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ABSTRACT

The combined ports of Los Angeles and Long Beach (LA/LB ports) in California are among the
world's top ten busiest container ports. Approximately 1/3 of US waterborne containers move through
the LA/LB ports. The value of two-way trade in these ports exceeds 7% of total US trade in goods. The
data on the volume of containerized activities in these ports provide an excellent dataset to teach time
series and regression analysis. We use 26 years of data on the activities of these ports to teach
forecasting models, including moving averages, exponential smoothing, trend-adjusted exponential
smoothing, and regression analysis. We also use 312 monthly data for teaching seasonality-enhanced
regression, multivariate seasonality regression using dummy variables, and trend and seasonality-
adjusted exponential smoothing. We have learned that when theoretical concepts are taught through
real-life applications, they positively impact students' mental presence and intellectual engagement
inside the classroom. This manuscript can be used as teaching material or a case study in a business
analytics foundation or a supply chain analytics course. A set of useful Excel functions and formulas
have been brought together and are fully embedded in the models we develop. Our spreadsheet
models can serve as templates for other real-life applications the students may encounter in their early
employment years.

Keywords: freight transportation; ports of Los Angeles and Long Beach; predictive analytics; time
series analysis; moving average; trend and seasonality adjusted exponential smoothing; seasonality
enhanced regression.

1. INTRODUCTION

Competitive firms need forecasting to develop integrated resources and processes, nourish multi-
dimensional and structurally integrated capabilities, understand the revolving business eco-system,
create value, and reshape the business organization towards achieving the plans of the enterprises.
Marketing, finance, and operations are the three key building blocks of manufacturing, service, and
distribution systems. Planning, organizing, budgeting, executing, and controlling are the primary
responsibilities of the three key managers. Operations Managers need forecasting for capacity
planning, inventory management, and scheduling. Financial Managers need forecasting for
investment analysis, revenue and cost analysis, and cash flow planning. Marketing Managers need
forecasting for pricing, sales force planning, and promotions. Good forecasting facilitates matching
customer value propositions with product attributes, and product attributes with process
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competencies in the four-dimensional space of cost, quality, time, and variety. While marketing,
finance, and operation managers may be interested in forecasting different variables, they have a
common interest in the volume of activities, investment plans, operating costs, and revenues. They
are all interested in long-term and short-term forecasts for strategic, tactical, and operational
decisions.

Approximately 1/3 of US seaborne containers move through the LA /LB ports. The value of two-
way trade in Southern California customs exceeds 10% of total US international trade in goods.
Around 75% of this value passes through to LA /LB ports. Around 125,000 firms consider the LA/LB
ports their export hub, and 175,000 firms consider these ports their import hubs. One out of 10 jobs in
Southern California is associated with LA/LB ports.

The inbound and outbound volumes of the loaded and empty containers in LA /LB ports provide an
attractive data set to teach the basics of time series and regression analytics. This manuscript is a
complete teaching material for time series and regression analysis.

Teaching-focused business schools (TFBSs) form close to 50% of all AACSB (Association to Advance
Collegiate Schools of Business) accredited institutions. State-funded teaching-focused business
schools (SFTFBSs) are a large subset of (TFBSs). Many of these lower-funded SFTFBSs educate
nontraditional, low-income, a mixture of first-generation high school or community college
graduates. SFTFBS students are often self-supporting and work 20-60 hours per week. With less time
dedicated to education, these students require more educational resources and streamlined learning
processes than traditional university students. This manuscript provides a streamlined approach to
learning time series and regression methods.

By fully implementing time series and regression analysis in Excel, we provide a platform where
students can learn the basic, intermediate, and some advanced Excel functions and formulas. Excel
is among the three fundamental skills (communication skills and time management) employers seek
in SFTFBS graduates. We have tried to bring well-known forecasting techniques under one roof, link
them with well-thought-of Excel functions and formulas, and combine them in well-integrated and
easy-to-follow Excel sheets. Our spreadsheet models can also serve as templates for other real-life
applications students may encounter in their early employment years.

Competitive the emphasis on globalization in today's education, developing case studies in
international trade provides suitable teaching material in this direction. Articles of this kind facilitate
continuing education and lifetime learning on information and operations management subjects.
Manuscripts of this type may also constitute a bridge between port administrations looking for
employees with good analytical skills and academic institutions training workforces to apply their
skills in modern ports.

This manuscript can be used as teaching material or as a case study to enhance teaching materials.
We have used it as teaching material in an undergraduate course in business analytics foundations
and as a case study in a supply chain analytics graduate course.

We will have a short literature review in Section 2. In Section 3, we estimate yearly port throughput
levels using moving averages and exponential smoothing. Measures of forecast accuracy and
variability are discussed in Section 4. The level and trend for yearly data are discussed in Section 5
using linear Regression and trend-adjusted exponential smoothing. Section 6 estimates monthly
data's level, trend, and seasonality using seasonality-enhanced regression analysis, multivariate
seasonality regression using seasonal dummy variables, and trend and exponential seasonality
smoothing. Conclusions follow in Section 7. In Appendix A, we implement Excel's functional and



visualization capabilities by examining a general any-period moving average and its dynamic tables
and graphs. In Appendix B, we review the basic mathematics of Exponential Smoothing. Appendix
C explains the foundations of the computation of Regression metrics in Excel and provides insight
for piecewise regression analysis. All our Excel worksheets are in Appendix D.

2. LITERATURE REVIEW

Forecasting methods are partitioned into qualitative and quantitative techniques. Qualitative
techniques are based on expert opinions and intuition, such as subjective judgment, surveys,
salesforce polling, historical analogies, and the Delphi method.

Time series and regression analysis are among the quantitative forecasting tools. They form one or
more chapters in (i) Operations and Supply Chain Management and (ii) Business Analytics
Foundations books. For Operations Management and Supply Chain Management books, the reader
is referred to Cachon and Terwiesch (2020), Chase, Aquilano, and Jacobs (2000), Heizer, Render, and
Munson (2023), Stevenson (2014), Venkataraman and Pino (2018), and especially Chopra (2019) and
Iravani (2021). For Business Analytics Foundations books, the reader is referred to Albright and
Winston (2015), Camm, Cochran, Fry, and Ohlmann (2020), Jaggia, Kelly, Lertwachara, and Chen
(2023), and Krajewski, Malhotra, and Ritzman (2016), and Winston (2022).

To limit the length of this manuscript, we do not cover autoregressive models. An autoregressive
model is a regression model where the forecasts are based on previous periods. The reader is referred
to Chapter 3, Iravani (2021), for a simple introduction to an autoregressive model. The moving
average in the autoregressive moving average model (ARMA) differs from what we discuss in this
manuscript. In ARMA's moving average model, the forecasts are based on deviations from past
forecasts (a taste of Exponential Smoothing). That means a part of the forecast is based on the past
observations (AR part), and another part is based on the deviations from the past observations (MA
part). The AR part can be obtained using Regression, while the MA part follows a stationary
distribution. The integration part is the difference between ARMA and ARIMA (autoregressive
integrated moving average). It identifies the number of time differences to make the time series
stationary. For an in-depth review of ARMA and ARIMA and more advanced techniques, the reader
is referred to Box, Jenkins, Reinsel, and Ljung (2015), Brockwell, Davis, and Calder (2002), and
Keating and Wilson (2019).

3. HISTORICAL DATA IN LA/LB PORTS AND FORECASTING CHARACTERISTICS

Time series analyzes past data to identify and separate systematic and random components, extend
systematic components into the future, and provide measures of variability. We use 26 years of data
on the total inbound and outbound volume of loaded and empty containers in LA /LB ports to
experience moving averages, simple exponential smoothing, trend-adjusted exponential smoothing
(Holt's method), and regression analysis. We also use 312 monthly data for seasonality-enhanced
Regression, multivariate seasonality regression using dummy variables, and trend and seasonality-
adjusted exponential smoothing (Winters' method). Excel functions and formulas are fully
embedded in these computations.

3.1 Historical Data at LA/LB Ports

Table 1 presents parts of 26 years of monthly data for LA and LB, including loaded inbound, loaded
outbound, empty inbound, and empty outbound - 312 records with 2496 fields.
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Table 1. 26-Years Monthly TEUs Handling in LA/LB Ports.
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Using the Excel SUMIF function, the monthly data are summarized and pictorially presented in
Table 2. The data are in 1000 TEUs; the last digit was rounded to zero.

Table 2. 26-Year Container Handling at LA/LB Ports.

