 TEUs; the last digit was rounded to zero.  

Table 2. 26-Year Container Handling at LA/LB Ports. 

 
3.2 Characteristics of Forecasting Techniques  

All forecasting techniques have three main characteristics in common.  

(I) Forecasts always deviate from actual observations. Since the world is not deterministic – at least 
to us – all forecasts are almost always inaccurate. Forecasts provide the average value for the 
variable of interest – sales or demand. Demand is a random variable usually following Poisson 
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distribution estimated by Normal distribution. Thus, besides the average demand, we need a 
measure of variability- standard deviation, variance, or coefficient of variation. If the average 
forecast for the next period is F, and the standard deviation of F is S, the coefficient of variation CV= 
S/F provides a measure of variability; the lower the coefficient of variation, the more confident we 
are with the forecast.  

(II) Forecasts of aggregate values are more accurate than individual item forecasts. Aggregate 
forecasts reduce variability. The forecast for all container ports in the world is more accurate than 
the forecast for US container ports, the forecast for US container ports is more accurate than the 
forecast for California's ports, and the forecast for California's ports is more accurate than the 
forecast for the port of Hueneme in Channel Island, North-East of Los Angeles. Aggregate forecasts 
reduce the relative variability with respect to the average forecast. One can intuitively understand 
that the forecast for the summation of two products is more accurate than the forecast for each 
product because the high demand for one product may compensate for the low demand for the 
other. From a mathematical point of view, the variance of the sum of two variables is equal to the 
sum of the variances of the two variables. Therefore, the standard deviation of the summation of the 
two variables (the numerator of CV) is less than the sum of the two standard deviations. If the 
standard deviations of the following year's volume of activities in each of the LA and LB ports are 
equal and are shown by σ, then the variance for the volume of activities in the combined port is 2σ2. 
Therefore, the next year's activities volume standard deviation for the combined LA/LB ports is less 
than  2σ; SQRT(2)σ.  

(III) Long-term forecasts are less accurate than short-term forecasts. Forecast accuracy diminishes 
as we look further into the future. As we get closer to the demand time, we get better information 
and make better predictions. The forecast for next year's LA/LB activities is more accurate than the 
forecast for ten years in the future.  

3.3. Impact of Characteristics of Forecasting Techniques on LA/LB Ports Throughput.   

Table 3 shows the world's container port throughput (in twenty-foot equivalent units- or TEUs) in 
ten countries and ten ports. The combined ports of Los Angeles and Long Beach (LA/LB) are ranked 
10th in the world. They comprise the largest port complex in the Western Hemisphere.  

Table 3. Container port and country rankings. 

Rank Port Country MTEUs Rank Country MTEUs % to World
1 Shanghai China 43.5 1 China 245.1 31.2%
2 Singapore Singapore 36.6 2 United States 55.0 7.0%
3 Ningbo-Zhoushan China 28.7 3 Singapore 36.9 4.7%
4 Shenzhen China 26.6 4 Korea 28.4 3.6%
5 Guangzhou Harbor China 23.2 5 Malaysia 26.7 3.4%
6 Busan  South Korea 21.6 6 Japan 21.4 2.7%
7 Qingdao China 22.0 7 United Arab Emirates 19.3 2.5%
8 Hong Kong, S.A.R China 18.0 8 Germany 18.0 2.3%
9 Tianjin China 18.4 9 Hong Kong SAR, China 18.0 2.3%
10 SPB (LA/LB) USA 17.3 10 Spain 17.4 2.2%
(a) Top 10 ports: 33% (b) Top 10 countries: 62%
Source: American Association of Port Authorities, 2020.

(Million TEU) (Million TEU)
Container Throughput (Port Ranking) Container Throughput (Country Ranking)
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What are the competing edges of LA/LB ports? Deepwater facilities for post-Panama ships 
containing close to 20,000 containers? State-of-the-art on-dock facilities to transfer containers 
between ship and train? Intermodal transfer between sea, rail, and road? Consolidation and 
distribution facilities for trans-loading from 20- and 40-foot containers to 56-foot containers allowed 
on California roads? According to Leachman (2010), the characteristics of forecasting techniques are 
one of the key reasons behind the attractiveness of LA/LB ports.  

As pictorially shown in Figure 1, shipping containers from the far-east to the east coast may take 
four weeks. This shipment takes two weeks to the west coast and 2-4 weeks from the far-east to the 
mid-US. For shipments from the Far East to the east-cost, one needs to forecast the demand for the 
east-cost four weeks in advance. However, the demand forecast two weeks in advance is enough for 
shipping to the west-cost. According to forecasting characteristics (III), forecasting the east-cost 
demand when the commodity is in west-cost will be more accurate than in East Asia. 

Figure 1. Forecasting-Based Competing Edges of LA/LB Ports. 

 
Furthermore, according to forecasting characteristic (II), forecasting the US aggregate demand is 
more accurate than forecasting demand for any smaller region in the US. Therefore, instead of 
forecasting for the three regions 14, 21, and 28 days ahead, one may forecast the total US aggregate 
demand 14 days ahead. It will take 1-3 days to drayage the containers to the final regions. Instead of 
estimating the demand of the east-coast alone, which is less accurate than the demand for the whole 
US, and instead of forecasting it four weeks ahead, one can forecast for 14+3 days ahead with more 
accuracy.  

