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a b s t r a c t

We present a methodology for probabilistic load forecasting that is based on lasso (least
absolute shrinkage and selection operator) estimation. The model considered can be
regarded as a bivariate time-varying threshold autoregressive(AR) process for the hourly
electric load and temperature. The joint modeling approach incorporates the temperature
effects directly, and reflects daily, weekly, and annual seasonal patterns and public holiday
effects. We provide two empirical studies, one based on the probabilistic load forecasting
track of the Global Energy Forecasting Competition 2014 (GEFCom2014-L), and the other
based on another recent probabilistic load forecasting competition that follows a setup
similar to that of GEFCom2014-L. In both empirical case studies, the proposedmethodology
outperforms two multiple linear regression based benchmarks from among the top eight
entries to GEFCom2014-L.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

We present a methodology for probabilistic load fore-
casting that is based on lasso (least absolute shrinkage and
selection operator) estimation. The lasso estimator intro-
duced by Tibshirani (1996) has the properties of automat-
ically shrinking parameters and selecting variables. Thus,
it enables us to estimate high-dimensional parameteriza-
tions. The procedure learns from the data in the sense
that the parameters of less important variables will auto-
matically be given low or even zero values. The time se-
riesmodel considered is a bivariate time-varying threshold
autoregressive (AR) model for the hourly load and temper-
ature. Themodel is specified so that it captures several styl-
ized facts in load forecasting, such as the underlying daily,
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weekly, and annual seasonal patterns, the non-linear rela-
tionship between load and temperature, and holiday and
long term effects.

In this paper, we illustrate the proposed methodology
using two case studies from two recent forecasting compe-
titions. The first is from the probabilistic load forecasting
track of the Global Energy Forecasting Competition 2014,
denoted GEFCom2014-L. The topic of GEFCom2014-L is
month-ahead hourly probabilistic load forecasting using
hourly temperature data from 25 weather stations. More
details about GEFCom2014-L, such as rules and data, are
provided by Hong et al. (2016). When implementing the
proposed methodology, we create a new virtual tempera-
ture time series by averaging the temperatures of stations
3 and 9. These stations are chosen because they give the
best in-sample fits to a cubic regression of the load against
the temperature.

The second case study is from the year-ahead prob-
abilistic load forecasting competition organized by Tao
Hong from UNC Charlotte in fall 2015, which was an
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extended version of GEFCom2014-L. Here, we refer this
competition as GEFCom2014-E. The competition included
five tasks, in each of which the participants were asked to
forecast the next year of hourly loads and submit the fore-
casts as 99 quantiles. The historical dataset for the first task
was six years (2004–2009) of hourly temperature data and
four years (2006–2009) of hourly load data. Each of the
remaining four tasks then included an additional year of
hourly load and temperature data for the period forecast
as the previous task. The data for GEFCom2014-E are also
provided byHong et al. (2016). Florian Ziel joined this com-
petition using themethodology proposed here, and ranked
second out of 16 participating teams.

The structure of this paper is as follows: Section 2 intro-
duces the time series model; Section 3 discusses the lasso
estimation algorithm; Section 4 describes two benchmarks
that are developed from the methodology used by Bidong
Liu to win a place in the top eight in GEFCom2014-L; and
Section 5 presents the empirical results. The paper is con-
cluded in Section 6.

2. Time series model

Let (Yt)t∈Z, with Yt = (YL,t , YT ,t)
′, be the d = 2-

dimensional time seriesmodel of interest, and denoteD =

{L, T }. Thus, YL,t is the electric load and YT ,t is the tem-
perature at time point t .

For (Yt)t∈Z, the joint multivariate time-varying thresh-
old AR model (VAR) considered is given by

Yi,t = φi,0(t) +


j∈D


c∈Ci,j


k∈Ii,j,c

φi,j,c,k(t)max{Yj,t−k, c}

+ εi,t (1)

for i ∈ D , where φi,0 are the time-varying intercepts
and φi,j,k,c are time-varying autoregressive coefficients.
Moreover, Ci,j are the sets of all thresholds considered,
Ii,j,c are the index sets of the corresponding lags, and εi,t
is the error term. We assume that the error process is
uncorrelated, with a zero mean and constant variance.

Furthermore, it is important that we are using the
whole dataset with all hours to model the hourly load and
temperature, instead of using a dataset that is sliced by
hour to model the loads of specific hours, as is often done
in literature. Forecasting algorithms applied to the whole
dataset can learn about those events better, since the full
dataset ismore informative than the small hourly datasets.