A B z D E F G H I J K L M N o P Q R 5 T u v W X ¥

Loaded Empty Loaded Empty  Total Total Total Total
1 Year Year Inbound Inbound Outbound Outbound Inbound Outbound Loaded Empties Total
2 1997 1 3270 230 1980 980 3500 2960 5250 1220 6460 B2 =42-1996
3 (1998 2 3810 230 1770 1660 4050 3430 5580 1900 7480 C2 =ROUND(SUMIF(T1.Data312M$AS3:$A6314, T2 Data26Y!$A2, T1 Data312MIX$3:X$314),/1000,-1)
4 1999 3 4280 160 1810 1970 4 3780 6090 2130 8220 D2 =ROUND|{SUMIF(T1 Data312MI$AS3:6A6314 T2 Data26Y!$A2, T1 Data312MIY$3:Y$314)/1000,-1)
5 |2000 4 4950 170 2030 2330 5120 4360 6980 2500 9480 'E2 =ROUND{SUMIF(T1.Data312MI$AS3:6A$314,T2 Data26Y!$A2, T1 Data312MIZ$3.26314),/1000,-1)
6 (2001 5100 150 1990 2400 5260 4390 7090 2550 9650 F2 =ROUND(SUMIF(T1.Data312M$A$3:6A6514, T2 Data26Y!$A2, T1. Data312MIAASI A AG314)/1000,-1)
7 |2002 5690 170 1950 2820 5860 4770 7630 3000 10630 K2 =ROUND(SUMIF(T1.Data312MI$A$3:$A6314, T2 Data26Y!$A2, T1. Data312MIAFS3: AF$314)/1000,-1)
8 |2003 6220 180 2070 3330 6410 5400 8290 3520 11810 12000
9 2004 6930 190 2140 33850 7120 5990 9070 4040 13100
10 2005 7230 210 2390 4370 7440 6760 9620 4570 14190 10000
11 2006 8130 180 2710 4740 8310 7450 10840 4920 15760
12 2007 8110 170 3180 4200 8290 7380 11300 4370 15670 5000
13 2008 7330 190 3470 3350 7510 6820 10800 3540 14340
14 2009 6060 120 3020 2610 6180 5630 9080 2730 11810 4000
15 2010 7100 200 3400 3390 7300 6790 10510 3590 14100
16 2011 7090 280 3620 3010 7370 6630 10710 3290 14000 1000
17 2012 7150 200 3580 3190 7350 6770 10740 3390 14120
18 2013 7430 210 3630 3340 7640 6960 11060 3540 14600 2000
19 2014 7790 250 3540 3590 8040 7120 11320 3840 15160
20 2015 7780 220 3180 4160 8010 7350 10970 4390 15350 o e .
2 7 2 4071 ¥ 742 4 4 R ey 33 2 nd yd a2 = -
B ol | o | P EBERRRLRRRLERLLELLLRL AR
23 |2018 22 8970 260 3430 4900 9220 8330 12400 5150 17550 e Loaded Inbound s Empty Inbound
24 (2019 2 8470 220 3230 5040 8700 8270 11700 5270 16970 =t Loaded Outhound =s=Empty Qutbound
25 (2020 8830 200 3010 5270 9020 8280 11830 5460 17300
26 (2021 2! 10100 180 2620 7160 10280 9790 12720 7340 20060
27 (2022 24 9330 210 2600 6900 9540 9500 11940 7110 19040

3.2 Characteristics of Forecasting Techniques
All forecasting techniques have three main characteristics in common.

(I) Forecasts always deviate from actual observations. Since the world is not deterministic - at least
to us - all forecasts are almost always inaccurate. Forecasts provide the average value for the
variable of interest - sales or demand. Demand is a random variable usually following Poisson



distribution estimated by Normal distribution. Thus, besides the average demand, we need a
measure of variability- standard deviation, variance, or coefficient of variation. If the average
forecast for the next period is F, and the standard deviation of F is S, the coefficient of variation CV=
S/F provides a measure of variability; the lower the coefficient of variation, the more confident we
are with the forecast.

(IT) Forecasts of aggregate values are more accurate than individual item forecasts. Aggregate
forecasts reduce variability. The forecast for all container ports in the world is more accurate than
the forecast for US container ports, the forecast for US container ports is more accurate than the
forecast for California's ports, and the forecast for California's ports is more accurate than the
forecast for the port of Hueneme in Channel Island, North-East of Los Angeles. Aggregate forecasts
reduce the relative variability with respect to the average forecast. One can intuitively understand
that the forecast for the summation of two products is more accurate than the forecast for each
product because the high demand for one product may compensate for the low demand for the
other. From a mathematical point of view, the variance of the sum of two variables is equal to the
sum of the variances of the two variables. Therefore, the standard deviation of the summation of the
two variables (the numerator of CV) is less than the sum of the two standard deviations. If the
standard deviations of the following year's volume of activities in each of the LA and LB ports are
equal and are shown by o, then the variance for the volume of activities in the combined port is 202.
Therefore, the next year's activities volume standard deviation for the combined LA /LB ports is less
than 20; SQRT(2)o.

(ITI) Long-term forecasts are less accurate than short-term forecasts. Forecast accuracy diminishes
as we look further into the future. As we get closer to the demand time, we get better information
and make better predictions. The forecast for next year's LA /LB activities is more accurate than the
forecast for ten years in the future.

3.3. Impact of Characteristics of Forecasting Techniques on LA/LB Ports Throughput.

Table 3 shows the world's container port throughput (in twenty-foot equivalent units- or TEUs) in
ten countries and ten ports. The combined ports of Los Angeles and Long Beach (LA /LB) are ranked
10th in the world. They comprise the largest port complex in the Western Hemisphere.

Table 3. Container port and country rankings.

Container Throughput (Port Ranking) Container Throughput (Country Ranking)
(Million TEU) (Million TEU)

Rank [Port Country MTEUSs Rank |Country MTEUs |% to World
1 Shanghai China 43.5 1 China 245.1 31.2%
2 Singapore Singapore 36.6 2 United States 55.0 7.0%

3 Ningbo-Zhoushan |China 28.7 3 Singapore 36.9 4.7%

4 Shenzhen China 26.6 4 Korea 28.4 3.6%

5 Guangzhou Harbor |China 23.2 5 Malaysia 26.7 3.4%

6 Busan South Korea [21.6 6 Japan 21.4 2.7%

7 Qingdao China 22.0 7 United Arab Emirates 19.3 2.5%

8 Hong Kong, S.A.R |China 18.0 8 Germany 18.0 2.3%

9 Tianjin China 18.4 9 Hong Kong SAR, China |18.0 2.3%
10 SPB (LA /LB) USA 17.3 10 Spain 17.4 2.2%
(a) Top 10 ports: 33% (b) Top 10 countries: 62%

Source: American Association of Port Authorities, 2020.




What are the competing edges of LA /LB ports? Deepwater facilities for post-Panama ships
containing close to 20,000 containers? State-of-the-art on-dock facilities to transfer containers
between ship and train? Intermodal transfer between sea, rail, and road? Consolidation and
distribution facilities for trans-loading from 20- and 40-foot containers to 56-foot containers allowed
on California roads? According to Leachman (2010), the characteristics of forecasting techniques are
one of the key reasons behind the attractiveness of LA /LB ports.

As pictorially shown in Figure 1, shipping containers from the far-east to the east coast may take
four weeks. This shipment takes two weeks to the west coast and 2-4 weeks from the far-east to the
mid-US. For shipments from the Far East to the east-cost, one needs to forecast the demand for the
east-cost four weeks in advance. However, the demand forecast two weeks in advance is enough for
shipping to the west-cost. According to forecasting characteristics (III), forecasting the east-cost
demand when the commodity is in west-cost will be more accurate than in East Asia.

Figure 1. Forecasting-Based Competing Edges of LA/LB Ports.

Furthermore, according to forecasting characteristic (II), forecasting the US aggregate demand is
more accurate than forecasting demand for any smaller region in the US. Therefore, instead of
forecasting for the three regions 14, 21, and 28 days ahead, one may forecast the total US aggregate
demand 14 days ahead. It will take 1-3 days to drayage the containers to the final regions. Instead of
estimating the demand of the east-coast alone, which is less accurate than the demand for the whole
US, and instead of forecasting it four weeks ahead, one can forecast for 14+3 days ahead with more
accuracy.

4. CURRENT LEVEL AND FORECAST FOR THE NEXT PERIOD

In this section, we estimate the level of demand using moving averages and exponential smoothing.
Using these two techniques, we can forecast the average and standard deviation of the next period's
activities. The forecast for all future periods remains the same as the next period as a straight line.
The forecasts are updated when the actual data for the next period becomes available. In Section 5,
we include trends, and in Section 6, we include seasonality in the levels estimated in this section. All
the formulas in all tables are summarized in a set of cells with a gray or white background.



Details of all Excel formulas in all tables are summarized in a set of cells with gray backgrounds or
in red fonts.

4.1. Moving Average Forecasts

Given the annual volume of container handling at the LA /LB ports, a progressive (or naive) analyst
may assume last year's demand as the demand forecast for this year; Fo7 = Az. A conservative and
perhaps irrational analyst may consider the average of all years as the demand forecast for next year;
F27 = AVERAGE (Azs+Axs+...... +Ar+A1

Ordinary people, however, may stay between these two extremes and estimate the demand for the
next year based on the observations in the past n-periods. An n-period moving average forecast for
year 26 is defined as MA2 =AVERAGE(Az, Aos, ...... , Azn). The forecast for year 27 is then defined
as the n-period moving average in year 26; F2; = M A. The 4-period moving average forecast in year
27 equals the 4-period moving average in year 26; Fo7 MA%¢= (A+Axs+ Axnt+A2)/4. Generally, Fiq =
MAr (AtAa+t ... + Acn)/n. Note that the n-period moving averages do not exist until period n
and n-period moving average forecasts do not exist until period n+1. Basic moving average formulas
for 1-period, all-period, and 4-period moving averages are shown in Figure 4 columns C to E. In
Appendix A, we develop a general dynamic formula adaptable to every n-period moving average,
along with its dynamic tables and graphs. It provides a playground to practice advanced Excel
functions and formulas.

4.2. Exponential Smoothing

In exponential smoothing, the forecast for the next period equals the forecast for this period plus a
fraction of the gap between the actual and forecast values in this period. Fi1 = Fi+ a( A¢- Fi), where 0
< o <1. It has an autoregressive taste. A minor manipulation can restate it as Fi+1 = (1-a) Fi + aA..
That is, the forecast for the next period is the weighted average of the forecast and actual for this
period. It smooths the gap between the actual demand and its forecast.

To start, we need to have a forecast for period 1. There are at least three ways to compute the
forecast for the first period. (i) Fi=Aj, (ii) Fi=average of all existing actual values, (iii) F1=interpret of
the linear regression line (discussed later) applied to the existing actual values. We follow the first
approach and set Fi=A1.

For 0=0.5, the formula is transformed into F.+1 = 0.5Ft + 0.5A. = (Ft + A,)/2. The forecast for the next
period is equal to the average of the actual and the forecast for this period. For a=1, the formula is
transformed into Fi1 = Ay; the forecast for the next period is equal to the actual for this period. For
0=0, the formula is transformed into F+1 = F; the forecast for the next period is equal to the forecast
for this period.