4. CURRENT LEVEL AND FORECAST FOR THE NEXT PERIOD 

In this section, we estimate the level of demand using moving averages and exponential smoothing. 
Using these two techniques, we can forecast the average and standard deviation of the next period's 
activities. The forecast for all future periods remains the same as the next period as a straight line. 
The forecasts are updated when the actual data for the next period becomes available. In Section 5, 
we include trends, and in Section 6, we include seasonality in the levels estimated in this section. All 
the formulas in all tables are summarized in a set of cells with a gray or white background.  
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Details of all Excel formulas in all tables are summarized in a set of cells with gray backgrounds or 
in red fonts.  

4.1. Moving Average Forecasts 

Given the annual volume of container handling at the LA/LB ports, a progressive (or naïve) analyst 
may assume last year's demand as the demand forecast for this year; F27 = A26. A conservative and 
perhaps irrational analyst may consider the average of all years as the demand forecast for next year; 
F27 = AVERAGE (A26+A25+……+A2+A1.  

Ordinary people, however, may stay between these two extremes and estimate the demand for the 
next year based on the observations in the past n-periods. An n-period moving average forecast for 
year 26 is defined as MA26 =AVERAGE(A26, A25, ……, A26-n). The forecast for year 27 is then defined 
as the n-period moving average in year 26; F27 = MA26. The 4-period moving average forecast in year 
27 equals the 4-period moving average in year 26; F27 MA426= (A26+A25+ A24+A23)/4. Generally, Ft+1 = 
MAnt (At+At-1+ …… + At-n)/n. Note that the n-period moving averages do not exist until period n 
and n-period moving average forecasts do not exist until period n+1. Basic moving average formulas 
for 1-period, all-period, and 4-period moving averages are shown in Figure 4 columns C to E. In 
Appendix A, we develop a general dynamic formula adaptable to every n-period moving average, 
along with its dynamic tables and graphs. It provides a playground to practice advanced Excel 
functions and formulas.  

4.2. Exponential Smoothing 

In exponential smoothing, the forecast for the next period equals the forecast for this period plus a 
fraction of the gap between the actual and forecast values in this period. Ft+1 = Ft + α( At - Ft ), where 0 
≤ α ≤ 1. It has an autoregressive taste. A minor manipulation can restate it as Ft+1 = (1-α) Ft + αAt. 
That is, the forecast for the next period is the weighted average of the forecast and actual for this 
period. It smooths the gap between the actual demand and its forecast. 

To start, we need to have a forecast for period 1. There are at least three ways to compute the 
forecast for the first period. (i)  F1=A1, (ii) F1=average of all existing actual values, (iii) F1=interpret of 
the linear regression line (discussed later) applied to the existing actual values. We follow the first 
approach and set F1=A1.  

For α=0.5, the formula is transformed into Ft+1 = 0.5Ft + 0.5At = (Ft + At)/2. The forecast for the next 
period is equal to the average of the actual and the forecast for this period. For α=1, the formula is 
transformed into Ft+1 = At; the forecast for the next period is equal to the actual for this period. For 
α=0, the formula is transformed into Ft+1 = Ft; the forecast for the next period is equal to the forecast 
for this period.  

We usually start with α=0.5 and use an optimization tool, such as Excel's standard SOLVER add-ins 
or Data Table, to find the optimal α minimizing one of the metrics discussed in the next section. In 
Appendix B, we show that exponential smoothing is the weighted average of all pieces of data 
where the weights continually get smaller on the older data. Exponential smoothing forecasts using 
α=0.5 are in column F of Table 4. This table also shows the graph for alternative forecasting 
techniques that can be prepared using Excel's scatter graph or line chart. Key formulas are shown in 
the gray box.  

Table 4. Alternative Moving Average and Exponential Smoothing Forecasts.  
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4.4. Age of data in Moving Average and Exponential Smoothing 

A 4-period moving average forecast can be computed only after period 4, and then it is set as the 
forecast for period 5; F5=MA4. The newest piece of data in F5 belongs to period 4 and is 1 period old. 
The oldest data belongs to period 1 and is 4 periods old. Therefore, in a 4-period moving average, 
the age of data is (1+4)/2 = 2.5 periods. In an n-period moving average, the age of data is (n+1)/2 
periods. It is proved in Appendix B that the age of data in Exponential Smoothing is 1/α. Given 2.5 
as the age of data in a 4-period moving average, the data in an exponential smoothing with 1/α =2.5, 
i.e., α =0.4, has the same age. An exponential smoothing forecast with α = 0.6667 is equivalent to a 2-
period moving average forecast, and an exponential smoothing forecast with α = 0.1 is equivalent to 
a moving average forecast with about 19 periods.  

The smaller the α in Exponential smoothing has the same effect as the larger the number of periods 
in the moving average. They smooth out the recent fluctuations. Larger values for α in Exponential 
Smoothing similar to the smaller number of periods in the moving average result in higher 
responsiveness to recent fluctuations. An α = 1 has the same role as a 1-period moving average; the 
forecast for the next period is equal to the actual in this period. 