The modeling process has three crucial components:
the choice of the thresholds sets Ci,j, the choice of the lag
sets Ii,j,k and the time-varying structure of the coefficient.
We describe these issues in the following three subsec-
tions.

2.1. Choice of the threshold sets

The choice of the threshold sets Ci,j will characterize the
potential non-linear impacts in the model. Note that if we
choose Ci,j = {−∞}, the model in Eq. (1) will turn into a
standard multivariate time-varying AR process.

For loaddata, the temperature typically has a non-linear
effect on the electric load. Fig. 1 shows the temperature at
00:00 of every day in the sample against the corresponding

load. In general, we observe a decreasing relationship
for lower temperatures and an increasing one for higher
temperatures. To emphasize the non-linear relationship,
we added the fitted line of the toy example regression

YL,t = c0 + c1YT ,t + c2 max{YT ,t , 50}

+ c3 max{YT ,t , 60} + ϵt . (2)
This is a simple threshold model, with thresholds at 50 °F
and 60 °F.

In Fig. 1, we see that the threshold model in Eq. (2)
captures the relationship using piecewise linear functions.
Even though this is just an illustrative example, we see that
this type of model is able to approximate all non-linear
relationships between the load and temperature.

We can also introduce many other thresholds into the
model in order to increase the flexibility. However, this
enlarges the parameter space, which results in longer
computation times and raises the concern of over-fitting.
The lasso estimation algorithm can help to ease these two
concerns. Even better, it will keep only significant non-
linear impacts.

We choose the threshold sets manually for both data
sets. For the GEFCom2014-L data, we consider CL,T =

{−∞, 20, 30, 40, 45, 50, 55, 60, 65, 70, 80} as thresholds
of the temperature to electric load impact, and CL,L =

{−∞, 100, 125, 150, 175, 200, 225} for the load to load
effects. Remember that the thresholds corresponding to
−∞ model the linear effects. For the other sets, we as-
sume no non-linear effects, so CT ,L = CT ,T = {−∞}.
For the GEFCom2014-E data, we are use different thresh-
olds, as the scale is different. In detail, we use CL,T =

{−∞, 10, 20, 30, 40, 45, 50, 60, 70, 80}, CL,L = {−∞,
2500, 3000, 3500, 4000, 4500} and CT ,L = CT ,T =

{−∞} for the thresholds sets. Note that, in general, a data-
driven threshold set selection is plausible as well, e.g., us-
ing a selected set of quantiles.

2.2. Choice of the relevant lag sets

The lag sets Ii,j,c are essential for a good model, as they
characterize the causal structure of the processes and the
potential memory of the process. The lags in Ii,j,c describe
a potential lagged impact of the regressor j at threshold c
to the process i. It is widely known that the load at time t
is related to both its past and the temperature. Therefore,
we choose IL,L,c and IL,T ,c to be non-empty for all c . For
the temperature, the situation is slightly different. Here,
we assume that the temperature depends on its past, so
IT ,T ,−∞ is non-empty as well. However, it is clear that the
electric load does not effect the temperature, so IT ,L,−∞ is
empty.

The selected index sets are given in Table 1. Here,
similarly as for the threshold sets, larger sets increase
the parameter space, thus increasing the computational
burden. However, they have to be chosen to be large
enough to capture the relevant information. IL,L,−∞

contains all lags up to 1200, so the maximal memory is
the preceding 1200 h, which is slightly more than seven
weeks. Themost essential part is that the important lags of
orders, such as 1, 24, 48 and 168, are included. A detailed
discussion of the choice of the index sets is provided by
Ziel, Steinert, and Husmann (2015).
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(a) GEFCom2014-L data. (b) GEFCom2014-E data.

Fig. 1. Temperature against load for all days at 00:00, with fitted values of Eq. (2) for both data sets.

Table 1
Considered lags of the required index sets.