We usually start with a=0.5 and use an optimization tool, such as Excel's standard SOLVER add-ins
or Data Table, to find the optimal oo minimizing one of the metrics discussed in the next section. In
Appendix B, we show that exponential smoothing is the weighted average of all pieces of data
where the weights continually get smaller on the older data. Exponential smoothing forecasts using
0=0.5 are in column F of Table 4. This table also shows the graph for alternative forecasting
techniques that can be prepared using Excel's scatter graph or line chart. Key formulas are shown in
the gray box.

Table 4. Alternative Moving Average and Exponential Smoothing Forecasts.



A B C D E F G H I J K L M

1 n=4 o= 0.5

2 | Year  Actual (1000 TEUs) Fioi=4y Ave-All-A, MA-S-4p ES

3 1 6460 6460 C8 =B7

4 2 7480 6460 6460 6460 D8 =AVERAGE(B%3:B8)

5 3 8220 7450 6970 6970 E8 =AVERAGE(B5:B8)

6 4 9480 8220 7387 7595 F8 =(1-$FS1)*F8+5F$1*B8

7 5 9650 9450 7910 8537.5

8 G 10630 9650 8258 9093.75 MOViIlg Average a.nd Exponential Smoothing
9 7 11810 10630 8653 9561.875 25000

10 8 13100 11810 9104 10835.94

11, 9 14190 13100 9604 11967.97 20000

12| 10 15760 14190 10113 13078.98

13| 11 15670 15760 10678 14419.49 | 15000

14 12 14340 15670 11132 1504475

13| 13 11810 14340 11399 14692.37 | 10000

16| 14 14100 11810 11431 13251.19

17| 15 14000 14100 11621 13675.59 5000

18| 16 14120 14000 11780 13837.8

19 17 14600 14120 11926 13978.9 0

20| 18 15160 14600 12084 14289.45 1234567 8 90101112131415161718192021 222324252627
21| 19 15350 15160 12254 1472472 —a— Actuial (1000 TEUs) —a— Ave-Al-At —s—MA-S5-4p —a—ES —a—TFt+ 1=At
22| 20 15630 15350 12417 15037.36

23| 21 16400 15630 12578 15333.608

24 22 17550 16400 12760 15866.84

25| 23 16970 17550 12978 16708.42

26| 24 17300 16970 13151 16839.21

27| 25 20060 17300 1332 17069.61

28| 20 19040 20060 13594 18564.8

29I 27 19040 13803 18802.4
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4.4. Age of data in Moving Average and Exponential Smoothing

A 4-period moving average forecast can be computed only after period 4, and then it is set as the
forecast for period 5; Fs=MA4. The newest piece of data in Fsbelongs to period 4 and is 1 period old.
The oldest data belongs to period 1 and is 4 periods old. Therefore, in a 4-period moving average,
the age of data is (1+4)/2 = 2.5 periods. In an n-period moving average, the age of data is (n+1)/2
periods. It is proved in Appendix B that the age of data in Exponential Smoothing is 1/a. Given 2.5
as the age of data in a 4-period moving average, the data in an exponential smoothing with 1/a =2.5,
i.e., a =0.4, has the same age. An exponential smoothing forecast with a = 0.6667 is equivalent to a 2-
period moving average forecast, and an exponential smoothing forecast with a = 0.1 is equivalent to
a moving average forecast with about 19 periods.

The smaller the a in Exponential smoothing has the same effect as the larger the number of periods
in the moving average. They smooth out the recent fluctuations. Larger values for a in Exponential
Smoothing similar to the smaller number of periods in the moving average result in higher
responsiveness to recent fluctuations. An a = 1 has the same role as a 1-period moving average; the
forecast for the next period is equal to the actual in this period.

5. Measuring Forecast Accuracy and Variability

In this section, we provide foundations to answer two questions. How do we measure the suitability
of a forecasting technique for a specific dataset? How can one compare the quality of several
forecasting techniques for a specific dataset?



5.1. A Basic Forecast Accuracy and Variability Measure

Given the actual data and forecast (A and F;) and error (E: = A - F), we define the sum of forecast
error SFE = SUM(E;) and average error BIAS = AVERAGE(Ey). Since the error values are positive or
negative, they cross each other out if they are added or averaged. SFE and BIAS are expected to be
small and close to zero. A forecasting approach may be considered of high quality on the
foundations of SFE and BIAS. Still, there may be significant gaps between actual and forecast values
in both positive and negative directions. This problem can be resolved by considering the absolute
value of the gaps. Mean Absolute Deviation (MAD) is defined as MAD = AVERAGE(ABS(E)).

MAD serves two essential purposes. First, it compares two or more forecasting techniques and
identifies the best based on the lowest MAD value. Second, 1.25MAD provides an estimate of the
standard deviation of the demand forecast. A forecasting method provides F.1as the estimate for
the average demand in the next period. 1.25 times the most recent MAD is the standard deviation of
the forecast for the next period. In other words, A1 ~N(Fw1, 1.25MADy); demand for the next period
follows a normal distribution with an average of Fi.1 and a standard deviation of 1.25MAD..

The tracking signal is defined as TS=SFE/MAD. It is a positive or negative number divided by a
positive number. In an accurate forecasting method, the summation of all errors is expected to be
zero. TS can jump up and down on the positive and negative sides due to randomness in the actual
data, but in an accurate forecasting method, it should remain close to zero. We can also define the
upper control limit (UCL) and lower control limit (LCL). In some textbooks, it is stated that TS
moves between LCL=-4 and UCL=+4. In Appendix B, we will mathematically prove that the limits
of +4 are incorrect.

TS serves two essential purposes. First, we expect it to stay within UCL and LCL. Second, we do not
expect to see a pattern over time. For example, we do not expect to see an always positive or
consistently negative TS. In the first case, our forecasting technique underestimates the demand
since we have the summation of At-Ft in the numerator. In the second case, it overestimates the
demand. We also do not expect to see a cyclic pattern since, in that case, there may be seasonality in
the data that is not incorporated into our forecasting.

In a general demand forecast, we may assign a higher weight to positive gaps than to a negative gap.
In the second case, we have overstock; in the first case, we lost sales. Usually, the cost of overstock is
less than the cost of lost sales. In these cases, we may assign a coefficient greater than 1 to positive
Et=At-Ft values. We may also benefit from the newsvendor problem (Arrow, Harris, and Marshak,
1951; Schweitzer and Cachon, 2000; Iravani, 2021) to find a good tradeoff coefficient of
underestimating and overestimating demand.

4.2. Alternative Forecast Accuracy and Variability Measures

An alternative approach to removing negative signs is to square the errors and replace MAD with
Mean Squared Error (MSE) = AVERAGE(E?2). MSE prevents large gaps between forecast and actual
values since the errors are squared. MAD computation was more straightforward when
implemented long before calculators and sliding rulers. However, working with an absolute value in
mathematical expressions, for example, computing the derivative of an expression containing an
absolute value, is difficult. It becomes easy if the squared values replace absolute values. In addition
to 1.26MAD, the square root of MSE provides another estimate for the standard deviation of the
forecast. That is A1 ~N(F t+1, SQRT(MSE))).



There is also a third method that we refer to as Mean Absolute Relative Deviation (MARD). Instead
of averaging | Et| values, we average |E:|/A:values. For example, |E:|= 10 states that there were
10 units of deviations between A: and F:. If A; =200, then 10 relative to 200 is a 0.05 (or 5% gap). In
MARD, the relative absolute gaps (relative to the demand) are computed instead of the absolute
gaps. There are still other methods. For example, we may minimize the maximum absolute
deviation between actual and forecast. Table 5 shows the computations of error (E), the sum of
forecast error (SFE), average error (BIAS), absolute error, MAD, TS, MSE, and MARD for exponential
smoothing with a=0.5. The actual vs. forecast and the tracking signal curves are also shown in the
table.

Table 5. All Metrics for Forecast Accuracy and Reliability.
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4.4. Optimal a Value

The optimal a value can be computed in at least two ways. (i) SOLVER and (ii) Data Table. For
SOLVER, the objective function is to set one of the three measures of MAD, MSE, or MARD (in cells
H29, 129, and ]29) to be minimized, and a cell Bl is the changing cell to minimize the objective
function value. For the Data Table, we set cells P4, Q4, and R4 equal to cells H29, 129, and J29,
respectively. The a values start from a cell one column to the left and one row below MAD. Using a
formula, we can find the value of a in the Data Table with as many decimal points as the value
obtained by SOLVER. This is done by typing the starting a. value of 0 and the increment in two
arbitrary cells (such as cells O2 and O3 in this example). We then set O5=02 and O6=02+$0$3 and
copy down from 0 to 1. After setting O4 to R15, > Data > What-if Analysis = Data Table. Since
alternative o values are typed in a column (not in a row), inside the column input cell, we point to
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B1, where the a value is placed. We then find the a value corresponding to the minimal MAD (or
MSE or MARD) value. Suppose the a value for the minimal MAD is 0.7. To estimate o with more
decimal points), we can set cell O2 to 0.65 and O3 to 0.001 and find the minimum ( in the range of
0.65 to 0.74). We can continue this procedure to as many decimal points as we wish to find answers
as precisely as SOLVER with the Data Table.

Optimal o computations using both solver and Data Table for all three metrics and their
normalization (divide each by the minimal value in that column) are shown in Table 5. The reader is
encouraged to look into all the formulas in gray cells. We have also used conditional formatting to
highlight the minimal values.

The reason for an upward tracking signal is the positive overall trend of actual data. That is why the
moving average recommends n=1 and exponential smoothing recommends a=1. When the tracking
signal shows a continual or increasing positive trend, we may add a constant to the forecast value. In
Table 6, we implemented a two-dimensional Data Table to find the optimal value for o = 0.66 plus a
constant of 495 to be added to the forecast to minimize MAD. The computations for exponential
smoothing and the essential formulas are shown in Table 6.