 

5. Measuring Forecast Accuracy and Variability  

In this section, we provide foundations to answer two questions. How do we measure the suitability 
of a forecasting technique for a specific dataset? How can one compare the quality of several 
forecasting techniques for a specific dataset?  
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5.1. A Basic Forecast Accuracy and Variability Measure 

Given the actual data and forecast (At and Ft) and error (Et = At - Ft), we define the sum of forecast 
error SFE = SUM(Et) and average error BIAS = AVERAGE(Et). Since the error values are positive or 
negative, they cross each other out if they are added or averaged. SFE and BIAS are expected to be 
small and close to zero. A forecasting approach may be considered of high quality on the 
foundations of SFE and BIAS. Still, there may be significant gaps between actual and forecast values 
in both positive and negative directions. This problem can be resolved by considering the absolute 
value of the gaps. Mean Absolute Deviation (MAD) is defined as MAD = AVERAGE(ABS(Et )).  

MAD serves two essential purposes. First, it compares two or more forecasting techniques and 
identifies the best based on the lowest MAD value. Second, 1.25MAD provides an estimate of the 
standard deviation of the demand forecast. A forecasting method provides  Ft+1 as the estimate for 
the average demand in the next period. 1.25 times the most recent MAD is the standard deviation of 
the forecast for the next period. In other words, At+1 ~N(Ft+1, 1.25MADt); demand for the next period 
follows a normal distribution with an average of Ft+1 and a standard deviation of 1.25MADt. 

The tracking signal is defined as TS=SFE/MAD. It is a positive or negative number divided by a 
positive number. In an accurate forecasting method, the summation of all errors is expected to be 
zero. TS can jump up and down on the positive and negative sides due to randomness in the actual 
data,  but in an accurate forecasting method, it should remain close to zero. We can also define the 
upper control limit (UCL) and lower control limit (LCL). In some textbooks, it is stated that TS 
moves between LCL=-4 and UCL=+4. In Appendix B, we will mathematically prove that the limits 
of +4 are incorrect.   

TS serves two essential purposes. First, we expect it to stay within UCL and LCL. Second, we do not 
expect to see a pattern over time. For example, we do not expect to see an always positive or 
consistently negative TS. In the first case, our forecasting technique underestimates the demand 
since we have the summation of At-Ft in the numerator. In the second case, it overestimates the 
demand. We also do not expect to see a cyclic pattern since, in that case, there may be seasonality in 
the data that is not incorporated into our forecasting. 

In a general demand forecast, we may assign a higher weight to positive gaps than to a negative gap. 
In the second case, we have overstock; in the first case, we lost sales. Usually, the cost of overstock is 
less than the cost of lost sales. In these cases, we may assign a coefficient greater than 1 to positive 
Et=At-Ft values. We may also benefit from the newsvendor problem (Arrow,  Harris, and Marshak, 
1951; Schweitzer and  Cachon, 2000; Iravani, 2021) to find a good tradeoff coefficient of 
underestimating and overestimating demand.  

4.2. Alternative Forecast Accuracy and Variability Measures 

An alternative approach to removing negative signs is to square the errors and replace MAD with 
Mean Squared Error (MSE) = AVERAGE(Et2). MSE prevents large gaps between forecast and actual 
values since the errors are squared. MAD computation was more straightforward when 
implemented long before calculators and sliding rulers. However, working with an absolute value in 
mathematical expressions, for example, computing the derivative of an expression containing an 
absolute value,  is difficult. It becomes easy if the squared values replace absolute values. In addition 
to 1.25MAD, the square root of MSE provides another estimate for the standard deviation of the 
forecast. That is At+1 ~N(F t+1, SQRT(MSE t)). 
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There is also a third method that we refer to as Mean Absolute Relative Deviation (MARD). Instead 
of averaging |Et| values, we average |Et|/At values. For example,  |Et|= 10 states that there were 
10 units of deviations between At and Ft. If At = 200, then 10 relative to 200 is a 0.05 (or 5% gap). In 
MARD, the relative absolute gaps (relative to the demand) are computed instead of the absolute 
gaps. There are still other methods. For example, we may minimize the maximum absolute 
deviation between actual and forecast. Table 5 shows the computations of error (E), the sum of 
forecast error (SFE), average error (BIAS), absolute error, MAD, TS, MSE, and MARD for exponential 
smoothing with α=0.5. The actual vs. forecast and the tracking signal curves are also shown in the 
table.  

Table 5. All Metrics for Forecast Accuracy and Reliability. 

 
4.4. Optimal α Value  

The optimal α value can be computed in at least two ways. (i) SOLVER and (ii) Data Table. For 
SOLVER, the objective function is to set one of the three measures of MAD, MSE, or MARD (in cells 
H29, I29, and J29) to be minimized, and α cell B1 is the changing cell to minimize the objective 
function value. For the Data Table, we set cells P4, Q4, and R4 equal to cells H29, I29, and J29, 
respectively. The α values start from a cell one column to the left and one row below MAD. Using a 
formula, we can find the value of α in the Data Table with as many decimal points as the value 
obtained by  SOLVER. This is done by typing the starting α value of 0 and the increment in two 
arbitrary cells (such as cells O2 and O3 in this example). We then set O5=O2 and O6=O2+$O$3 and 
copy down from 0 to 1. After setting O4 to R15,  Data  What-if Analysis  Data Table. Since 
alternative α values are typed in a column (not in a row), inside the column input cell, we point to 
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B1, where the α value is placed. We then find the α value corresponding to the minimal MAD (or 
MSE or MARD) value. Suppose the α value for the minimal MAD is 0.7. To estimate α with more 
decimal points), we can set cell O2 to 0.65 and O3 to 0.001 and find the minimum ( in the range of 
0.65 to 0.74). We can continue this procedure to as many decimal points as we wish to find answers 
as precisely as SOLVER with the Data Table.  