Index sets Contained lags

IL,L,−∞ 1, . . . , 1200
IL,L,c (with c ≠ −∞), IL,T ,c 1, . . . , 200
IT ,T ,−∞ 1, . . . , 360
IT ,L,−∞ –

2.3. The time-varying coefficients

The assumed structure of the time-varying coefficients
is of substantial importance as well, as they have big im-
pacts not only on the seasonality and public holiday ef-
fects, but also on the long term trend behavior. However,
we keep most of the coefficients constant, allowing only
the important ones to vary over time. The intercepts φi,0 in
Eq. (1) are important and are allowed to vary over time
for both the load and the temperature. For the load, we
additionally allow φL,L,−∞,k with k ∈ {1, 2, 24, 25} to
vary over time, and for the temperature, φT ,T ,−∞,k with
k ∈ {1, 2}. Thus, in total, the two intercepts and the four
autoregressive load and two autoregressive temperature
coefficients are allowed to vary over time. Obviously, this
choice can be modified based on a knowledge of the im-
portant parameters. Again, the more the parameters vary
over time, the larger the parameter space, which increases
both the computation time and the risk of over-fitting.

For the time varying coefficients, we assume a structure
similar to that of Ziel et al. (2015). For a time-varying
parameter of interest ξ (e.g., φi,0 or φi,j,c,k), we assume that

ξ(t) = ξ0 + ξ′Bξ (t) = ξ0 +

Nξ
l=1

ξlB
ξ

l (t), (3)

where ξ = (ξ1, . . . , ξNξ
)′ is the vector of coefficients that

applies to the basis functions Bξ
= (Bξ

1, . . . , B
ξ

Nξ
)′. Obvi-

ously, the sum in Eq. (3) is empty for constant parameters.
The basis functions of the time-varying coefficients

have to be chosen accurately. The selection is modular,
meaning that several effects can be added andmerged eas-
ily. We consider a selection of several groups of regressors,
as listed in Table 2.

Below, we explain the groups G1, . . . , G8 one by
one. The daily and weekly mean electric loads of the
GEFCom2014-L data are given in Fig. 2. Fig. 2(a) shows the

Table 2
List of all groups G1, . . . , G8 of basis functions considered.

Group Description

G1 Hourly impacts on the seasonal daily pattern
G2 Hourly impacts on the seasonal weekly pattern
G3 Daily impacts on the seasonal annual pattern
G4 Smooth annual impacts
G5 Long term trend effects
G6 Fixed date public holidays effects
G7 Varying date public holidays effects
G8 Interaction effects between G1 and G4

clear, distinct seasonal daily pattern, with low values at
night and high values during the day. The group G1 will
cover this effect. Obviously, this requires 24 parameters.
However, Fig. 2(b) shows that the Saturdays and Sundays
show behaviors that differ from those of the typical
working days from Monday to Friday, for which we see
basically the same behaviors every day. Nevertheless,
Monday morning and Friday evening do show transition
effects towards and from the weekend. G2 will cover the
full weekly structure, with 168 parameters being required.
As has beenmentioned, there is redundancy in the pattern;
e.g., the Tuesdays, Wednesdays and Thursdays generally
exhibit similar behaviors. This structure is taken into
account automatically when using the regressors G1 and
G2 in combinationwith the lasso estimation technique. The
basis functions of groups G1 and G2 are defined as

BG1
k (t) =


1, k ≤ HoD(t)
0, otherwise and

BG2
k (t) =


1, k ≤ HoW(t)
0, otherwise

(4)

where HoD(t) and HoW(t) give the hour-of-the-day
(1, 2, . . . , 24) and hour-of-the-week (1, 2, . . . , 168, start
counting at 0:00 on Sunday) of time point t . Note that
the parametrization in Eq. (4) is done using cumulative
components. Therefore, the ‘‘≤’’ relation is used instead
of the commonly used ‘‘=’’ relation. As an example, BG1

2
models the additional impact of hour 1:00 on hour 0:00
(which is modeled by BG1

1 ), instead of modeling the direct
impact of hour 1:00, which would be associated with the
‘‘=’’ relation in Eq. (4). In otherwords, we aremodeling the
changes in the impacts associated with an hour, instead
of the absolute effects. Our estimation method will mean
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(a) Hourly mean load during a day. (b) Hourly mean load during a week.

Fig. 2. Hourly mean load during a day (a) and week (b) of the GEFCom2014-L data.

that a parameter is included in the model only if the
corresponding change is significant.

Similarly to the daily and weekly patterns, there is also
an annual seasonal pattern. To capture this, we introduce

BG3
k (t) =


1, k ≤ DoY(t)
0, otherwise (5)

where DoY(t) gives the day-of-the-year (1, 2, . . . , 365) of
time point t in a common year with 365 days. In a leap
year, DoY(t) also takes values from (1, 2, . . . , 365), but the
29th February has the same value (namely 59) as the 28th
February. Similarly to above, we model the changes in the
annual pattern, not the direct impact.