Table 6. Forecasting Measures under Optimal o and a Constant for Exponential Smoothing.
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4.5. Stationary vs. Non-Stationary Data.

In our dataset, the optimal a for all three metrics is equal (this is not the case most of the time) and is
equal to 1 (this is also not the case most of the time). Since we have an upward trend almost in all
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years, an o=1, and therefore Fi+1=A\is the best solution. Moving average and Exponential Smoothing
are appropriate for stationary data. We can draw the Cumt = SUM(At) function to check if a data set
is stationary. The data is stationary if Cum: is close to a straight line. Figure 2 shows Cum; for our
data is distant from a line. We will later discuss trend-adjusted exponential smoothing and
Regression for data with a trend.

Figure 2. Stationary vs. Non-Stationary Data.
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5. LEVEL AND TREND
This section reviews (i) Bi-variate linear Regression and (ii) Trend-adjusted exponential smoothing.
5.1. Bi-variable Linear Regression.

The bi-variable linear Regression is generally stated as y=bo+bix. Our time series case can be stated
as Fi=bo +bit. While we could have continued with the actual years, we set t equal to the current
year minus 1996 for simplicity. No matter how we enumerate the years, while we will have
different values for b0 and b1, all the analyses and the shape of the regression line remain the
same. Alternative linear regression tools are explained below and are summarized in Table 7.
Unlike moving average and exponential smoothing, where the forecast for all future periods is
equal to the forecast for the next period, Regression's forecast for any period t can be computed as
Fi=bo +b:t.

Procedure-1. Add Trend Line. After presenting the data in a scatter graph, we can right-click on
the graph and choose to add a trendline. Options of exponential, linear, logarithmic, polynomial,
power, and moving average will appear. We chose liner. We also check the display equation and
display the R-squared value boxes. The scatter graph shows the regression equation y = 419.22x +
8143.6 and R? = 0.8418. The larger the R-square (0<R2<1), the more reliable the regression line.

Procedure-2. Data Analysis Add-Ins. Choose Data Tab > Data Analysis = Regression. In the next
table, enter the Y variable (A;), then X variables (t), and select the cell that will be in the east-north
of the table (we select cell E1). If the distance between the two blue numbers in the bottom part of
Table 7 (confidence interval for bi) does not cover zero, there is a relationship between Y and X
(b120). If the blues number in the top part of the table (significance F) is less than 0.05, with more
than 95% confidence, not both by and b, are zero.

This approach is not recommended for bi-variable linear Regression if we do not need all the
information this Add-Ins provides. That is because we must reproduce the table if a value changes,
and it also occupies a portion of the worksheet. As shown in the seasonality-enhanced multi-

13



variable Regression, Data Analysis Add-Ins is a good choice for bi-variable non-linear and multi-
variable linear and non-linear cases.

Procedure 3. Excel Functions. As shown in Table 7, we can compute most of the Data Analysis
Add-Ins output using Excel functions such as INTERCEPT, SLOPE, RSQ, STEYX, CORREL,
CONFIDENCE.NORM, CONFIDENCE.T, and additional formulas.

Procedure 4. Using More Fundamental Computations in Excel. In Appendix C, we will
provide the basic knowledge of the computation of regression metrics through computing SST, SSE,
and SSR, as well as a piecewise regression.

Table 7. Alternative Linear Regression Computations

A B C D E F G H | J K L
1 t At |Yhat (Reg) SUMMARY OUTPUT
2 | 1 |6460 8562.8 Regression Statistics
3 | 2 |7480 8982.0 Multiple R 0.9175 =CORREL($B52:5B$27 $A52:3A527) 0.9175 =SQRT(F4)  Correlation Coefficient
4 | 3 8220 9401.3 R Square 0.8418 =RSQ($B$2:$B$27,$A$2:5A527) I 0.8418 =F3"2 Coefficient of Determination
5 | 4 19480 9820.5 Adjusted R Squa 0.8352 b0 8143.60 =INTERCEPT($B5$2:$B$27,5A52:5A527)
6 | 5 19650 10239.7 Standard Error 1418.51 =STEYX(B2:B27,A2:A27) bl 419.22 =SLOPE($B$2:5B527,.$A$2:5A%$27)
7 | 6 |10630 | 10658.9 Observations 26 =COUNT(B2:B27) R-Square 0.8418 =RSQ($B$2:$B527,5A$2:5A%$27)
8 | 7 [11810| 11078.1 ANOVA StdError 1418.51 =STEYX(B2:B27,A2:A27)
9 | & |13100 | 114974 df EE] MS F Significance F
10| 9 (14190 | 11916.6 Regression 1 57028288.6 257028289 127.7369 4.2761E-11
11| 10 (15760 | 12335.8 Residual 24 48292065.23 2012169
12 | 11 (15670 | 12755.0 Total 25 305320353.8
13 | 12 (14340 | 131742 Coefficients Standard Error t Stat P-value Lower 95%  Upper 95%
14 | 13 (11810 | 13593.5 Intercept (b0) 8143.60 572.83 1422 347169E-13 6961.33 9325.87
15 | 14 (14100 | 14012.7 X Variable 1 (b1) 419.22 37.09 1130 4.27614E-11 342.67 495.78
16 | 15 (14000 | 14431.9 F16 =INTERCEPT($B$2:$B$27 $A52:5A527) Zero 1s NOT Covered
17 | 16 |14120 | 148511 F17 =SLOPE($B$2:$B$27,$A$2:3A%$27)
18 | 17 (14600 | 15270.3 C19 =$F$14+5F$15"A19
19 | 18 (15160 | 15689.6 25000 25000
20 | 19 |15350 | 16108.8
— o y=41922x + 81436
21| 20 |15630 | 16528.0 R?=0.8418
22| 21 (16400 | 169472 | 20000 20000
23 | 22 |17550 | 17366.5
24| 23 [16970 | 17785.7 | 15000 15000
25 | 24 (17300 | 18204.9
26 | 25120060 | 186241 | o000 10000
27 | 26 [19040 | 190433
28 | 27 19462.6
29| 28 198818 | % 5000
30| 29 20301.0
31| 30 20720.2 o o
» 0 5 10 15 20 25 30 0 5 10 13 20 25 30 35
33 —e— At - Linear (At) —a— At —e—Yhat (Reg)
34
1
4 » .| T7.Reg.line.AddIns.Functions

5.2. Trend Adjusted Exponential Smoothing.

Trend-adjusted exponential smoothing is defined as Fi+1 = Lt + Ty, where Liand T: are the level and
trend in period t as defined in Chopra (2019) based on Holt (1957).

L= (1-(1)(Lt+Tt) +aA;
T = (1- B) Tt + B(Len -Le)
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Trend-adjusted exponential smoothing, or double exponential smoothing, smooths out the level and
trend of this period based on the level and trend of the previous period and the actual observation in
this period.

Starting Lo and To can be computed in two ways. We may set Lo as the demand in the first period
and Ty as the demand of the last period minus the demand of the first period divided by (N-1). In
our case, Lo =A1= 6460, and To=(A2%-A1)/(26-1)= 503.2 (Iravani, 2021). Alternatively, we may set Lo as
the intercept of the regression line and T as its slope. Lo = bo= 8143.6, and To=b1 =419.2 (Chopra
2019). We follow the first approach. We start from a = 0.5 and p = 0.5 and then use SOLVER or a
two-dimensional Data Table to find the optimal values of a = 0.87 and # =0, as shown in Table 8.
Compared to simple exponential smoothing, the MSE and other metrics are lower, and the extension
to future periods carries a trend and is not a straight line. Compared to Regression, we have a
smooth curve going up and down instead of a straight line.

We can also combine linear Regression and trend-adjusted exponential smoothing in the form of F; =
YFTrend-Adjusted.Es + (1-Y)FLinear-Regression. The optimal y value minimizing the MSE of the forecasts from
the actual values can then be obtained using SOLVER or Data Table.

Table 8. Trend Adjusted Exponential Smoothing Computations.