Optimal α computations using both solver and Data Table for all three metrics and their 
normalization (divide each by the minimal value in that column) are shown in Table 5. The reader is 
encouraged to look into all the formulas in gray cells. We have also used conditional formatting to 
highlight the minimal values.  

The reason for an upward tracking signal is the positive overall trend of actual data. That is why the 
moving average recommends n=1 and exponential smoothing recommends α=1. When the tracking 
signal shows a continual or increasing positive trend, we may add a constant to the forecast value. In 
Table 6, we implemented a two-dimensional Data Table to find the optimal value for α = 0.66 plus a 
constant of 495 to be added to the forecast to minimize MAD. The computations for exponential 
smoothing and the essential formulas are shown in Table 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Forecasting Measures under Optimal α and a Constant for Exponential Smoothing. 
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 4.5. Stationary vs. Non-Stationary Data. 

In our dataset, the optimal α for all three metrics is equal (this is not the case most of the time) and is 
equal to 1 (this is also not the case most of the time). Since we have an upward trend almost in all 
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years, an α=1, and therefore Ft+1=At is the best solution. Moving average and Exponential Smoothing 
are appropriate for stationary data. We can draw the Cumt = SUM(At) function to check if a data set 
is stationary. The data is stationary if Cumt is close to a straight line. Figure 2 shows Cumt for our 
data is distant from a line. We will later discuss trend-adjusted exponential smoothing and 
Regression for data with a trend.  

Figure 2. Stationary vs. Non-Stationary Data. 

 
 

5. LEVEL AND TREND 

This section reviews (i) Bi-variate linear Regression and (ii) Trend-adjusted exponential smoothing.  

5.1. Bi-variable Linear Regression. 

The bi-variable linear Regression is generally stated as y=b0+b1x. Our time series case can be stated 
as Ft = b0 +b1t. While we could have continued with the actual years, we set t equal to the current 
year minus 1996 for simplicity. No matter how we enumerate the years, while we will have 
different values for b0 and b1, all the analyses and the shape of the regression line remain the 
same. Alternative linear regression tools are explained below and are summarized in Table 7. 
Unlike moving average and exponential smoothing, where the forecast for all future periods is 
equal to the forecast for the next period, Regression's forecast for any period t can be computed as 
Ft = b0 +b1t. 

Procedure-1. Add Trend Line. After presenting the data in a scatter graph, we can right-click on 
the graph and choose to add a trendline. Options of exponential, linear, logarithmic, polynomial, 
power, and moving average will appear. We chose liner. We also check the display equation and 
display the R-squared value boxes. The scatter graph shows the regression equation y = 419.22x + 
8143.6 and R² = 0.8418. The larger the R-square (0≤R2≤1), the more reliable the regression line. 

Procedure-2. Data Analysis Add-Ins. Choose Data Tab Data Analysis  Regression. In the next 
table, enter the Y variable (At), then X variables (t), and select the cell that will be in the east-north 
of the table (we select cell E1). If the distance between the two blue numbers in the bottom part of 
Table 7 (confidence interval for b1) does not cover zero, there is a relationship between Y and X 
(b1≠0). If the blues number in the top part of the table (significance F) is less than 0.05, with more 
than 95% confidence, not both b0 and b1 are zero.  

This approach is not recommended for bi-variable linear Regression if we do not need all the 
information this Add-Ins provides. That is because we must reproduce the table if a value changes, 
and it also occupies a portion of the worksheet. As shown in the seasonality-enhanced multi-



14 
 

variable Regression, Data Analysis Add-Ins is a good choice for bi-variable non-linear and multi-
variable linear and non-linear cases.  

Procedure 3. Excel Functions. As shown in Table 7, we can compute most of the Data Analysis 
Add-Ins output using Excel functions such as INTERCEPT, SLOPE, RSQ, STEYX, CORREL, 
CONFIDENCE.NORM, CONFIDENCE.T, and additional formulas.  

Procedure 4. Using More Fundamental Computations in Excel. In Appendix C, we will 
provide the basic knowledge of the computation of regression metrics through computing SST, SSE, 
and SSR, as well as a piecewise regression. 

Table 7. Alternative Linear Regression Computations 

 
 

5.2. Trend Adjusted Exponential Smoothing. 

Trend-adjusted exponential smoothing is defined as Ft+1 = Lt + Tt, where Lt and Tt are the level and 
trend in period t as defined in Chopra (2019) based on Holt (1957).  

Lt+1 = (1-α)(Lt+Tt) +αAt 

Tt+1 = (1- β)Tt + β(Lt+1 -Lt) 
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Trend-adjusted exponential smoothing, or double exponential smoothing, smooths out the level and 
trend of this period based on the level and trend of the previous period and the actual observation in 
this period.  

Starting L0 and T0 can be computed in two ways. We may set L0 as the demand in the first period 
and T0 as the demand of the last period minus the demand of the first period divided by (N-1). In 
our case, L0 =A1= 6460, and T0=(A26-A1)/(26-1)= 503.2 (Iravani, 2021). Alternatively, we may set L0 as 
the intercept of the regression line and T0 as its slope. L0 = b0= 8143.6, and T0=b1 =419.2 (Chopra 
2019). We follow the first approach. We start from α = 0.5 and β = 0.5 and then use SOLVER or a 
two-dimensional Data Table to find the optimal values of α = 0.87 and β =0, as shown in Table 8. 
Compared to simple exponential smoothing, the MSE and other metrics are lower, and the extension 
to future periods carries a trend and is not a straight line. Compared to Regression, we have a 
smooth curve going up and down instead of a straight line.  