The next group of basis functions concerns smooth an-
nual impacts. This will capture effects similar to those
in BG3

k , but in a smoother manner. We consider periodic
B-splines, which results in a local modeling approach.
Specifically, we use cubic B-splines with a periodicity of
8765.76 = 24 × 365.24 on an equidistant grid with six
basis functions. In Fig. 3(a), we see these basis functions on
a time range of three years. We clearly observe the local
impact. Thus, for example, the dashed yellowish function
(k = 2) covers only effects in the summer, but has no im-
pact in the winter.

The most tricky basis function group relates to the long
term effects. The challenging part is the distinction be-
tween spurious effects and real long term changes in the
load behavior. The spurious effect problem is crucial for
long term forecasting, whereas it is negligible for shorter
time horizons. To make the problem clear, suppose that
the available time series ends in 31th December, and the
last two months, November and December, had low load
values for some unknown reason. Now, the question is
whether this was a random effect (just a realization of
rare or outlier events) or a structural change in the load
level (induced, for example, by an increase in energy effi-
ciency that is not captured by external regressors). Conser-
vatively, statistical modeling would typically suggest that
it is a random effect unless the structural change is signif-
icant enough to be detected by the modeling approach.

We model long term effects using monotonically in-
creasing basis functions. These are constant in the past,
then strictly monotonically increasing in a certain time
range in which the long term transition effect might have
taken place, then constant after this possible transition.

The time range in which the basis function is monotoni-
cally increasing should be larger than a year, in order to
reduce the probability of including spurious effects. Fur-
thermore, the distances between these basis functions
should be relatively large as well. We consider a distance
of one year between the basis functions, with a support of
two years for the transition effect. Specifically, we use cu-
mulative quadratic B-splines as basis functions for the long
term effects. We consider only basis functions where the
in-sample basis functions take a smallest value of at least
10% of the overall maximum and at most 90% of the over-
all maximum. This will reduce the danger of modeling a
spurious effect. We end up with only a few basis functions.
An illustrative example for an in-sample period of 12 years
(2001–2012), with 2013 as the out-of-sample year, is given
in Fig. 3(b). Note that the number of long term basis func-
tions in group G5 depends on the data range.

The next two groups, G6 and G7, contain the public hol-
iday information. In general, the electric load exhibits spe-
cial behaviors on public holidays, which eventually disturb
the standard weekly pattern. For modeling purpose, we
group the public holidays into two classes: thosewith fixed
dates, such as New Year’s Day (January 1), and those with
flexible dates, such as Thanksgiving Day (fourth Thursday
in November). We consider all United States federal public
holidays, and denote the sets of public holidays with fixed
and flexible dates as Fix and Flex.

As days in Flex are always on a specific weekday, we
can expect the same behavior on these public holidays
each year. If a week includes a public holiday, then the
typical weekly structure in Fig. 2(b) changes. Not only
is the structure of the public holiday affected, the hours
before and after the public holiday are also affected, due
to transition effects. Therefore, for each flexible public
holiday F ∈ Flex, we define a basis of 6+24+6 = 36 h (six
hours before F , 24 h at F , and six hours after F ). Specifically,
it is given by

BF
k(t) =


1, k ≤ HoF(t)
0, otherwise

where HoF(t) gives the hours from 1, 2, . . . , 36 at time
point t around the public holiday, starting counting from
18:00.

The impact of the days in Fix is complex, because it
depends on the weekday of incidence. Some research has
found that it is usually similar to that of a Sunday (see
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(a) Periodic cubic B-spline basis within three years. (b) Cumulated quadratic B-spline basis on 12 years.

Fig. 3. Illustration of basis functions for G4 and G5 .

e.g. Ziel et al., 2015). We will introduce an effective coef-
ficient C(t) for each hour of the week. Using C(t), we can
define the basis functions for H ∈ Fix