A B C D E F G H | J K L M N o] P Q R S T
1t At Lt Tt Ft MAD=2695 = 0.867835 0.800  0.010 aalpha=0.87; beta=0
2 6460  503.2 MSE= 29537423 B— 0 0000 0100
3|1 6460 63265 5032 6963.2
4 |2 7480 74205 503.2 7029.7 H1 =SUM(ABS(B3:B28-C3:C28)) 29537423 0.00000 0.10000 0.20000 0.30000 0.40000 0.50000 0.60000 0.70000 0.80000 0.90000 1.00000
5|3 8220 $180.8 5032 79237 H2 =SUM(B3:B25-E3E28)*2) 0.8000 29647247 32131980 33956412 35553849 37201228 38998973 40975023 43140173 45507397 48096556 50932241
64 9480 93748 5032 8684.0 C2 =83 0.8100 29616827 32096745 33938971 35369738 37258137 39102127 41130049 43354090 45768692 48454528 51375645
705 9650 9680.1 5032 9878.0 D2 =(B25-B3)/(A25-A3) 0.8200 29591459 32068057 33929191 35594056 37324229 39215407 41296395 43580732 46084173 48827930 51835157
8 |6 10630 10571.0 503.2 10183.3 E3 =C2+D2 0.8300 29571056 32045790 33926925 35626659 37399380 39338704 41473953 43819961 46393633 49216447 52310370
9|7 11810 117127 5032 11074.2 C3 =(1-5]51)"E3+5[51'B3 0.8400 29553536 32029826 33932031 35667412 37483472 39471916 41662618 44071645 46716876 49619802 52500967
10/8 13100 12983.2 5032 12215.9 D3 =(1-5]52)'D2+$]62*(C3-C2) 0.8500 29544524 32020055 33944382 35716193 37576397 39614948 41862295 44335661 47053725 50037768 53306749
11(9 14190 14097.0 503.2 13486.4 E4 =C3+D3 L8600 29338845 32016372 33963855 35772885 37678056 39767712 42072895 44611896 47404032 50470181 53827654
12 10 15760 15606.7 503.2 14600.2 H1 =SUM(ABS(B3:B28-C3:C28)) 0.8700 |PEEEFERF 32018679 33990338 35837382 37788339 39930131 42294339 44900257 47767685 50916959 54363782
13|11 15670 15728.1 503.2 16109.9 H2 =SUM((B3:B28-E3:E28)"2) 0.8800 29540819 32026883 34023726 35909588 37907224 40102136 42526560 45200670 48144616 51378113 54915418
14|12 14340 14590.0 503.2 16231.3 | E29 =C28+D2S 0.8900 29548647 32040900 34063923 35989415 38034578 40283667 42769507 45513090 48534516 51853769 55483059
1513 11810 12243.9 503.2 15093.2 | E30 =E29+$D%28 0.9000 29560959 32060650 34110839 36076752 35170360 40474679 43023147 45837506 48935340 52344176 56067434
16|14 14100 13921.2 5032 12747.1 | E32 =E31:6DS28 Min 29537532
17(15 14000 14056.1 503.2 144244 253000
18|16 14120 14178.1 503.2 14559.3 ™ -H2 b aalpha=0.87; beta=0
19|17 14600 14610.7 503.2 14681.3 15 =K1
20(18 15160 15153.9 5032 15113.9 16 =I5+5L51 20000
21|19 15350 15390.6 503.2 15657.1 J4 =K2
22|20 15630 15664.9 503.2 158938 K4 =J4+5L52
2321 16400 16369.3 503.2 16168.1 J16 =MIN(J5:T15) 15000

2422 17550 17460.5 503.2 16872.5

25|23 16970 17101.3 503.2 17963.7 G6 =PROPER(CHAR(96+COLUMN(C2)))&ROW(C2)
26|24 17300 17340.2 503.2 17604.5 H6 =FORMULATEXT(INDIRECT(G6))

27 |25 20060 19767.0 503.2 17843.4

28|26 19040 19202.6 503.2 20270.2

10000

5000

29|27 19705.8

30|28 20209.0

3129 20712.2 0

32|30 212154 0 5 10 15 20 25 30
33

34 —— At —e—Ft

35

6. LEVEL, TREND, AND SEASONALITY

In this section, we review (i) seasonality-enhanced bi-variable linear Regression, (ii) seasonality-
enhanced multi-variable Regression using dummy variables, and (iii) trend and seasonality-adjusted
exponential smoothing.

6.1. Seasonality Enhanced Bi-Variable Linear Regression.

The monthly data shown in Table 2 for 12(26) months (in 1000 TEUs) are copied into Table 9.
Periodicity is 12 (seasonality repeats every 12 months). One may add three months of data and
consider the periodicity of four seasons, provide daily data and seven days over a week, or provide
hourly data with a periodicity of 24 hours.

Table 9. Computations for Static Seasonality Enhanced Bi-Variate Linear Regression.
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A B C 1] E F G H | 1 K L

1 |Per. Monthly Data Centered MA Deseas.Reg SeasIndex Seas  SeasInd  SeasIndAdj Ft(StatReg) bo= 702.82

2|0 bl= 290

3|1 180 1 R2= (083

a2 163 2 Periodicity= 12

5| 3 504 3

6| 4 518 4 C9  =(AVERAGE(B5Bl4)+AVERAGE(BLB13))/2
7] s 520 5 L1  =INTERCEPT(6CS9:5C8308,8AS9:6AC308)
8| s 556 6 L2  =SLOPE($C$9:5C8308,5A89:6A8308)
9|7 365 7 L3 =RIQ($CE9-5CE308,5A89:6A5308)

10| 8 557 D5 =SLSI+SLS2%A3

1) 9 589 E3  =B3/D3

12 10 583 F3  =IF(MOD(A3,8L84)>0,MOD{A3,6L64) SLS4)
13| 1 556 G3  =AVERAGEIF(SF$3:6F$314,F3 SES3:SES314)
14| 12 556 G2  =AVERAGE(G3GLY)

15| 13 527 H3  =G3/$GS2

16| 14 512 1317 ={§L$1+SL862*A317)*VLOOKUP(F317 $F$3:6H614,3,0)
17] 15 508

18] 16 611

19| 17 632

298 296 1,762

298| 207 1,652

300| 298 1,692

301 299 1,557

302| 300 1,541

303/ 301 1,667

304 302 1,654

305| 303 1822

306/ 304 1,708

307 305 1,859

308| 306 1,712

309| 307 1,721

310| 308 1,612

311 309 1452

312| 310 1,357

313|511 1,228

314| 312 1,273 7

315| 313 1

316| 314 2

317| 515 3

318| 316 4

318| 317 5

320| 318 6

321 319 7

322| 320 B

323| 321 9

324|322

325/ 323

326| 324

207

1+ » .. | T9.SeasRegChopraMineEvenpi2

Step 1. Removing Seasonality. When we compute the average of 12 months, it is pure of seasonality
since high and low seasons cross each other out. This is true for any other periodicity; the average of
all seasons does not contain seasonality. Unlike the moving average, where we placed the average of
n periods in front of the last period, here we implement the centered moving average and place the
average of the n periods at the center of the n periods.

If we were considering seasonality over 7 days of weeks since 7 is odd, we could have placed the
average in front of period 4, compared the actual period 4 with the centered moving average, and
estimated the seasonality of period 4. But there is no middle period for even periodicity. Therefore
(and for all other even periodicities), we first compute the average of the 12 periods and assume it is
placed at the boundary of periods 6 and 7. In general, for even periodicity of n, we compute the
average of periods 1 to n and place it on the boundary of periods n/2 and n/2+1. We then compute
the period 2 to period 13 average and assume it is at the boundary of months 7 and 8 (or periods
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n/2+1 and n/2 +2 in general). Next, we compute the average of these two centered moving averages
and place it in front of period 7, representing the unseasonal activity volume at period 7. We then
copy this formula down to 6 months to the last months (month N-n/2). We will generally have the
centered moving average for all periods minus periodicity.

Step 2. Trend in the Deseasonalized Data. We apply linear Regression on months 7 to 306 to find
the level and trend of the data pure of seasonality. It leads to b, b1, and R?, as shown in columns K of
Table 9. The Excel worksheet also shows the formulas for all other computations (as they follow).

Step 3. Seasonality Indices. We divide the actual data of each month by the value obtained from the
regression line applied to the deseasonalized data (A:/Y:). The ratios are estimates of the seasonality
index in all 12(26) months. By averaging all seasonality indices of each month, the average
seasonality index of January (S1) to December (Si2) is computed. The average of the average
seasonality indices for all 12 months must equal 1; therefore, to normalize, we divide the average
seasonality index of each month by the average of the averages. These computations are in columns
G and H. These seasonality indices remain fixed for all the past and future months. That is why
Chopra 2019 refers to it as a static method compared to the trend and seasonality-adjusted
exponential smoothing, discussed later- as an adaptive method.

Step 4. Seasonality Enhanced Regression. Finally, we put seasonality back on the deseasonalized
regression line and forecast the future. Fi = (bo+b1t)*S; where S;has the same monthly value over all
years. All formulas are clearly explained in Table 9. The results of the four steps of this process are
schematically represented in Figure 3. The above analysis shows that the monthly seasonality is
from a minimum of 0.87 to a maximum of 1.09. In a similar analysis, one may study daily seasonality
(periodicity of 30) or hourly seasonality (periodicity of 24) if the data is available.

Figure 3. Four Key Steps in Static Seasonality Enhanced Bi-Variable Linear Regression.
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6.2. Seasonality Enhanced Multiple Regression Using Dummy Variables.

We use multi-variable Regression as another static seasonality analysis approach by implementing a
set of binary dummy variables. For each month, we define a binary variable, which is 1 if we are in
that month and 0 otherwise. For periodicity of n periods, we need n-1 dummy binary variables.
Other periods are compared with the period of choice with no binary variable associated. The period
of choice does not affect the outcomes of the analysis. For a periodicity of 12, we define 11 binary
variables for January to November. The dependent variable Y is the volume of activity in the
corresponding month, and our X variables are the month counter (from 1 to 312) and 11 dummy
binary variables. Excel's Data Analysis Add-ins require the independent variables to be in
contiguous cells. Therefore, we copy the month variables adjacent to the dummy variables. They can
be in the first column to the left or right of the dummy variables. Compared to bi-variable
Regression, we select 12 adjacent columns associated with the month and 11 dummy variables
instead of a single column for X variables. The output and all the essential formulas are shown in
Table 10. The reader may pay attention to the formula to generate Os and 1s for the dummy variables
in each month and, more importantly, to multiply the row of the decision variables by the column of
regression coefficients (by using dynamic arrays and transposing one of the two vectors).