We can also combine linear Regression and trend-adjusted exponential smoothing in the form of Ft = 
γFTrend-Adjusted.ES + (1-γ)FLinear-Regression. The optimal γ value minimizing the MSE of the forecasts from 
the actual values can then be obtained using SOLVER or Data Table. 

Table 8. Trend Adjusted Exponential Smoothing Computations. 

 
 

6. LEVEL, TREND, AND SEASONALITY 

In this section, we review (i) seasonality-enhanced bi-variable linear Regression, (ii) seasonality-
enhanced multi-variable Regression using dummy variables, and (iii) trend and seasonality-adjusted 
exponential smoothing. 

6.1. Seasonality Enhanced Bi-Variable Linear Regression. 

The monthly data shown in Table 2 for 12(26) months (in  1000 TEUs) are copied into Table 9. 
Periodicity is 12 (seasonality repeats every 12 months). One may add three months of data and 
consider the periodicity of four seasons, provide daily data and seven days over a week, or provide 
hourly data with a periodicity of 24 hours.  

Table 9. Computations for Static Seasonality Enhanced Bi-Variate Linear Regression. 
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Step 1. Removing Seasonality. When we compute the average of 12 months, it is pure of seasonality 
since high and low seasons cross each other out. This is true for any other periodicity; the average of 
all seasons does not contain seasonality. Unlike the moving average, where we placed the average of 
n periods in front of the last period, here we implement the centered moving average and place the 
average of the n periods at the center of the n periods.  

If we were considering seasonality over 7 days of weeks since 7 is odd, we could have placed the 
average in front of period 4, compared the actual period 4 with the centered moving average, and 
estimated the seasonality of period 4. But there is no middle period for even periodicity. Therefore 
(and for all other even periodicities), we first compute the average of the 12 periods and assume it is 
placed at the boundary of periods 6 and 7. In general, for even periodicity of n,  we compute the 
average of periods 1 to n and place it on the boundary of periods n/2 and n/2+1. We then compute 
the period 2 to period 13 average and assume it is at the boundary of months 7 and 8 (or periods 
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n/2+1 and n/2 +2 in general). Next, we compute the average of these two centered moving averages 
and place it in front of period 7, representing the unseasonal activity volume at period 7. We then 
copy this formula down to 6 months to the last months (month N-n/2). We will generally have the 
centered moving average for all periods minus periodicity.  

Step 2. Trend in the Deseasonalized Data. We apply linear Regression on months 7 to 306 to find 
the level and trend of the data pure of seasonality. It leads to b0, b1, and R2, as shown in columns K of 
Table 9. The Excel worksheet also shows the formulas for all other computations (as they follow). 

Step 3. Seasonality Indices. We divide the actual data of each month by the value obtained from the 
regression line applied to the deseasonalized data (At/Yt). The ratios are estimates of the seasonality 
index in all 12(26) months. By averaging all seasonality indices of each month, the average 
seasonality index of January (S1) to December  (S12) is computed. The average of the average 
seasonality indices for all 12 months must equal 1; therefore, to normalize, we divide the average 
seasonality index of each month by the average of the averages. These computations are in columns 
G and H. These seasonality indices remain fixed for all the past and future months. That is why 
Chopra 2019 refers to it as a static method compared to the trend and seasonality-adjusted 
exponential smoothing, discussed later- as an adaptive method.  

Step 4. Seasonality Enhanced Regression. Finally, we put seasonality back on the deseasonalized 
regression line and forecast the future. Ft = (b0+b1t)*St, where St has the same monthly value over all 
years. All formulas are clearly explained in Table 9. The results of the four steps of this process are 
schematically represented in Figure 3. The above analysis shows that the monthly seasonality is 
from a minimum of 0.87 to a maximum of 1.09. In a similar analysis, one may study daily seasonality 
(periodicity of 30) or hourly seasonality (periodicity of 24) if the data is available. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Four Key Steps in Static Seasonality Enhanced Bi-Variable Linear Regression.  
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6.2. Seasonality Enhanced Multiple Regression Using Dummy Variables. 

We use multi-variable Regression as another static seasonality analysis approach by implementing a 
set of binary dummy variables. For each month, we define a binary variable, which is 1 if we are in 
that month and 0 otherwise. For periodicity of n periods, we need n-1 dummy binary variables. 
Other periods are compared with the period of choice with no binary variable associated. The period 
of choice does not affect the outcomes of the analysis. For a periodicity of 12, we define 11 binary 
variables for January to November. The dependent variable Y is the volume of activity in the 
corresponding month, and our X variables are the month counter (from 1 to 312) and 11 dummy 
binary variables. Excel's Data Analysis Add-ins require the independent variables to be in 
contiguous cells. Therefore, we copy the month variables adjacent to the dummy variables. They can 
be in the first column to the left or right of the dummy variables. Compared to bi-variable 
Regression, we select 12 adjacent columns associated with the month and 11 dummy variables 
instead of a single column for X variables. The output and all the essential formulas are shown in 
Table 10. The reader may pay attention to the formula to generate 0s and 1s for the dummy variables 
in each month and, more importantly, to multiply the row of the decision variables by the column of 
regression coefficients (by using dynamic arrays and transposing one of the two vectors).  