BH
k (t) =


C(t), k ≤ HoH(t)
0, otherwise,

where HoH(t) gives the hours around the public holidays
from 1, 2, . . . , 36 at time point t , starting counting from
18:00. The coefficients C(t) are defined as follows. If the
public holiday is on a Sunday, then the effective coeffi-
cient is zero, assuming that there is no additional impact
of the public holiday on a Sunday. Thus, we refer to these
24 hourly mean load values as the low level load target.
If such a public holiday occurs during the core working
days, such as Tuesday, Wednesday or Thursday, we expect
a full impact, with an effective coefficient of one. We re-
fer to the 24 hourly mean load values of these three days
as the high level load target. If the holiday happens on
a Monday, Friday or Saturday, the impact should be be-
tween the two situations above, and the effective coeffi-
cient is usually between zero and one. If we denote the
hourly mean load of the week from Fig. 2(b) by the ac-
tual load target, then we define the coefficients as C(t) =

max{1 −
high level load target(t)−actual load target(t)

high level load target(t)−low level load target(t) , 1}.
The last group of basis functions focuses on interaction

effects, which are important for the temperaturemodeling.
As the length of the night changes over the year, the
daily seasonal pattern changes over the year as well.
We create the interaction group by multiplying the basis
function of each group by that of another group. Thus, the
interaction groups tend to require many parameters. For
that reason, for the last group G8 we consider only the
multiplication of the daily seasonal componentG1 with the
smooth annual basis functions G4. Specifically, G8 contains
the basis functions BG8

24(j−1)+i(t) = BG1
i (t)BG4

j (t) for i ∈

{1, . . . , 24} and j ∈ {1, . . . , 6}.
For all basis function groups, we can define the full

basis function vector Bξ for a parameter ξ . Hence, the
basis functions for a time-varying parameter ξL associated
with the load are given by BξL = (BG1 , BG2 , BG3 , . . . , BG8),
where BG1 = (BG1

1 , . . . , BG1
24 ), B

G2 = (BG2
1 , . . . , BG2

168),
BG3 = (BG3

1 , . . . , BG3
365), B

G4 = (BG4
1 , . . . , BG4

6 ), . . . define
the vectors of the basis functions. For the time-varying
parameters ξT of the temperature modeling process, we
define BξT = (BG1 , BG4 , BG8). Thus, only daily and

smooth annual effects and their interactions are allowed.
In particular, we do not include any weekly, public holiday
or long term effects when modeling the temperature.

3. Estimation and forecasting method

The introduction mentions that we use a lasso estima-
tion technique, which is a penalized ordinary least squares
regression estimator. The ordinary least squares (OLS) rep-
resentation of Eq. (1) is given by

Yi = Xiβi + Ei. (6)

Here, Yi = (Yi,1, . . . , Yi,n)
′, Xi is the n × pi-dimensional

regressor matrix that corresponds to Eq. (1), βi is the full
parameter vector of length pi, Ei = (εi,1, . . . , εi,n)

′ is the
residual vector, and n is the number of observations. How-
ever, we perform a lasso estimation not on Eq. (6) directly,
but on its standardized version. Therefore, we standardize
Eq. (6) so that the regressors and the regressand all have
a variance of one and a mean of zero. Thus, we obtain the
standardized version of Eq. (6):Yi = Xiβi +

Ei. (7)

We can easily compute βi by rescaling, ifβi is determined.
The lasso optimization problem of Eq. (7) is given byβi = argminβ∈Rpi ∥Yi − Xiβ∥

2
2 + λi∥β∥1, (8)

with tuning parameters of λi, and ∥ · ∥1 and ∥ · ∥2 as the
ℓ1- and ℓ2-norm. For λi = 0, Eq. (8) is the standard OLS
problem. For huge λi values, we have a huge penalty on
the parameters and receive the estimator βi = 0 =

(0, . . . , 0)′, meaning that no parameters are included in
the model. In a moderate range of λi values, we get differ-
ent solutions. Thus, it holds that the larger λi is, the fewer
parameters are included in the estimated model.

To obtain a better understanding of this feature, we
consider a simple lasso problem, given by

∥Yi − Xβ∥
2
2 + λ∥β∥1, (9)

where X is the regressor matrix that contains the 24
basis functions of G1 and the 168 basis functions of G2.
We remember that the OLS solution of this problem
corresponds to Fig. 2(b) and requires 168 parameters to
capture all of the effects fully. In Fig. 4, we plot the fitted
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(a) λ = 0.25 with 28 non-zero parameters. (b) λ = 0.125 with 43 non-zero parameters.

(c) λ = 0.0625 with 80 non-zero parameters. (d) λ = 0.03125 with 101 non-zero parameters.