Table 10. Seasonality Enhanced Multi-Variable Regression Computations.
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A B C |[D|E|F|[G|H| I |J K| L|M[N O P Q R 5 T u v w X v
1 |Per. MonthlyData 1 2 3 4 5 6 7 8 9 10 11 11 t Ft
2|0
31 150 1 0 0 0/ 0 0 0 0 0 0 0 0 1 60| C3 =IF(MOD($A3SNSL)=CSL10)
4|2 168 0 1 0 0/ 0/0 0 0 0 0 0| 0 2 56 |D3 =IFMOD($A3SNS1=DS11,0)
53 504 00 1 0 0 0 0 0 0 0 0 0 3 607 | P3 =65830+55643"03+5UM(C3 N3 TRANSPOSE(S5531:55542))
J Jf ?JS p foloj1/0j0/ 01000010 Jf E:l Multi-Variable Dummy Regression
7|5 529 0o oo o/ 1/0 0o 0 0o 0 0|0 5 7
5|6 556 o (oo o/ 0/ 1 0 0 0o 0 0 0 & 77 2300
9|7 568 o (oo o/ 0/0o 1 0 0o o0/ 0/0 7 77
108 557 o (oo o/ o/o o/ 1 0o o 0|0 s s7 2000
1|9 559 o (oo o/ 0/o0o 0o 0 1 0/ 0/0 9
12| 10 583 0 oo o/ 0/o 0o/ 0 0o 100 10 72
131 556 o (oo o 0/ 0 0o 0o 0o 0 1 0 11 7 1500
14|12 556 o (oo o 0/0o o o o o0 0| 0 12 703 SUMMARY OUTPUT
15| 13 527 1 0 0 0 00 0 0 0 0 0| 0 13 68
16| 14 512 0 1/ 0 0 0 0 o0 0 0 0 0 0 14 5% Regression Statistics Lo00
17|15 608 0 01 0/ 0/0o 0o 0 0o 0 0|0 15 e Multiple R 038
18| 16 611 o (oo 1/ 0/0 0o 0o o o0 0| 0 16 707 R Square 078 40
19| 17 632 o (0o o/ 1/0 0o 0 o 0 0| 0 17 78 Adjusted R Square 077 S
20|18 640 o (oo o /o1 o/ 0o o o 0|0 18 72 Standard Error 14670
21|19 658 o (oo o 0o 0 1 0 o0 0 0 0 19 813 Observations 32 0
22|20 656 0o (oo 0/o0 0 e 1 @ o0 0 0 20 852 e * o 10 00 = 0 =0
3|2 663 0o (00 o0/ 0/0 o 0 1 0 0 0 21 807 ANOVA
24| 659 o (oo o/ 0/0o 0o 0o o 1 0 0 22 s7 i 55 Ms F Sigwficincc F
25|23 667 0 0/ 0o o0/ 0/0o 0o 0 0o 0/ 1|0 235 70 Regression 13 23171341 1782411 5282 1.07483E-90
26|24 614 o (0o o 0/ 0 o 0o o 0 0| 0 24 738 Residual 203 6413244 21521
27|25 588 10 0 0 0/0o o 0 0 0 0| 0 25 720 Total 311 29554385
28|26 588 0 (10 0 0 0 0 0 0 0 0 0 26 63
29 |27 624 1] 0 1, 0/ 00 0 0 © 0 0 0 27 &77 Cocfficients | Standard Erver t Stat P-vafuie | Lower 95%  Lipper 95%
30|28 606 0 (oo 1/0/0 0o/ 0 0o o0/ 0|0 25 72 Intercept 665.29 3247)  Regression T X
31|20 730 o (oo o 1/ 0 0o 0o o 0 0| 0 29 s X Variable 1 2107 2070 oot o
32|30 691 0o (oo o/ 0|1 0 0 0o o0 0|0 30 79 X Variable 2 113.05 1070 Input {Range: sesasesns 2
33|31 678 o (o 0o 0 0|0 10 0 0 0 0 31| 848 X Variable 3 6973 4070 Input £ Range scsrsmsied * oo
34|32 747 o (0o o 0/0o 0o 1 0o o0 0|0 32 s8 X Variable 4 5.09 10.69 Help
Labels (] Constant is Zero =
35|33 740 0 o0/ o o/ 0/0o 0o 0 1 0/ 0|0 3 su X Variable 3 65.19 4069 e a—— =
36| 34 784 o (0o o 0/ 0 0 0 0o 1 0| 0 3 s X Variable 6 4109 10.69
37|35 745 o 0o/ o/o olo o/ 0o 0 o 1 0 35 s X Vaziable 7 59.12 ge|  Oupdenton 5
38| 36 699 o  0o/o/ 0o 0o/ o o 0o 0 0 0 0 3 73 X Variable § 12569 1069 oﬁlpf:::::ﬂ o =
39|37 697 1 0 0o o 0o/o o 0 0o o 0|0 3 7 X Variable 9 7733 10.69 S ——
40|38 672 0 1 0 0 0 0 0 0 0 0 0 0 38 666 X Variable 10 9438 4069 Resicuals
41| 39 708 0 0/1 0 0 0 ©/0 © 0 0 0 39 712 X Variable 11 3485 40.69 L) Bealduals L i b
[ Standaraized Residuals Ljme Fit Fots
2|10 773 o (oo 1/ 0/0 0o 0o o 0/ 0 0 w 77 X Variable 12 0.00 0.00
a|u 815 0 (0 0 0 1 0 0 0 0 0 0 0 41 85 X Variable 13 291 0.09 A g
() tormal Prabability Fiots
315(313 1 (o/o o0o/olo o/ o0o/o o o o 33 15
316|314 o |10 ololo o oo 0|00 314 147
317|315 o (o 1 o/olo o o/0o 0|0 0o 35 156
325/323 o (o o o/olo o o/o0o 0|10 323 Leu
326|324 o (o o o|o/o o oo 0|0 0 324 Le2
?7?'
4« r .. | T10.5easDummyReg

6.3. Trend and Seasonality Adjusted Exponential Smoothing.

A crucial difference between Regression and trend-adjusted exponential smoothing is that
Regression has a static trend, while the trend is adaptive in trend-adjusted exponential smoothing,.
Also, for the two previous seasonality-adjusted approaches discussed in this section, we used the
term static seasonality since seasonality indexes and all other coefficients remain unchanged yearly.
In this third approach, we update seasonality indices (level and trend) from one period to the next. It
extends the trend-adjusted exponential smoothing (Winter, 1960, Chopra, 2021). The reader may
look into the graphs of the output of the three approaches to visualize the dynamism of this third
approach.

By applying linear Regression on the 12-month centered moving average implemented in
seasonality-enhanced bi-variable linear Regression, we first estimate the level (Lo =INTERCEPT) and
trend (To=SLOPE) in month zero. We also use static seasonality indexes computed in seasonality-
enhanced bi-variable linear Regression (this approach is implemented in Chopra, 2019).
Alternatively, we may set Lo equal to the average demand in the first 12 months. Given Ly as the
average of the last 12 months, we set To=(Lx-Lo)/(12(N-1)). For seasonality, we may divide the
demand of each of the first 12 months by the average of these months and assume them as the
seasonality indexes for the first 12 months (this approach is implemented in Iravani, 2021). While the
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second approach is easier with fewer computations to estimate the starting parameters, since we
already have the results for seasonality-enhanced bi-variable linear Regression, we follow the first
approach and copy Lo, To, Sy, ....S12 from Table 9 into Table 11. We first set a=0.5, $=0.5, and y=0.5.

Step 1. Compute L. Given Lo = 702.82, To= 2.9, and Si= 0.95; F1 =( Lo + To)S1 = (702.82+2.9)x0.95=
670.74. We now move forward to compute L1, Ty, F2, and Si3, then Lo, Tz, F3, and Si4, and so on. In all
exponential smoothing models, we always have one component multiplied by a parameter (a, 3, or
v), added to another component multiplied by 1 minus o, 3, or y. The 1 minus part is always easier to
compute. We have Lo = 702.82, To= 2.9. Our forecast for level in month 1 is L= Lo + To= 705.72. This
needs to be multiplied by (1-a). That is, L1=(1-0.5)%705.71. But what is the part that had to be
multiplied by a? It is not 480. That is why the computation of the component multiplied by 1-a, 1-8,
and 1-y is easier. The month 1 actual data of 480 contains seasonality. We need to remove
seasonality. Since $1= 0.95 (month 1 is a low season), we divide the actual data by S; to remove
seasonality; 480/0.95 =504.97. This is the unseasoned value of the actual data in month 1.
Accordingly, L1 =(1-a))(Lo+To)+a(A1/S1) = (1-0.5)x(702.82+2.9)+ 0.5%(480/0.95) = 605.34.

Step 2. Compute T:. Our forecast for T is To. It is multiplied by (1-B) to form the first component of
T1. What is the actual T1? It is the difference between Lo and L1 to be multiplied by B. Therefore
T1=(1-B) To+P(L1-Lo) = (1-0.5)x2.90+0.5(605.34-702.82)=-47.29.

Step 3. Compute Fi.1. The forecast for the next period is simply Fi1=(Li+T:)*St+1. For month 2, it is
Fo=(L1+T1)xS2 = (605.34-47.29)%0.872 = 486.78.

Step 4. Compute S:+,. Since periodicity is 12 (p=12), we compute Si+12. We first have (1-y) times
forecast forecast. Our forecast for period 13 is the same as period 1; S1=0.96. What is the actual
seasonality in period 1? The actual data is divided by Li= Lo +To. That is A1/L:=480/705.71 =0.68.
Therefore, S13=(1-y)xS1+y(A1/L1) = (1-0.5)%0.96+0.5(0.68) = 0.82.

Table 11 shows all the key formulas and curves related to trend and seasonality-adjusted
exponential smoothing components.

Table 11. Seasonality Enhanced Multi-Variable Regression Computations.
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4 B C D E F G H J K L M M ] P o R S
1]e | A | L T S Ft(TreSeasE5) p= 4
2|0 o= 050
3|1 480 P05
4|2 68 4=/0.50
5|3 504
6|4 518 C2 =T9 SeasRegChopraMineEvenp12/L1
7|35 a2 D2 =T9 SeasRegChopraMineEvenpl2/L2
@ |6 556 E3 =T9 SeacRegChopraMineEvenp12/H3
a|7 568 F3 =(C2+D2)'E3
s 557 C3 =(1-SIS2)*(C2+D2)+SIS2*B3/E3
1|9 580 D3 =(1-SI53)*D2+5183*(C3-C2)
2 |10 583 F3 =(C2+D2)'E3
3|11 5% E15 =(1-SIS4)"E3+SIS4*(B3/(C2+D2))
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Figure 4. The Results of the Three Seasonality Enhanced/Adjusted Methods. Static Regression
(left), Dummy- Multi-Variable Regression (center), Trend and Seasonality Adjusted Exponential

Smoothing (right).
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7. CONCLUSIONS.
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We have learned that when theoretical concepts are taught through real-life applications, they
positively impact students' mental presence and intellectual engagement inside the classroom.