Table 10. Seasonality Enhanced Multi-Variable Regression Computations. 
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6.3. Trend and Seasonality Adjusted Exponential Smoothing. 

A crucial difference between Regression and trend-adjusted exponential smoothing is that 
Regression has a static trend, while the trend is adaptive in trend-adjusted exponential smoothing. 
Also, for the two previous seasonality-adjusted approaches discussed in this section, we used the 
term static seasonality since seasonality indexes and all other coefficients remain unchanged yearly. 
In this third approach, we update seasonality indices (level and trend) from one period to the next. It 
extends the trend-adjusted exponential smoothing (Winter, 1960, Chopra, 2021). The reader may 
look into the graphs of the output of the three approaches to visualize the dynamism of this third 
approach.  

By applying linear Regression on the 12-month centered moving average implemented in 
seasonality-enhanced bi-variable linear Regression, we first estimate the level (L0 =INTERCEPT) and 
trend (T0=SLOPE) in month zero. We also use static seasonality indexes computed in seasonality-
enhanced bi-variable linear Regression (this approach is implemented in Chopra, 2019). 
Alternatively, we may set L0 equal to the average demand in the first 12 months. Given LN as the 
average of the last 12 months, we set T0=(LN-L0)/(12(N-1)). For seasonality, we may divide the 
demand of each of the first 12 months by the average of these months and assume them as the 
seasonality indexes for the first 12 months (this approach is implemented in Iravani, 2021). While the 
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second approach is easier with fewer computations to estimate the starting parameters, since we 
already have the results for seasonality-enhanced bi-variable linear Regression, we follow the first 
approach and copy L0, T0, S1, ….S12 from Table 9 into Table 11. We first set α=0.5, β=0.5, and γ=0.5. 

Step 1. Compute Lt. Given L0 = 702.82, T0= 2.9, and S1= 0.95; F1 =( L0 + T0)S1 = (702.82+2.9)×0.95= 
670.74. We now move forward to compute L1, T1, F2, and S13, then L2, T2, F3, and S14, and so on. In all 
exponential smoothing models, we always have one component multiplied by a parameter (α, β, or 
γ), added to another component multiplied by 1 minus α, β, or γ. The 1 minus part is always easier to 
compute. We have L0 = 702.82, T0= 2.9. Our forecast for level in month 1 is L1= L0 + T0= 705.72. This 
needs to be multiplied by (1-α). That is, L1=(1-0.5)×705.71. But what is the part that had to be 
multiplied by α? It is not 480. That is why the computation of the component multiplied by 1-α, 1-β, 
and 1-γ is easier. The month 1 actual data of 480  contains seasonality. We need to remove 
seasonality. Since S1= 0.95 (month 1 is a low season), we divide the actual data by S1 to remove 
seasonality; 480/0.95 =504.97. This is the unseasoned value of the actual data in month 1. 
Accordingly, L1 =(1-α)(L0+T0)+α(A1/S1) = (1-0.5)×(702.82+2.9)+ 0.5×(480/0.95) = 605.34.  

Step 2. Compute Tt. Our forecast for T1 is T0. It is multiplied by (1-β) to form the first component of 
T1. What is the actual T1? It is the difference between L0 and L1 to be multiplied by β. Therefore 
T1=(1-β)T0+β(L1-L0) = (1-0.5)×2.90+0.5(605.34-702.82)=-47.29.  

Step 3. Compute Ft+1. The forecast for the next period is simply Ft+1=(Lt+Tt)*St+1. For month 2, it is 
F2=(L1+T1)×S2 = (605.34-47.29)×0.872 = 486.78.  

Step 4. Compute St+p. Since periodicity is 12 (p=12), we compute S1+12. We first have (1-γ) times 
forecast forecast. Our forecast for period 13 is the same as period 1; S1=0.96. What is the actual 
seasonality in period 1? The actual data is divided by L1= L0 +T0. That is A1/L1 = 480/705.71 =0.68. 
Therefore, S13=(1-γ)×S1+γ(A1/L1) = (1-0.5)×0.96+0.5(0.68) = 0.82.  

Table 11 shows all the key formulas and curves related to trend and seasonality-adjusted 
exponential smoothing components.  

 

 

 

 

 

 

 

 

 

Table 11. Seasonality Enhanced Multi-Variable Regression Computations. 
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Figure 4. The Results of the Three Seasonality Enhanced/Adjusted Methods. Static Regression 
(left), Dummy- Multi-Variable Regression (center), Trend and Seasonality Adjusted Exponential 
Smoothing (right).  

   
7. CONCLUSIONS. 
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We have learned that when theoretical concepts are taught through real-life applications, they 
positively impact students' mental presence and intellectual engagement inside the classroom.  
In this study, we tried to streamline the learning process by applying time series and regression 
analysis to a significant real-life application.  

We reviewed and integrated several time series and regression analysis techniques. This manuscript 
can be used as teaching material or as a case study to enforce the teaching material. While we had 
our analysis on total loaded and empty for both inbound and outbound throughput, all the data are 
available to repeat the combination for four combinations of inbound, outbound, loaded, and empty 
volumes.  

We handpicked a set of intermediate to advanced  Excel functions and formulas for step-by-step 
improvement of Excel skills and side-by-side enrichment of time series and regression knowledge of 
undergraduate and graduate students at teaching-focused business schools. The approach is tailored 
to the student population's knowledge, skills, and abilities in teaching-focused business schools. The 
Excel sheets designed in this manuscript could serve as templates for other real-life applications the 
students may encounter in their early employment years. 