Fig. 4. Fitted model for Eq. (9) for selected λ values and the corresponding numbers of non-zero parameters.

values of the solution of Eq. (9) for four different λ values.
As has been mentioned, we see that the smaller λ is, the
more parameters are included in the model, and therefore
the closer the solution gets to Fig. 2(b). For example, in
Fig. 4(c), we observe a pattern that does not differ from that
in Fig. 2(b) in anyway that is easy to observe by eye-balling,
even though only 80 parameters are required to capture
the structure, instead of 168. In contrast, Fig. 4(a), with
only 28 parameters, does not cover the pattern well; thus,
for example, the seasonal pattern is the same during the
morning and noon hours for all days except Sundays. This
indicates that the 28-parameter solution does not include
enough parameters for appropriate modeling.

Note that the shrinkage property of the lasso is relevant
as well as the selection property. For example, if we
have the lasso solution in Fig. 2(b) with 80 non-zero
parameters, then this is different from the OLS solution
of the corresponding 80 regressors. In general, the lasso
solution tends to have smaller estimated parameters (in
terms of absolute values) than the OLS solution, due to the
shrinkage towards 0. Specifically, the in-sample residual
sums of squares (RSS) are always larger for the lasso
solution than for the OLS solution. Thus, even though there
might bemany non-zero parameters in the final estimated
model, their contributions to the model are small. This
shrinkage property reduces the parameter uncertainty,
and may give a better out-of-sample performance.

In general, the tuning parameters λi should be chosen
using a selection algorithm. Usually, the optimal λi will be
chosen from a given grid Λi by minimizing an information
criterion. We select the tuning parameter using the
minimum Bayesian information criterion (BIC), which is a
conservative information criterion that avoids over-fitting.

For the grid Λi, we choose an exponential grid, as was
suggested by Friedman, Hastie, and Tibshirani (2010).

As the computation algorithm, we consider the fast co-
ordinate descent algorithm and the corresponding R pack-
age functions of the glmnet package; see e.g. Friedman
et al. (2010) for more details. The asymptotic computa-
tional complexity of the coordinate descent algorithm is
only O(npi). This is optimal, as npi is the number of ele-
ments in the regression matrix. Thus, we can estimate the
model efficiently and can carry out model selection easily.
Another positive feature is that we do not require the data
set to be divided into training and test data sets, as we can
tune the model based on statistical theory (like the BIC).

For each forecasting task, we use all available data
for the lasso estimation procedure. Given the estimated
model, we can use a residual-based bootstrap to simulate
future scenario sample paths, as per (Ziel et al., 2015). We
consider a total of N = 10 000 sample paths here. The cor-
responding empirical percentiles are used as estimates for
the target quantiles.

4. Benchmarks

The scenario-based probabilistic forecasting method-
ology proposed by Hong, Wilson, and Xie (2014b) was
used by two teams from among the top eight (Jingrui Xie,
third; Bidong Liu, eighth) in GEFCom2014-L. In this paper,
we develop two benchmarks using this method, with two
underlying models. The first one is Tao’s Vanilla Bench-
markmodel, as used in GEFCom2012 (Hong, Pinson, & Fan,
2014a), abbreviated as Vanilla in this paper. The second
one is a recency effect model proposed by Wang, Liu, and
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Hong (2016), abbreviated as Recency in this paper. In the
GEFCom2014-L case study, instead of performing weather
station selection as was discussed by Hong, Wang, and
White (2015), we create a temperature series by averag-
ing the 25 weather stations, in order to keep the bench-
marks simple and easily reproducible. Note that this is
different from the way in which the temperature series is
created when implementing the lasso-based methodology
as discussed in Section 1.

4.1. Vanilla model

The Vanillamodel for the load YL,t is given as:

YL,t = β0 + β1MoY(t) + β2DoW(t) + β3HoD(t)

+ β4DoW(t)HoD(t) + f (YT ,t) + ϵt , (10)

where βi are the regression coefficients, MoY(t) gives
the month-of-the-year (1, . . . , 12) of time t , DoW(t)
gives the day-of-the-week (1, . . . , 7, with Sunday =

1,Monday = 2, . . .) of time t , HoD(t) gives the hour-of-
the-day (1, . . . , 24) of time t as for Eq. (4), and

f (YT ,t) = β5YT ,t + β6Y 2
T ,t + β7Y 3

T ,t + β8YT ,tMoY(t)

+ β9Y 2
T ,tMoY(t) + β10Y 3

T ,tMoY(t)

+ β11YT ,tHoD(t) + β12Y 2
T ,tHoD(t)

+ β13Y 3
T ,tHoD(t). (11)

Here, for task 1, we are using the model specified in
Eq. (10) as the underlying model, with the parameters
estimated using themost recent 24months (from 01/2009
to 12/2010) of hourly loads and temperatures. The 10 years
of weather history (2001–2010) are used to generate 10
weather scenarios. In total, we have 10 load forecasts for
each hour in 01/2011. We then compute the 99 quantiles
required based on these 10 forecasts using the empirical
distribution function. The 99 quantiles for the other 11
months of 2011 are generated similarly. For instance,when
forecasting the load for 05/2011, the 24 months of hourly
loads and temperatures from 05/2009 to 04/2011 are used
for parameter estimation.