In this study, we tried to streamline the learning process by applying time series and regression
analysis to a significant real-life application.

We reviewed and integrated several time series and regression analysis techniques. This manuscript
can be used as teaching material or as a case study to enforce the teaching material. While we had
our analysis on total loaded and empty for both inbound and outbound throughput, all the data are
available to repeat the combination for four combinations of inbound, outbound, loaded, and empty
volumes.

We handpicked a set of intermediate to advanced Excel functions and formulas for step-by-step
improvement of Excel skills and side-by-side enrichment of time series and regression knowledge of
undergraduate and graduate students at teaching-focused business schools. The approach is tailored
to the student population's knowledge, skills, and abilities in teaching-focused business schools. The
Excel sheets designed in this manuscript could serve as templates for other real-life applications the
students may encounter in their early employment years.

Appendix A. Computation of Metrics and Drawing the Graphs for an Any-Period Moving
Average.

Consider a 4-period moving average forecast in periods 25 and 26 and examine the differences.
Fas = MAxs = (AxstAutAxnt An)/4 = (AxstAut Ax)/4+ An/4

Fo7 = MAs = (AzstAost At Ax)/4 = Ax/4 + (Axst Axt+Ax)/4.

Therefore, Fo7 = Fos + Az /4 - Axn/ 4.

Given this fundamental insight, we develop a general formula applicable to any number of periods
in a moving average computation as F+1) = Fi+ (At- Atn)/n. Our forecast for the next period is equal
to the forecast for this period (the moving average of the previous period) plus this period's actual
data minus the oldest piece of data used on the forecast for the previous period divided by n.

Suppose we enter the number of periods in the moving average in cell A1 as RANDBETWEEN(2,12);
suppose it comes out equal to 4. We now look into the formula in period 6 in row 9 in Table AA1.
We have the previous forecast and previous actual in row 8, but what is the oldest data in the
previous forecast? It is in the row t-n of the actual data. In our example is the data in row 8-4=4 of
the Excel sheet. We can use the Excel INDEX function to find the element in a specific row of a
vector. IF(A8<$A$1,"" IF(A8=$A$1, AVERAGE(B$4:B8),C8+B8/$A$1-INDEX (B$4:B8,A8-
$A$1)/$A%1)) is the forecast formula in cell C9. If the previous year is before year 4, a " " is entered
to leave the Excel cell blank. If the previous year is year 4, the average of the actual data for the first
four years (from rows 4 to 8) is computed and set to the forecast for year 5 (in row 8 of the Excel
sheet). For cell C9 which corresponds to year 6>4, we have C8+B8/$A$1-INDEX(B$4:B8,A8-
$A$1)/$A$1. Where INDEX(B$4:B8, A8-$A$1) will find the oldest piece of data used in the forecast;
INDEX(B$4:B8,5-4) = INDEX(B$4:B8,1) = B4 = 6460. The actual for the previous period is B8 = 9650,
and the forecast for the previous period is C8 = 7910. Therefore, the forecast for this period C9=
7910+(9650-6460) /4 =8707.5. The table is adjusted for any number less than 26 that may appear in
cell Al.
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Since we draw the curves related to some of the columns in Table AA1, a "" for the starting years
that are less than or equal to the random year that appears in cell A1 will show a Y-value of zero

while it is empty and not zero. To resolve this, we replace " " with NA(). To avoid #NA appearing in
the table, we use formula-based conditional formatting and switch the font color to white using the
IFERROR function for #NA cells. Accordingly, Table AA1 and Figure AA1 are adjusted
automatically no matter what random numbers between 2 and 25 appear in cell Al. Alternatively,

we could have the fonts of these columns colored white and switch the font color to black using the
ISNUMBER function in conditional formatting.

Table AA1. Computation and Evaluation of an Any-Period Moving Average.

A B C D E F G H | J K L M N
1) 4
2|t At Ft Ft E |E| E2 |E|/A MAD MSE MARD SFE TS BIAS
3
41 1 6460 Ly
5/ 2 7480
6| 3 8220
7| 4 9480
8| 5 9650 7910 7910 1740 1740 3027600 0.18031 1740 3027600 0.1803 1740 1 1740
9| 6 10630 8707.5 §707.5 19225 19225 3696006 0.18086 1831.3 3361803.13 0.1806 3662.5 2 18313
10 7 11810 9495 9495 2315 2315 5359225 0.19602 19925 402761042 0.1857 5977.5 3 19925
11 § 13100 103925 103925 2707.5 27075 7330356 0.20668 2171.3 4553346.85 0.191 8685 4 21713
12] o 14190 112975 112075 28925 28925 8366556 020384 23155 5555988.75 0.1935 11577.5 5 23155
13| 10 15760 124325 124325 33275 33275 11072256 0.21114 24842 6475366.67 0.1965 14905 6 24842
14| 11 15670 13715 13715 1955 1955 3822025 0.12476 2408.6 6096317.86 0.1862 16860 7 2408.6
15| 12 14340 14680 14680  -340 340 115600 0.02371 2150 5348728.13 0.1659 16520 7.68372 2065
16| 13 11810 14990 14990 -3180 3150 10112400 0.26926 22644 5878025 0.1774 13340 5.89107 1482.2
17| 14 14100 14395 14395 295 295 §7025 0.02092 2067.5 5298925 0.1617 13045 6.30955 1304.5
18| 15 14000 13980 13980 20 20 400 0.00143 18814 481724091 0.1472 13065 6.94443 1187.7
19 1[) 14120 13552’ 12847 R RR7 R BER7 5 2108 A2 NN2OAS 1771 AAA1TNA AQ ')1332 136225 7()918 11352
20| 17 14600 13507. 23000 D.1333 14715 856098 1131.9
21 18 15160 1420 4 Period MA Forecast D.1283 15670 9.41545 1119.3
22| 19 15350  1447| 20000 D.1236 16550 10.2667 1103.3
23| 20 15630 14807. 0.1191 173725 11.1173 1085.8
24| 21 16400 1518 1% 0.1165 185875 12.0525 10934
25| 22 17550 1563 L. 0.1161 20502.5 13.1181 1139
26| 23 16970 16232 31123 21240 13.9785 1117.9
27| 24 17300 16637 5n00 D.1086 21902.5 14.8328 1095.1
28| 25 20060 1705 0.1105 24907.5 16.0755 1186.1
29 26 19040 1797 0 0.1081 25977.5 17.0053 1180.8
30| 27 0 5 10 15 20 25 30
31| 28
32 29 —&— At —a—Ft
33| 30
34
35 A1 -RANDBETWEEN(Z2,12)
36| C9 =IF(A8<SASI,NA()IF(AS=5AS51, AVERAGE(B54:B8),C8+B8/SA51-INDEX(B$4:B8,A8-5A51)/5A51))
37| D9 =IF(A8<SASINA(),AVERAGE(BS:INDEX(BS4:B8,A8-$SAS1+1))) Alternative formula for Ft
38| E9 =IF(ISNUMBER($C9),B9-C9,NA())
39| F9 =IF(ISNUMBER(SE9),ABS(SE9),NA()
40| G9 =IFISNUMBER(SE9),SE912,NA())
41| H9 =IF(ISNUMBER(SE9),F9/B9,NA())
42| 19 =IFISNUMBER(SE9),AVERAGE(F9:INDEX(F54:F9,5A51+1)),NA())
43| J9 =IF(ISNUMBER(SE9),AVERAGE(G9:INDEX(GS$4:G9,5A51+1)),NA()
44| K9 =IF(ISNUMBER(SE9),AVERAGE(H9:INDEX(HS4:H9,5A51+1)),NA()
45| L9 =IF(ISNUMBER(SE9),SUM(E%:INDEX(ES4:E9,5AS1+1)),NA()
46 | M9 =IF(ISNUMBER(SE9),L9/19,NA())
47| N9 =IFISNUMBER(SE9), AVERAGE(E%:INDEX(ES4E9,$A51+1)),NA()

A1.MAD.GenPurp.MA

o]

P

Min

W U

[ R R ]

Q R S
4-Period MA Forecast

MAD MSE MARD
1527.6 3325370 0.108

955.2 1439920 0.072
1146.3 1987246 0.086
1367.2 2651752 0.100
1527.6 3325370 0.108
1719.0 4243650 0.118
1869.5 5105986 0.124
1955.3 5783801 0.126
1981.0 6167272 0.124
2002.2 6251843 0.123
19351 5422733 0.118
1883.4 4750157 0.114
1988.2 5019616 0.120
23122 6199787 0.140
2473.0 6860163 0.149
2678.1 7812002 0.160
20254 9136685 0.172
31878 10720558 0.186
3450.7 12474581 0.198
37624 14754591 0.213
4123.0 17631550 0.229
4456.7 20576203 0.244
46488 22450494 0.252
5152.2 27457606 0.272
59425 35942684 0.303
54464 29663273 0.286

955.2 1439920 0.07167
Q4 =129

R4 =J29

S4 =K29

Q5 |~TABLE(AL)}

Q30 =MIN(Q5:Q29)

R30 =MIN(R5:R29)

530  =MIN(55:529)

Column D provides an alternative formula for an any-period moving average as follows
D9=IF(A6>=$A%1, AVERAGE(B6:INDEX($B$4:$B$30,A6-$A%$1+1)),NA()). That is due to the magic
inside the AVERAGE(B6:INDEX($B$4:$B$30,A6-$A$1+1) formula. We benefit from this formula in
columns E to M to compute the metrics only when the data exist and do not show anything for other
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years in the graphs. All the key formulas of Table AA1 are re-emphasized by the green and red cells
with white backgrounds.