 

 

Appendix A. Computation of Metrics and Drawing the Graphs for an Any-Period Moving 
Average.  

Consider a 4-period moving average forecast in periods 25 and 26 and examine the differences. 

F26 = MA25 = (A25+A24+A23+ A22)/4 = (A25+A24+ A23)/4 + A22/4 

F27 = MA26 = (A26+A25+A24+ A23)/4 = A26/4 + (A25+ A24 +A23)/4. 

Therefore, F27 = F26 + A26/4 - A22/4.  

Given this fundamental insight, we develop a general formula applicable to any number of periods 
in a moving average computation as F(t+1) = Ft + (At– At-n)/n. Our forecast for the next period is equal 
to the forecast for this period (the moving average of the previous period) plus this period's actual 
data minus the oldest piece of data used on the forecast for the previous period divided by n. 

Suppose we enter the number of periods in the moving average in cell A1 as RANDBETWEEN(2,12); 
suppose it comes out equal to 4. We now look into the formula in period 6 in row 9 in Table AA1. 
We have the previous forecast and previous actual in row 8, but what is the oldest data in the 
previous forecast? It is in the row t-n of the actual data. In our example is the data in row 8-4=4 of 
the Excel sheet. We can use the Excel INDEX function to find the element in a specific row of a 
vector. IF(A8<$A$1,"",IF(A8=$A$1,AVERAGE(B$4:B8),C8+B8/$A$1-INDEX(B$4:B8,A8-
$A$1)/$A$1)) is the forecast formula in cell C9. If the previous year is before year 4, a " " is entered 
to leave the Excel cell blank. If the previous year is year 4, the average of the actual data for the first 
four years (from rows 4 to 8) is computed and set to the forecast for year 5 (in row 8 of the Excel 
sheet). For cell C9 which corresponds to year 6>4, we have C8+B8/$A$1-INDEX(B$4:B8,A8-
$A$1)/$A$1. Where INDEX(B$4:B8, A8-$A$1) will find the oldest piece of data used in the forecast; 
INDEX(B$4:B8,5-4) = INDEX(B$4:B8,1) = B4 = 6460. The actual for the previous period is B8 = 9650, 
and the forecast for the previous period is C8 = 7910. Therefore, the forecast for this period C9= 
7910+(9650-6460)/4 =8707.5. The table is adjusted for any number less than 26 that may appear in 
cell A1.  
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Since we draw the curves related to some of the columns in Table AA1, a  " " for the starting years 
that are less than or equal to the random year that appears in cell A1 will show a Y-value of zero 
while it is empty and not zero. To resolve this, we replace " " with NA(). To avoid #NA appearing in 
the table,  we use formula-based conditional formatting and switch the font color to white using the 
IFERROR function for #NA cells. Accordingly, Table AA1 and Figure AA1 are adjusted 
automatically no matter what random numbers between 2 and 25 appear in cell A1. Alternatively, 
we could have the fonts of these columns colored white and switch the font color to black using the 
ISNUMBER function in conditional formatting.   

Table AA1. Computation and Evaluation of an Any-Period Moving Average. 

 
 

 

Column D provides an alternative formula for an any-period moving average as follows 
D9=IF(A6>=$A$1, AVERAGE(B6:INDEX($B$4:$B$30,A6-$A$1+1)),NA()). That is due to the magic 
inside the AVERAGE(B6:INDEX($B$4:$B$30,A6-$A$1+1) formula.  We benefit from this formula in 
columns E to M to compute the metrics only when the data exist and do not show anything for other 
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years in the graphs. All the key formulas of Table AA1 are re-emphasized by the green and red cells 
with white backgrounds.  

 

Appendix B. Exponential Smoothing Basic Mathematics.  

In this Appendix, we show that (i) exponential smoothing is a weighted moving average and (ii) the 
age of data is 1/α.  

B.1. Exponential Smoothing a Weighted Moving Average. 

The following analytical manipulations show that Exponential Smoothing is a Weighted Moving 
Average. 

F1 = A1 

F2 = (1-α)F1 +αA1  F2 = (1-α)A1 +αA1  F2 = A1 

F3 = (1-α)F2 +αA2  F3 = (1-α)A1 +αA2  

F4 = (1-α)F3 +αA3  F4 = (1-α)((1-α)A1 +αA2) +αA3  F4 = (1-α)2A1 +α (1-α)A2+αA3 

F5 = (1-α)F4 +αA4  F5 = (1-α)3A1 +α ( (1-α)2A2+α( (1-α)A3+ αA4 

Ft+1 = αAt +α(1 – α)At–1 +α(1 – α)2At–2 + α(1 – α)3 At–3 + α (1 – α)4At–4 .…+ α (1 – α)t-1A1 

The sum of the weights are  

S= α +α(1 – α) +α(1 – α)2 + α(1 – α)3 + α (1 – α)4.…+ α (1 – α)t-1 

= α(1 – α) +α(1 – α)2 + α(1 – α)3 + α (1 – α)4.…+ α (1 – α)t 

S-(1-α)S = α- α (1 – α)t  αS = α(1- (1 – α)t)  S = 1- (1 – α)t 

When t increases, (1 – α)t goes to 0, and the sum of the weights S=1. 

B.2. Age of Data in Exponential Smoothing. 