4.2. Recency model

The underlying model for the second benchmark is
given as:

YL,t = β0 + β1MoY(t) + β2DoW(t) + β3HoD(t)

+ β4DoW(t)HoD(t) + f (YT ,t) +


j∈J

f (YT ,t,j)

+


k∈K

f (YT ,t−k) + ϵt , (12)

where f is as in Eq. (11) and the daily moving average
temperature of the jth dayYT ,t,j is defined as

YT ,t,j =
1
24

24j
h=24j−23

YT ,t−h. (13)

The sets J and K in Eq. (12) are given by J = {1, . . . , J}
and K = {1, . . . , K} for J > 0 and K > 0; they are empty

Table 3
The optimal pairs of (J, K) for the years from 2010 to
2014 in GEFCom2014-E.

Year 2010 2011 2012 2013 2014

J 1 1 1 1 0
K 9 0 8 13 13

if J = 0 and K = 0. Note that for (J, K) = (0, 0)we receive
the Vanilla model in Eq. (10). The ‘average-lag’ pair (J, K)
needs to be identified before the Recency model can be
used to generate forecasts for the target month. Since the
pattern of load against temperature varies each year, the
optimal pair selected changes every year correspondingly.
To identify the optimal pair for the year i, we use the data
from years (i − 3) and (i − 2) for training, and those from
year (i−1) for validation. The pair that results in the lowest
mean absolute percentage error (MAPE) in the validation
period will be selected, and the corresponding Recency
modelwill then be used to forecast the year i.We search for
the optimal (J, K) on the grid {0, . . . , 7}×{0, . . . , 48}. The
optimal pair identified for the year 2011 using this method
for the GEFCom2014-L data is (2, 10).

In the GEFCom2014-E case study, the target years are
from 2010 to 2014. The optimal pairs identified are listed
in Table 3. After identifying the optimal pairs of (J, K), we
follow the same steps as for the first benchmark discussed
in Section 4.1, including two years of hourly loads and
temperatures for parameter estimation and an empirical
distribution function for extrapolating the 99 quantiles.
But we use a recency model as the underlying model to
do forecasting, instead of the vanilla model. When creating
weather scenarios, we use 6 years (2004–2009) weather
data for the target year of 2010, 7 years (2004–2010) for
2011, 8 years (2004–2011) for 2012, 9 years (2004–2012)
for 2013 and 10 years (2004–2013) for 2014.

In order to keep the benchmarks simple and easy to re-
produce, neither of the underlyingmodels incorporate any
other special treatments such as weather station selection,
data cleansing, weekend and holiday effect modeling, or
forecast combination.

5. Empirical results and discussion

We evaluate the forecasting performances based on the
overall mean pinball loss function of the 99 percentiles. For
more details on the pinball loss function and the evaluation
methods used in GEFCom2014-L, see Hong et al. (2016).

5.1. GEFCom2014-L results

As an illustrative example, the 99 quantiles predicted
for the April 2011 task are given in Fig. 5. We observe that
the daily andweekly seasonal behaviors are captured well.
Furthermore, the prediction intervals get wider with the
increasing forecasting horizon, as expected.

The pinball scores of the proposed model (Lasso) and
the two benchmarks are given in Table 4. We also list
Bidong Liu’s original GEFCom2014-L scores in the last
column under BL. The main factors causing the differences
between the two benchmarks and BL include the length
of the training data and the extrapolation method. In
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Fig. 5. April forecast of the GEFCom2014-L data with the corresponding legend and observed values (black line).

Table 4
Overall pinball scores for the GEFCom2014-L data.