Appendix B. Exponential Smoothing Basic Mathematics.

In this Appendix, we show that (i) exponential smoothing is a weighted moving average and (ii) the
age of datais 1/a.

B.1. Exponential Smoothing a Weighted Moving Average.

The following analytical manipulations show that Exponential Smoothing is a Weighted Moving
Average.

Fi1=A
Fo= (1-a)F1 +0A1 = F2= (1-a) A1 oA = Fo= Ay
(1-a)F2 +0A2 = F3= (1-a) A1 +a A
(1-a)Fs +0As = Fy= (1-a)((1-a)A1 +aA2) +0As = Fy= (1-a)2A1 +a (1-a)AxtaAs
(1-a)Fs +0 Ay = F5 = (1-a)3A1 +a ( (1-0)2Ax+a( (1-a)As+ aAg
Fin = 0Ai +a(l - a)Awr +a(l - a)?A2 + ol - o) Ars + o (1 - o)*As ...+ o (1 - o)A

Fs
Fs4
Fs

The sum of the weights are
S=ata(l-a)to(l-a)2+a(l-aP+o((l-a)d..+o((l-a)t!
=a(l-a)ta(l-a)+al-aP+o(l-a)t...+a(l-o)
S-1-)S=o-a(l-a)f=>aS=a(l-(1-a)})>S=1-(1- o)t

When t increases, (1 - o)t goes to 0, and the sum of the weights S=1.
B.2. Age of Data in Exponential Smoothing.

Through the following analytical manipulations, we show that the age of Data in Exponential
Smoothing is 1/ a.

Weights = a, a(1 - ), a(1 - )2 o (1 - )3, a(1 - a)?,...... , ol - o)t
Ages=1,2,3,4,.......... t

Weights x Ages = 1o+ 2a(1 - o)+ 3o(1 - )2+ 4o (1 - )3+ S (1 - o) +...... + to(1 - a)t?
Weights x Ages = a(1+ 2(1 - o)+ 3(1 - o0)2+ 4(1 - o)+ 5(1 - o)t +...... +t(1 - o))

We have shown S = a(1+ (1 - a)+(1 - o)2+(1 - a)3+(1 - a)* +...... +(1-a)tt)=1

1+ (1-o)+(1 - a)2+(1 - a)>+(1 -a)t+...... +t(l-a)t=1/a

Derivation with respect to a

0-1-2(1 - a)1-3(1 - a)2-4(1 - a)3-...... -(t1) (1 -o)2=-1/a2

o(1+2(1 - o)1 +3(1 - a)2+4(1 - )3 +...... +(t-1) (1 - a)+2)=1/0

B.3. UCL and LCL in Tracking Signal are larger than +4
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Forecast error E; =AF; is a random variable with a mean of 0. MAD estimates the error forecast's
standard deviation. StdDev(E;) =1.25MAD (for example, Duncan, 2007}.

E: = Normal (0,1.25MAD)

If x = Normal(p,0) = Sum (x) = Normal(p, SOQORT(N)o)
StdDev [Sum(E;)] = SQRT(N)StdDev (E)

E: = Normal (0,1.25MAD)

Sum (Er) = N~(0, SQRT(N)1.25MAD)

3 > (2E:-0)/ (SQRT(N)1.25MAD)) > -3.
+3SQRT(N)1.25 > (XE:-0)/ MAD = - 3SQRT(N)1.25.

+ 3.755QRT(N) = (XE:-0)/ MAD = - 3.75 SQRT(N)

Therefore, Tracking Signal TS= >E;/ MAD with samples of size N is normally distributed around 0,
and UCL = 3.75 SQRT(N) and LCL =-3.75 SQRT(N).

Appendix C. Foundations of Computation of Regression Metrics in Excel (bo, b1, SST, SSE, SSR).

One may design a regression line by minimizing MAD, MSE, MAX(ABS(Error)), or any other
measure. Conventionally, regression equations are designed based on MSE minimization (least-
square method). We compute MSE or SSE (Sum of Squared Errors) and use SOLVER to find the
optimal bo and by (which are in cells J16 and J17 in Table AA1) to find the optimal values for the SSE
( cell D28) objective function. After computing the forecasts in column C using arbitrary but
reasonable bo and b (in cells J16 and J17), we form column D (the square of the error in each row)
and add them to form SSE in cell D26. We then use SOLVER (we can use DataTable too) to find
optimal bp and b1 to minimize SSE (or MSE). These optimal values (in cells J16 and J17) are the same
as we found using the first three approaches in the regression section. It provides insight into least-
squared computations and other regression metrics. Cell D26 can also be computed using dynamic
arrays without referencing any values in column D (we can even delete column D). Look at the
significant power of dynamic arrays in cell J19 for direct SSE computations.

Table AC1. Direct Computation of Regression Coefficients and Key Metrics.
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B iz D E F G H | J K L M N 0

A
1 t At | Yhat (Reg) cal Yhbar SE SR 21000
2 [ 1 [eso0 | sse2s | 53920779 | 138051 | 4421854 | 49498925
3| 2 |7as0| sos2o |aoosizoz| 13s0si1 | 2286127 | 37725175
4| 3 |s220| 904013 |31170748| 138031 | 1395370 | 20775360 1800
5| 4 [o480| 98205 |1s6ss994| 138051 | 115928 | 18573066
6| 5 [o650 | 102307 | 17245045 | 138031 | 347720 | 16900209 15000
7| 6 |####| 106589 | 10068417 | 135031 837 10067581
g | 7 |###2| 110781 | 3972350 | 138031 | 535614 | 3430742 o
9 | s |####| 114974 | 204317 | 138031 | 2568442 | 2074125
10| o |###2| 110166 | 140700 | 133031 | 5168418 | 5018708
11| 10 |####| 123358 | 3s20548 | 138031 | 11725111 | -7s95563 5000
12| 11 |####| 127550 | 3485402 | 138031 | s497076 | -5011674
13| 12 |####| 131722 | 288286 | 138031 | 1358982 | -1070696 co00 —a— it —8—hat (Reg) —A—Vbar
14| 13 |####| 135035 | 3972356 | 138031 | 3180753 | 791602 1 6 1 16 21 26
15| 14 |####| 140127 | ss163 | 138031 7624 50540 Y1 $562.82  =JL6+J17"A2
16| 15 |####| 144310 | 3s770 | 13s0s1 | 186544 | 147766 b0 $143.60
17| 16 |####| 148511 | 100440 | 138031 | 534548 | -43410s bl 41922
18| 17 |####| 152703 | 635086 | 138031 | 440367 | 185719 Ybar 13503 =AVERAGE(B2:B27)
19 | 18 |####| 156896 | 1541240 | 138031 | 280444 | 1560797 SsT 305320354 |=SUM{(B2:B27-]18)"2)
20| 19 |####| 161088 | 2392071 | 138031 | 575762 | 1817200 SSE 48202065  |=SUM((B2:B27-C2:C27)"2)
21| 20 |###2| 165280 | 3337648 | 135031 | sosa22 | 2531226 SSR 257025289 |=J19-20
22| 21 |###2| 160472 | 6744000 | 135031 | 209462 | 6444543 R-Squared 0.5418315  =J21/J19
23| 22 |###2| 173665 | 14039433 | 135031 | 33600 | 14005742 MSE 2012169 __ |-]20/(COUNT(B2.B27)-2)
24| 23 |###2| 177857 | 10020202 138051 | 665320 | ozs40s1 StdEer 141851 =SQRT(23)
25| 24 |###2] 152040 | 12228471 138031 | s1ss30 | 11400641
26| 25 |####| 186241 | 39140086 | 138031 | 2061772 | 37087314 Solver Parameters 2
27| 26 |###2| 100433 | 27425363 | 138031 11 27425352
28| 27 194626 [305320354] 48292065| 257025289 Set Objective: 51523 +
29
30 Ta: ) Max © min () value OF:
31
2 By Changing Variable Cells:
23 5J81&:5J517 +
& Subject to the Constraints:
2 | | Add
36 2
d C1.RegreSSE&SST

In Regression Analysis, we usually compute three SST, SSE, and SSR metrics. SST is the summation
of the squares of the gap between each piece of data with the average. Table AC1 shows the gap
between the green curve (actual data) and the red curve (average of all data). The total squared error
measures how each data element differs from the average. We then have SSE, the squared gap
between the green curve (actual data) and the blue curve (regression data). The total squared error
measures how each data element differs from the value obtained on the regression line. The
difference between these two (SSR) represents how well the regression line could replace the
average line representing the data. The reader may compare the computations in cells D28, F28, and
G28 with those of J19, J20, and J21 to better understand dynamic arrays (and may delete columns D,
E, F, and G).

R-squared is computed as SSR/SST, reaching the same value as computed directly using the RSQ
function. The MSE (and Standard Error) computations in Regression slightly differ from what we
discussed earlier. When you benefit from other statistics extracted from the same data set in the
computation of an average, you use degrees of freedom. In the computation of SSE, we have used
two parameters bp and bi. Therefore, we lose two degrees of freedom when we average SSE over n
years (26 in this example). Therefore, MSE is not SSE/26 but SSE/ (26-2).

Given the background provided in this Appendix, we can apply a piecewise regression to find bos,
b1, bz, and bz for the first and second piece of the regression line and T as the year to switch from
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the first regression line to the second. The above five items form the changing cells, and MSE is the
objective function to be minimized. The result is shown in Figure AC1.

Figure AC1. Piecewise Regression on LA/LB ports Annual Data.
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Appendix D. All Worksheets Used in This Study. Since there are many computations in different
worksheets of this workbook, recalculating all elements on all pages slows down the process. The
user may prefer to put one or a subset of worksheets in separate files.
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