Through the following analytical manipulations, we show that the age of Data in Exponential 
Smoothing is 1/α. 

Weights = α, α(1 – α), α(1 – α)2, α (1 – α)3, α(1 – α)4 ,……, α(1 – α)t-1 

Ages = 1, 2, 3, 4, ………..t 

Weights × Ages = 1α+ 2α(1 – α)+ 3α(1 – α)2+ 4α(1 – α)3+ 5α(1 – α)4 +……+ tα(1 – α)t-1 

Weights × Ages = α(1+ 2(1 – α)+ 3(1 – α)2+ 4(1 – α)3+ 5(1 – α)4 +……+ t(1 – α)t-1) 

We have shown S = α(1+ (1 – α)+(1 – α)2+(1 – α)3+(1 – α)4 +……+ (1 – α)t-1) =1 

1+ (1 – α)+(1 – α)2+(1 – α)3+(1 – α)4 +……+ (1 – α)t-1 =1/α 

Derivation with respect to α 

0-1-2(1 – α)1-3(1 – α)2-4(1 – α)3 -……-(t-1) (1 – α)t-2 =-1/α2 

α(1+2(1 – α)1+3(1 – α)2+4(1 – α)3 +……+(t-1) (1 – α)t-2 )=1/α 

B.3. UCL and LCL in Tracking Signal are larger than +4 
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Forecast error Et =At-Ft is a random variable with a mean of 0. MAD estimates the error forecast's 
standard deviation. StdDev(Et)  = 1.25MAD (for example, Duncan, 2007}.   

Et = Normal (0,1.25MAD) 

If x = Normal(µ,σ)  Sum (x) = Normal(µ, SQRT(N)σ)  

StdDev [Sum(Et)] =  SQRT(N)StdDev (Et) 

Et = Normal (0,1.25MAD) 

Sum (Et) = N~(0, SQRT(N)1.25MAD) 

3 ≥ (∑Et -0)/(SQRT(N)1.25MAD)) ≥ -3. 

+ 3SQRT(N)1.25  ≥ (∑Et -0)/MAD ≥ - 3SQRT(N)1.25. 

+ 3.75SQRT(N)  ≥ (∑Et -0)/MAD ≥ - 3.75 SQRT(N) 

Therefore, Tracking Signal TS= ∑Et/MAD with samples of size N is normally distributed around 0, 
and UCL = 3.75 SQRT(N)  and LCL =-3.75 SQRT(N).   

Appendix C. Foundations of Computation of Regression Metrics in Excel (b0, b1, SST, SSE, SSR). 

One may design a regression line by minimizing MAD, MSE, MAX(ABS(Error)), or any other 
measure. Conventionally, regression equations are designed based on MSE minimization (least-
square method). We compute MSE or SSE (Sum of Squared Errors) and use SOLVER to find the 
optimal b0 and b1 (which are in cells J16 and J17 in Table AA1) to find the optimal values for the SSE 
( cell D28) objective function. After computing the forecasts in column C using arbitrary but 
reasonable b0 and b1 (in cells J16 and J17), we form column D (the square of the error in each row) 
and add them to form SSE in cell D26. We then use SOLVER (we can use DataTable too) to find 
optimal b0 and b1 to minimize SSE (or MSE). These optimal values (in cells J16 and J17) are the same 
as we found using the first three approaches in the regression section. It provides insight into least-
squared computations and other regression metrics. Cell D26 can also be computed using dynamic 
arrays without referencing any values in column D (we can even delete column D). Look at the 
significant power of dynamic arrays in cell J19 for direct SSE computations.  

Table AC1. Direct Computation of Regression Coefficients and Key Metrics.  
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In Regression Analysis, we usually compute three SST, SSE, and SSR metrics. SST is the summation 
of the squares of the gap between each piece of data with the average. Table AC1 shows the gap 
between the green curve (actual data) and the red curve (average of all data). The total squared error 
measures how each data element differs from the average. We then have SSE, the squared gap 
between the green curve (actual data) and the blue curve (regression data). The total squared error 
measures how each data element differs from the value obtained on the regression line. The 
difference between these two (SSR) represents how well the regression line could replace the 
average line representing the data. The reader may compare the computations in cells D28, F28, and 
G28 with those of J19, J20, and J21 to better understand dynamic arrays (and may delete columns D, 
E, F, and G). 

R-squared is computed as SSR/SST, reaching the same value as computed directly using the RSQ 
function. The MSE (and Standard Error) computations in Regression slightly differ from what we 
discussed earlier. When you benefit from other statistics extracted from the same data set in the 
computation of an average, you use degrees of freedom. In the computation of SSE, we have used 
two parameters b0 and b1. Therefore, we lose two degrees of freedom when we average SSE over n 
years (26 in this example). Therefore, MSE is not SSE/26 but SSE/(26-2).  

Given the background provided in this Appendix, we can apply a piecewise regression to find b01, 
b11, b02, and b12 for the first and second piece of the regression line and T as the year to switch from 
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the first regression line to the second. The above five items form the changing cells, and MSE is the 
objective function to be minimized. The result is shown in Figure AC1.  

Figure AC1. Piecewise Regression on LA/LB ports Annual Data. 

 
 

Appendix D. All Worksheets Used in This Study. Since there are many computations in different 
worksheets of this workbook, recalculating all elements on all pages slows down the process. The 
user may prefer to put one or a subset of worksheets in separate files.  
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