Month Lasso Vanilla Recency BL Vanilla-5Y

1 9.88 11.94 12.13 16.42 11.78
2 9.54 10.95 10.57 11.87 11.24
3 7.97 8.57 8.38 9.37 8.70
4 4.89 5.05 4.80 5.62 5.67
5 5.96 7.37 7.11 7.74 7.98
6 5.86 6.75 7.35 6.55 6.48
7 7.66 9.60 9.38 9.14 9.08
8 10.70 11.21 11.30 11.35 11.36
9 6.28 5.81 5.65 6.51 6.19

10 5.20 3.53 3.40 4.80 4.53
11 6.38 6.06 5.93 6.97 6.50
12 8.99 9.74 9.45 10.89 10.29
Average 7.44 8.05 7.95 8.94 8.32

GEFCom2014-L, Bidong Liu implemented the scenario-
based method as described in Section 4 for months 2–12,
but not for month 1. For parameter estimation, Bidong
Liu used five years of historical data for most of the tasks
during GEFCom2014-L. In addition, the required quantiles
were generated by linear extrapolation. For illustrative
purposes, we also list the pinball scores from the Vanilla
benchmark estimated using five years of data in Table 4
under Vanilla-5Y.

We observe that the proposed lasso estimation method
outperforms the two benchmarks, i.e., Vanilla and Recency,
in 9 and 8 months out of 12, respectively. The reductions
in the 12-month average pinball score are 6.4% and 7.6%
relative to the Recency and Vanillamodels, respectively. Al-
though BL ranked among the top eight in GEFCom2014-L,
its average pinball score is higher than those of the other
four methods. The average pinball score of Vanilla-5Y
(8.32) is higher than that ofVanilla (8.05),which reveals the
necessity of selecting the right length for the training data.

5.2. GEFCom2014-E results

The pinball scores of the proposed method (Lasso) and
the two benchmarks in the GEFCom2014-E case study are
given in Table 5. We also provide the original scores of
Florian Ziel (FZ) in the GEFCom2014-E. The FZ scores dif-
fer from those of the Lasso slightly, because the long term
trend components (G5) were added to the time-varying
parameters of Lasso. No long term modeling was consid-
ered for FZ, but a manual long-term effect adjustment was

Table 5
Overall pinball scores for the GEFCom2014-E data.

Year Lasso FZ Vanilla Recency

2010 59.01 58.02 85.03 80.76
2011 49.74 54.50 59.54 56.77
2012 47.08 46.51 57.58 55.37
2013 62.53 63.71 62.59 60.62
2014 55.00 52.25 59.16 56.82
Average 54.69 55.00 64.78 62.07

done for the years 2012 and 2013. In addition, the list
of holidays considered was extended by including some
bridging holidays, such as Christmas Eve (24 December),
Boxing Day (26 December) and NewYear’s Eve (31 Decem-
ber).

Similarly to the GEFCom2014-L results, the lasso out-
performs the two benchmarks in four of the five years. The
average reductions in the pinball score relative to the Re-
cency and Vanillamodels are 11.9% and 15.6%, respectively.

5.3. Discussion

Even though the proposed methodology outperforms
two credible benchmarks, we may be able to improve it in
several ways. One model assumption is the homoscedas-
ticity of the residuals, but in practice the residuals are
heteroscedastic. Usually, we observe lower levels of vari-
ation at night and during low load seasons. Thus, the
heteroscedasticity of the residuals should be taken into
account when designing the model. Ziel (in press) and Ziel
et al. (2015) suggest the use of an iteratively reweighted
lasso approach, incorporating the volatility of the residu-
als. Their results suggest that a significant improvement in
the forecasting results can be achieved. It might also help
to apply a normality assumption with group analysis, as
was discussed by Xie, Hong, Laing, and Kang (in press), or
a block bootstrap method, as was used by Fan and Hyn-
dman (2012), in order to incorporate the remaining de-
pendency structure in the residuals. Another issue is the
tuning of the lasso itself. We simply considered the
Bayesian information criterion, but other special cases
of the generalized information criterion (GIC) might
yield better forecasting performances. Lastly, for the
GEFCom2014-L data, the treatment of the available tem-
perature information might be improved. For instance, the
weather station selection methodology proposed by Hong
et al. (2015) might provide a better incorporation of the
temperature data.
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6. Summary and conclusion

We introduce a methodology based on lasso estima-
tion that can estimate parameters for a large pool of can-
didate variables in order to capture several distinct and
well-known stylized facts in load forecasting. The pro-
posed methodology ranked second in GEFCom2014-E.
Two empirical studies based on two recent probabilis-
tic load forecasting competitions (GEFCom2014-L and
GEFCom2013-E) demonstrate the superiority of the pro-
posed method to two credible benchmarks.
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